
Effectiveness of Annotation-Based Static Type Inference1

Isabel Wingen, Philipp Körner �2

Institut für Informatik, Universität Düsseldorf3

Universitätsstr. 1, D-40225 Düsseldorf, Germany4

{isabel.wingen,p.koerner}@uni-duesseldorf.de5

Abstract. Benefits of static type systems are well-known: they offer guarantees6

that no type error will occur during runtime and, inherently, inferred types serve7

as documentation on how functions are called. On the other hand, many type8

systems have to limit expressiveness of the language because, in general, it is9

undecidable whether a given program is correct regarding types. Another concern10

that was not addressed so far is that, for logic programming languages such as11

Prolog, it is impossible to distinguish between intended and unintended failure12

and, worse, intended and unintended success without additional annotations.13

In this paper, we elaborate on and discuss the aforementioned issues. As an al-14

ternative, we present a static type analysis which is based on plspec. Instead of15

ensuring full type-safety, we aim to statically identify type errors on a best-effort16

basis without limiting the expressiveness of Prolog programs. Finally, we eval-17

uate our approach on real-world code featured in the SWI community packages18

and a large project implementing a model checker.19

Keywords: Prolog, static verification, optional type system, data specification20

1 Introduction21

Dynamic type systems often enable type errors during development. Generally, this is22

not too much of an issue as errors usually get caught early by test cases or REPL-23

driven development. Prolog programs however do not follow patterns prevalent in other24

programming paradigms. Exceptions are thrown rarely and execution is resumed at25

some prior point via backtracking instead, before queries ultimately fail (or succeed due26

to the wrong reason). This renders it cumbersome to identify type errors, their location27

and when they occur.28

There has been broad research on type systems offering a guarantee about the ab-29

sence of type errors (briefly discussed in Section 2). Yet, in dynamic programming30

languages such as Prolog, a complete well-typing of arbitrary programs is undecid-31

able [14]. Thus, in order for the type system to work, the expressiveness of the lan-32

guage often is limited. This hinders adaptation to existing code severely, and, as a con-33

sequence, type errors are often ignored in larger projects.34

At DECLARE’17, we presented plspec [7], a type system that uses annotations in35

order to insert run-time type checks (cf. Section 3). During discussions, the point was36

raised that some type checks could be made statically even with optional types. This37

paper thus contributes the following:38

https://orcid.org/0000-0001-7256-9560

– A type analysis tool usable for any unmodified Prolog program. It handles a proper39

“any” type and is extensible for any Prolog dialect (Section 4).40

– An empirical evaluation of the amount of inferred types using this tool (Section 5).41

– Automatic inference and generation of pre- and postconditions of plspec.42

2 A Note on Type Systems and Related Work43

Static type systems have a huge success story, mostly in functional programming lan-44

guages like Haskell [6], but also in some Prolog derivatives, such as Mercury [4], which45

uses type and mode information in order to achieve major performance boosts. Even46

similar dynamic languages such as Erlang include a type specification language [5].47

Many static type systems for logic programming languages have been presented [13],48

including the seminal works of Mycroft and O’Keefe [12], which also influenced Typed49

Prolog [8], and a pluggable type system for Yap and SWI-Prolog [16].50

All type systems have some common foundations, yet usually vary in expressive-51

ness. Some type systems suggest type annotations for functions or predicates, some52

require annotations of all predicates or those of which the type cannot be inferred au-53

tomatically to a satisfactory level. Yet, type checking of logic programs is, in general,54

undecidable [14]. This renders only three feasible ways to deal with typing:55

1. Allow only a subset of types, for which typing is decidable, e.g., regular types [2]56

or even only mode annotations [15].57

2. Require annotations where typing is not decidable without additional information.58

3. Work on a best-effort basis which may let some type errors slip through.59

Most type systems fall into the first or the second category. Yet, this usually limits60

how programs can be written: some efficient or idiomatic patterns may be rejected by61

the type system. As an example, most implementations of the Hindley-Milner type sys-62

tem [11] do not allow heterogeneous lists, though always results in a well-typing of the63

program. Additionally, most type systems refuse to handle a proper “any” type, where64

not enough information is available and arguments may, statically, be any arbitrary65

value. Such restrictions render adaptation of type systems to existing projects infea-66

sible. Annotations, however, can be used to guide type systems and allow more precise67

typing. The trade-off is code overhead introduced by the annotations themselves, which68

are often cumbersome to write and to maintain.69

Into the last category falls the work of Schrijvers et al. [16], and, more well-known,70

the seminal work of Ciao Prolog [3] featuring a rich assertion language which can71

be used to describe types. Unfortunately, [16] seems to be abandoned after an early72

publication and the official release was removed. Ciao’s approach, on the other hand, is73

very powerful, but suffers due to incompatibilities with other Prolog dialects.74

We share the reasoning and philosophy behind Ciao stated in [3]: type systems75

for languages such as Prolog must be optional in order retain usefulness, power and76

expressiveness of the language, even if it comes at the cost that not all type errors can77

be detected. Mycroft-O’Keefe identified two typical mistakes type systems uncover:78

firstly, omitted cases and, secondly, transposed arguments. We argue that omitted cases79

might as well be intended failure and, as such, should not be covered by a type system80

2

at all. Traditional type systems such as the seminal work of Mycroft-O’Keefe [12] often81

are not a good fit, as typing in Prolog is a curious case: due to backtracking and goal82

failure, type errors may lead to behaviour that is valid, yet unintended.83

Backtracking. Prolog predicates are allowed to offer multiple solutions which is often84

referred to as non-determinism. Once a goal fails, execution continues at the last choice85

point where another solution might be possible. Thus, if a predicate was called incor-86

rectly, the program might still continue because another solution is found, e.g., based87

on other input. Consider an error in a specialised algorithm: if there is a choice point,88

a solution might still be found if another, slower, fall-back implementation is invoked89

via backtracking. Such errors could go unnoticed for a long time as they cannot be90

uncovered by testing if a correct solution is still found in a less efficient manner.91

Goal Failure. Most ISO Prolog predicates raise an error if they are called with incorrect92

types. However, non-ISO predicates usually fail as no solution is found because the93

input does not match with any clause. E.g., consider a predicate as trivial as member:94

member(H, [H|_]). member(E, [_|T]) :- member(E, T).95

Querying member(1, [2,3,4]) will fail because the first argument is not in the list,96

which is the second argument. We name this intended failure. Yet, if the second argu-97

ment is not a list, e.g., when called as member(1, 2), it will fail because the second98

argument is not a list. We call this unintended failure, as the predicate is called in-99

correctly. The story gets even worse: additionally to failure cases, there can also be100

unintended success. Calling member(2, [1, 2|foo]) is not intended to succeed, as101

the second argument is not a list, yet the query returns successfully. Distinguishing be-102

tween intended and unintended behaviour is impossible as they use the same signal, i.e.103

goal failure (or success). We argue that the only proper behaviour would be to raise an104

error on unintended input instead because this most likely is a programming error.105

In this paper, we investigate the following questions: Can we implement an optional106

type system that supports any Prolog dialect? How well does such a type system per-107

form and is a subset of errors that are identified on best-effort basis sufficient? We think108

that the most relevant class of errors is that an argument is passed incorrectly, i.e. the109

type is wrong. Thus, an important question is how precise type inference by such a110

type system could be. If it works well enough, popular error classes such as transposed111

arguments, as described by [12], can be identified in most cases.112

3 Foundation: plspec113

plspec is an ad-hoc type system that executes type checks at runtime via co-routining.114

With plspec, it is possible to add two kinds of annotations. The first kind of annotation115

allows introduction of new types. plspec offers three different ways for this. For our116

type system, we currently focus only on the first one and implement shipped special117

cases that fall under the third category, i.e. tuples, lists and compound terms:118

1. recombination of existing types119

2. providing a predicate that acts as characteristic function120

3. rules to check part of a term and generate new specifications for sub-terms121

3

any

varnonvar

ground

compound

list

empty list

atomic

atom string
(SWI only)

exact

number

int float

Fig. 1. Abstract Type Domain

plspec’s built-in types are shown in122

Fig. 1. They correspond to Prolog types,123

with the addition of “exact”, which only al-124

lows a single specified atom (like a zero-125

arity compound), and “any”, which allows126

any value. Some types are polymorphic, e.g.127

lists can be instantiated to lists of a spe-128

cific type. There are also two combinators,129

one_of that allows union types as well as130

and, which is the intersection of two types.131

Combination of built-in types is certainly132

very expressive. While such structures can-133

not be inferred easily without prior defini-134

tion, as a realistic example, it is possible to135

define a tree of integer values by using the one_of combinator as follows:136

defspec(tree, one_of([int, compound(node(tree, int, tree))])).137

Valid trees are 1, node(1, 2, 3), node(node(0, 1, 2), 3, 4) but not, e.g.138

tree(1, 2, 3), where the functor does not match, or node(a, b, c) which stores139

atoms instead of integer values. Note that it is also possible to use a wildcard type140

to define a tree tree(specvar(X)), which passes the variable down into its nodes.141

specvars are a placeholder to express that two or more terms share a common, but142

arbitrary type. This can be used to define template-like data structures which can be143

instantiated as needed, e.g., as a tree(int).144

The second kind of annotations specifies how predicates may be called and, possi-145

bly, what parameters are return values. We re-use two different annotations for that:146

1. Preconditions specify types for all arguments of a predicate. For a call to be valid,147

at least one precondition has to be satisfied.148

2. Postconditions add promises for a predicate: if the predicate was called with certain149

types and if the call was successful, specified type information holds on exit.150

Both pre- and postconditions must be valid for every clause of the specified predi-151

cate. Consider a variation of member/2, where the second argument has to be a list of152

atoms, and the first argument can either be an atom or var:153

atom_member(H,[H|_]). atom_member(E,[_|T]) :- atom_member(E,T).154

Instead of checking the terms in the predicate, type constraints describing intended input155

are added via plspec’s pre- and postconditions. The following preconditions express the156

valid types one has to provide: the first argument is either a variable or an atom, and the157

second argument must be a list of atoms.158

:- spec_pre(atom_member/2, [var, list(atom)]).159

:- spec_pre(atom_member/2, [atom, list(atom)]).160

As the second argument is always a ground list of atoms, we can assure callers of161

atom_member/2, that the first term is bound after the execution using a postcondition:162

4

:- spec_post(atom_member/2, [var, list(atom)], [atom, list(atom)]).163

Postconditions for a predicate are defined using two argument lists: they are read as164

an implication. For atom_member/2 above, this means that “if the first argument is a165

variable and the second argument is a list of atoms, and if atom member/2 succeeds,166

it is guaranteed that the second argument is still a list of atom, but also that the first167

argument will be bound to an atom”. If the premise of the postcondition does not hold168

or the predicate fails, no information is gained.169

Extensions to plspec. The traditional understanding if there are two instances of the170

same type variable, e.g. in a call such as spec_pre(identity/2, [X, X]), is that171

both arguments share all types. Yet, we want to improve on the expressiveness of,172

say, spec_pre(member/2, [X, list(X)]), and allow heterogeneous lists. This ex-173

tension is not yet implemented in plspec itself and is only part of the static analy-174

sis in plstatic. In order to express how the type of type variables is defined, we use175

compatible for the homogeneous and union for the heterogeneous case.176

If a list is assigned the type list(compatible(X)), every item in the list is as-177

signed the type compatible(X). Now plstatic checks whether all these terms share all178

types, thus enforcing a homogeneous list. If a list is assigned the type list(union(X)),179

every item in the list is assigned the type union(X). But instead of a type intersection,180

plstatic collects the types of these terms and builds a union type.181

To give an example for the semantics of compatible and union, the list [1, a] has182

the inner type one_of([int, atom]) under the semantics of a union, and results in a183

type error (as the intersection of int and atom is empty) if its elements should be com-184

patible. A correct annotation for member/2 would be the following postcondition:185

spec_post(member/2,[any,list(any)],[compatible(X),list(union(X))]),186

i.e., the list is heterogeneous, and the type of the first argument must occur in this list.187

4 Our Type System188

In the following, we describe a prototype named plstatic. It uses an abstract interpreter189

in order to collect type information on Prolog programs and additionally to identify190

type errors on a best-effort (i.e., based on available type information due to annota-191

tions) basis, without additional annotations. The tool is available at https://github.com/192

isabelwingen/prolog-analyzer. Due to page limitation, we can only present some points193

we deem important.194

Purpose and Result. The tool plstatic performs a type analysis on the provided code.195

All inferred information can be written out in form of annotations in plspec syntax,196

or HTML data that may serve, e.g., as documentation. Naturally, plstatic shows an197

overview of type errors, which were found during the analysis. plstatic is not intended198

to uncover all possible type errors. Instead, we are willing to trade some false negatives199

for the absence of false positives, as they might overwhelm a developer in pure quantity.200

Whether true programming errors can be discovered is discussed in Section 5.201

As typing can be seen as a special case of abstract interpretation [1], we use plspec’s202

annotations to derive an abstract value, i.e. a type, for terms in a Prolog clause. Abstract203

5

https://github.com/isabelwingen/prolog-analyzer
https://github.com/isabelwingen/prolog-analyzer
https://github.com/isabelwingen/prolog-analyzer

types correspond to the types shown in Fig. 1, where a type has an edge pointing to a204

strict supertype. However, as distinguishing ground from nonvar terms often is impor-205

tant, compound terms are tried to be abstracted to the ground type first, represented by206

the dashed edge. We use the least upper bound and greatest lower bound operations as207

they are induced by the type subset relation. This analysis is done statically and without208

concrete interpretation of Prolog code, based on plspec annotations and term literals.209

Annotations. plstatic works without additional annotations in the analysed code. It de-210

rives type information from (a large subset of) built-in (ISO) predicates, that we manu-211

ally provided pre- and postconditions for. We also annotated a few popular libraries, e.g.212

the lists library. For predicates lacking annotations, types can be derived if type infor-213

mation exists for predicates called in their body, or can be inferred from unification with214

term structure in the code. Derived types describe intended success for the unannotated215

predicate. Naturally, precision of the type analysis improves with more annotations.216

4.1 Tool Architecture217

plstatic is implemented in Clojure. An alternative was to implement a meta-interpreter218

in Prolog. A JVM-based language allows easier integration into text editors, IDEs and219

potentially also web services. However, this requires to extract a representation of the220

Prolog program. We decided against parsing Prolog due to operator definitions and221

loss of term expansion1. Instead, we add a term expander ourselves before we load the222

program. It implements plspec’s syntax for annotations and extracts those alongside the223

program itself. All gathered information is transformed to edn2.224

plstatic consists of two parts pictured in Fig. 2: a binary (jar) that contains the static225

analysis core, and a term expander written in Prolog, The analysis core is started with226

parameters specifying the path to a Prolog source file or directory and a Prolog di-227

alect (for now, “swipl” or “sicstus”). Additionally, the path to the term expander can be228

passed as an argument as well, if another syntax for annotations than plspec’s is desired.229

Regarding module resolution, special care has to be taken when an entire directory230

is analysed: when modules are included, it is often not obvious where a predicate is231

located. It can be hard to decide whether a predicate is user-defined, shipped as part of232

a library or part of the built-in predicates available in the user namespace. Thus, when233

the edn-file is imported, a data structure is kept in order to resolve calls correctly.234

As our evaluation in Section 5 uses untrusted third-party code, we take care that the235

Prolog code, that may immediately run when loaded, is not executed. Instead, the term236

expander does not return any clause, effectively removing the entire program during237

compilation. Trusted term expanders can be loaded beforehand if required.238

4.2 Analysis239

Our approach to type inference implements a classical abstract interpreter. Each clause240

is analysed individually in a first phase. We use plspec’s annotations of the clause and241

1 Term expansion is a mechanism that allows source-to-source transformation.
2 https://github.com/edn-format/edn

6

Analysis Core (Clojure)

edn

Term Expander

Source File(s)

call Prolog (1)

read (4) load (2)

write (3)

Fig. 2. Tool Architecture

the sub-goals to derive an abstract type domain for all terms in the clause. In a second242

phase, those results are combined: After the first phase, we have obtained a typing for243

every clause, which describes the types that the terms have after a successful execution244

of the clause. The inferred type information for all clauses of a predicate, can be stored245

as a postcondition. This postcondition may be more accurate than the already provided246

one. In this case, the analysis of a predicate would in turn improve the analysis result247

for clauses that call that predicate.248

For this reason, plstatic works in two phases: first, clause-local analysis that is based249

on already known information, and, second, merging information of all clauses of a250

single predicate, propagating newly gained information to the caller(s). Without the251

presence of a one-of combinator, this would guarantee a fixed point as a result of252

the analysis. As we cannot infer recursive datatypes yet, which might result in infinite253

one-of-sequences, we limit the number of steps in order to ensure termination.254

Example: Rate My Ship The following code will accompany us during this section.255

ship(Ship) :- member(Ship , [destiny , galactica , enterprise]).256

rating(stars(Rate)) :- member(Rate , [1,2,3,4,5]).257

rate_my_ship(S,R) :- ship(S), rating(R).258

Preparation For every loaded predicate, we check, if there are pre- and postcondi-259

tions already specified, ones provided by the user or our own manual annotations of260

ISO predicates. Otherwise, they are created containing any-types during the prepara-261

tion as follows: all literals, e.g., lists, compound or atomic terms, in the clause head are262

considered: their type is already known after loading the program. For variable literals,263

however, we initially assume the type any. Additionally, if not annotated otherwise, we264

assume that a clause may be called by a variable. Based on this information, we create265

initial pre- and postconditions for all predicates, considering the entire argument vector.266

Below, we show the generated specs for our example after the preparation step:267

:- spec_pre(ship/1, [any]).268

:- spec_post(ship/1, [any], [any]).269

:- spec_pre(rating/1, [one_of ([var , compound ([stars(any)])])]).270

:- spec_post(rating/1, [any], [compound ([stars(any)])]).271

:- spec_pre(rate_my_ship /2, [any , any]).272

:- spec_post(rate_my_ship /2, [any , any], [any , any]).273

Phase 1: Clause-Local Analysis Because of the nondeterministic nature of Prolog,274

it is not sufficient to store the current type for a variable at a given point: we also275

7

brother(Lore,Data)
{:dom tuple([atom,atom])}

Lore
{:dom atom}

Data
{:dom atom}:arg 0 :arg 1

Fig. 3. An Example Environment (Using edn-Formatted Maps)

have to consider relationships between several terms that are caused by unification.276

Such relationships are stored in an environment, for which we use a directed graph277

per clause. The inferred types of the terms are stored in the vertices. Relationships278

between terms and sub-terms e.g. [H|T], where head and tail might have a depen-279

dency on the entire list term (e.g., list(int)), or postconditions are saved as labelled280

edges between the term vertices. An example showing the structure of a compound term281

brother(Lore, Data) is given in Fig. 3.282

During the analysis of a clause, the type domains of the terms are updated and their283

precision is improved. We assume that each predicate call in the body has to succeed,284

and gather information from their pre- and postconditions. When new type informa-285

tion about a term is gained, the greatest lower bound is calculated by intersecting both286

domains. When considering variables in Prolog however, this comes with some pitfalls287

that are discussed in more details in Step 2. If the type intersection is empty, no concrete288

value is possible for the Prolog term and a type error is reported. However, this relies289

on the assumption that all given annotations are correct.290

Step 1: Clause Head. The environment is initialised with all terms occurring in the291

head of the clause. Information about the head of the clause can be derived from the292

preconditions. According to plspec, at least one precondition must be fulfilled.293

This raises the issue of tuple distributivity. Consider a predicate cake(X, Y) that294

is annotated with the preconditions [atom, int] and [int, atom]. This means that295

cake/2 expects an atom and an integer, no matter the order. For both X and Y, one296

could derive one_of([atom, int]) as type information. However, this would render297

X=1,Y=2 to be valid input, as the individual type constraint are fulfilled, yet, the original298

precondition is violated.299

As we aim at keeping the most precise type information possible, we create an300

artificial tuple containing all arguments, whose domain is a union-type containing all301

supplied preconditions. This artificial term functions as a “watcher”, and ensures all302

type constraints. For the cake predicate, the term [X,Y] is added to the environment,303

along with its type one_of([tuple([atom,int]), tuple([int,atom])]). Once304

we know a more specific type for, e.g., Y, we can derive which option must be valid for305

the “watcher”, and we can derive a type for X. The environment is pictured in Fig. 4.306

Due to page limitations, we only consider the environment of rate_my_ship/2307

here: in this step, it infers types for S, R and the entire argument vector [S,R].308

Step 2: Evaluate Body. We analyse the body step by step, making use of (generated or309

annotated) pre- and postconditions of all encountered sub-goals. This allows us to refine310

the type step by step: for example, if member(X,L) is called, one can infer that L must311

be a list on success, even if no information on the variable was known before. On the312

first occurrence of a term, it is added to the environment. Similarly to the clause head, at313

8

X {:dom one of([atom,int])} Y {:dom one of([atom,int])}

[X,Y]
{:dom one of([tuple([atom,int]),

tuple([int,atom])])}

[Y] {:dom
one of([tuple([int]),
tuple([atom])])}

:is-head :is-head

:is-tail

Fig. 4. Environment with a Watcher (Using edn-Formatted Maps)

Table 1. Environment for rate my ship/2

Variable Term Clause Head after 1st sub-goal after 2nd sub-goal
[S, R] tuple([any, any]) tuple([any, any]) tuple([any, any])
[R] tuple([any]) tuple([any]) tuple([any])
R any any compound(star([any]))
S any any any

least one precondition of the sub-goal must be compatible with the combination of the314

arguments it is called with. Otherwise, for the example calling member, if L is known315

not to be a list but, e.g., an integer, a type error is raised.316

The analysis does not step into the sub-goal, and only uses pre- and postconditions.317

A postcondition specifies type constraints on a term after the called predicate succeeds.318

Thus, it is checked which premises of postconditions are fulfilled. Then, the greatest319

lower bound of the current type domain and the possible conclusion of the postcondi-320

tions is calculated in order to improve precision. An example is shown in Table 1.321

Type Variables. We have introduced two new kinds of type variables (cf. Section 3):322

union and compatible. It is possible to use union(X) or compatible(X), where X is323

a type variable. Both are placeholders for yet unknown types and express two different324

relationships between terms:325

Every term that is assigned the type union(X) contributes to the definition of the326

type that is X. The connection is made by adding a labelled edge :union between the327

term and X. Then, the domain of all contributing terms is calculated as described. At the328

end of the analysis step, the union type of the variable X is inferred via the least upper329

bound of all connected terms. As an example, if an integer and an atom is part of the330

same union type, it will result in one_of(int, atom).331

On the other hand, terms that are assigned the type compatible(X), must be332

compatible with all other terms that are assigned that type. This implies that their333

intersection must not be empty. As with the union type, we create a labelled edge334

:compatible connecting the term to X. These edges are processed after all union edges335

have been visited. For example, if a known atomic value and a known integer have to336

be compatible within the same type variable, we can infer that both values are integer,337

as it is the intersection of both types.338

In order to determine the type of a type variable, it is required to know all con-339

tributing terms. Thus, for compound or a list terms of a known size, the assigned type340

9

is passed down to its sub-terms using the mechanisms described above. Yet, even if we341

know that L is a list of union(X), we do not know the list items yet – even worse,342

the variable may only be bound later on! This requires an additional step in order to343

ensure that the domain for the type variable X is compiled correctly: we opted to add344

a :has-type edge to the environment, which connects a Prolog variable, e.g. T, to an345

artificially created variable T__<uuid> storing the inner type, i.e. union(X) in the ex-346

ample above. Whenever the domain of a connected variable is updated, so is the type347

variable itself. Effectively, this delays the computation of the actual type variable. The348

artificial list type variable then is connected with union(X). For compound and tuple349

type specifications, an artificial term is created and linked to the variable term via a350

special edge. This is required to mimic unification of Prolog variables. Whenever the351

domain of the variable term is updated, the artificial term’s domain is updated as well.352

Finally, the information is propagated into the corresponding sub-terms if required.353

Have a look at member/2 used in the body of ship/1. The provided postcondition is354

post_spec(member/2, [any, any], [compatible(X), list(union(X))]).355

Therefore, after analysing the body of ship/1, we know the following:356

1. The second argument of member contributes to the variable X in form of a union.357

We learn that X is either destiny, galactica or enterprise.358

2. We learn that the variable Ship must be compatible with X, so it must be one of the359

three atoms named above.360

Step 3: Term Relationships. After analysing the body, all terms in the clause are in-361

cluded in the environment. Then, nodes that may be destructured, i.e. lists and com-362

pound terms, are looked up in the graph. As sub-terms, e.g. X in a(X), can be used in-363

dividually in subsequent sub-goals, i.e. without the wrapping functor a(...), inferred364

information has to be propagated back to the larger compound term. We introduce the365

following edges in order to provide the necessary mechanism:366

For lists, we extract the head and tail terms and add them to the environment, if they367

are not already contained. Those terms are marked with special edges :is-tail and368

:is-head (cf. Fig. 4) pointing to the original list. For compounds, we add the argument369

terms to the environment and store the position of every term in the compound by adding370

an edge :pos (cf. Fig. 3).371

For rate_my_ship/2, three edges are added due to this step: the environment al-372

ready contains the argument vector [S,R] after Step 1. We add that S is the head item,373

that [R] is the tail of the list, and that R is the head of the tail [R].374

Prolog Variables. The any-type can be split into two disjoint sets: variables and non-375

variable terms. After processing a sub-goal, non-variable terms can only gain precision.376

Variables, however, have the unique property that their type can change, as they can be377

bound to, say, an atom, which is not a sub-type. To take this into account, a different378

intersection mechanism is required for variables:379

– Preconditions of the currently analysed predicate may render a variable non-variable.380

– Preconditions of a called sub-goal cannot render a variable term non-variable.381

– Postconditions of a called sub-goal may render a variable term non-variable.382

– Once a Prolog variable is bound to a non-variable, it behaves like any non-variable.383

10

Step 4: Fixed-Point Algorithm. During the prior steps, we added edges to the environ-384

ment. These are now used to update the types of the linked terms. If the environment no385

longer changes, we have consumed all collected knowledge and have found a prelimi-386

nary result for a clause.387

For example, in rate_my_ship/2, we will update the tuples [R] and [S,R] once388

we learn that R must be of the form compound(stars([any])).389

Phase 2: Global Propagation of Type Information During the local analysis, each390

clause was inspected in isolation. The type domains in the returned environments con-391

tain the types after a successful execution of a clause with the knowledge gained so far.392

The gathered information then must be propagated to the caller of the corresponding393

predicate in order to improve the precision of the type inference.394

Each resulting environment can be used to generate the conclusion of a postcon-395

dition. If a predicate succeeds, at least one of its clauses succeeded. As postconditions396

must be valid for the entire predicate, the conclusion of a new postcondition is the union397

of all conclusions of the corresponding clauses. This newly gained knowledge (in form398

of a postcondition) is added to the analysed data for every predicate. Afterwards, both399

local analysis and global propagation are triggered, until a fixed-point is reached. In-400

ferred pre- and postconditions can be written out after analysis in plspec’s syntax.401

Example: append/2. Consider the append program:402

append([], Y, Y). append([H|T], Y, [H|R]) :- append(T, Y, R).403

For the first clause, plstatic would derive the types [list(any), any, any]. For the404

second clause, we gain no additional information from the body, because append/2405

is calling itself, so we derive the types [list(any), any, list(any)]. To create406

a conclusion of a postcondition for the predicate, we need to combine the results of407

the two clauses. Unfortunately, as the type of the third argument is any in one case,408

it swallows the more precise type list(any). We obtain the following conclusion:409

[list(any), any, any]. While the intention is that the second and third arguments410

are lists as well, this cannot be inferred without annotations.411

As you have probably noticed, plstatic has not yet found the accurate type atom412

for S or R in rate_my_ship/2. This is because the pre- and postconditions of ship/1413

have not been updated yet, so plstatic has no way of knowing that S is an atom. In414

the first phase, we have concluded that the argument given to ship/1 must be of type415

atom after a successful execution. As ship/1 has only one clause, we can infer the416

postcondition: :- post_spec(ship/1, [any], [atom]). Analogously, we obtain417

:- post_spec(rating/1, [any], [compound(stars([atom]))]).418

The propagation of the newly gained knowledge is shown in Table 2. Afterwards419

we can update the pre- and postconditions for rate_my_ship/2, but ship/1 and420

rating/1 are not affected from this. If our program has no more clauses, the fixed-421

point is reached, and the analysis stops.422

Backtracking. Preconditions specify a condition which must be fulfilled at the moment423

of the call, and postconditions can provide information about the type of the used terms424

11

Table 2. Environment for rate my ship/2

Variable Term Newly Gained Knowledge After Propagation
[S, R] tuple([any, compound(star([any]))]) tuple([atom, compound(star([atom]))])
[R] tuple([compound(star([any]))]) tuple([compound(star([atom]))])
R compound(star([atom])) compound(star([atom]))
S atom atom

after a successful execution. The caller of a predicate is unaware which clause provided425

the result. Thus, the union of all gained type information has to be considered in the426

second phase. As a result, it is safe to ignore backtracking: yet, precision could in some427

cases be improved if clause ordering and cuts (!) were considered.428

5 Evaluation429

To our knowledge, papers on type systems for Prolog usually omit an evaluation of their430

applicability for existing, real-world Prolog code and offer insights on their type infer-431

ence mechanisms on small toy examples, such as the well-known append predicate.432

However, we want to consider code that is more involved than homework assignments.433

There is no indication to what extent type inference approaches are applicable to the real434

world, or how much work has to be spent re-writing code for full-fledged type systems.435

In contrast, we baptise plstatic by fire and evaluate for how many variables in the436

code we can infer a type that is more precise than any. For this, we use smaller SWI437

community packages3, as well as PROB [9], a model checker and constraint solver that438

currently consists of more than 120000 lines of Prolog code.439

5.1 Known Limitations440

Currently, we face three limitations in plstatic: firstly, as we try to avoid widening when-441

ever possible, i.e., we try to use the most precise type like a one_of instead of generalis-442

ing to their common supertype, performance is not too good. Analysis of small projects443

runs neglectably fast, yet PROB requires several hours to complete a full analysis. Sec-444

ondly, libraries throw a wrench into our scheme: modern Prolog systems pre-compile445

the code. Hence, meta-programs, such as term expanders, cannot access their clauses.446

Thus, library code is not considered and plstatic has to rely on annotations. Currently,447

we only provide annotations for large parts of the lists library (for both SWI Prolog and448

SICStus Prolog) and the AVL tree library (for SICStus Prolog only). Otherwise, for all449

library predicates that are not annotated, an any type has to be assumed. Thirdly, we450

currently do not consider disjunctions and if-then-else constructs, but may gain addi-451

tional precision once this is implemented.452

Additionally, there is an inherent limitation in our analysis strategy: some predicates453

may really work on any type, e.g. term type checking predicates (such as ground/1454

or nonvar/1) or the member/2 predicate regarding the first argument. As no similar455

3 http://www.swi-prolog.org/pack/list

12

http://www.swi-prolog.org/pack/list

Table 3. Amount of Inferred Types for Variables

Repository # Variables Inferred Types Unknown Calls
bddem 196 31.63 % 57.6 %
dia 400 68.5 % 8.23 %
maybe 32 6.25 % 70.0 %
plsmf 67 37.31 % 37.5 %
quickcheck 122 42.6 % 34.1 %
thousands 19 94.73 % 0.0 %
∅ SWI Community Packages 68344 21.8 % 39.0 %
PROB 81893 21.2 % 20.8 %

analysis for Prolog programs exists yet and type inference by hand is infeasible for456

large programs, it is certainly hard to gauge the precision of our type inference.457

5.2 Empirical Evaluation458

0 20 40 60 80 100
0

20

40

60

80

100

Unknown Calls in %

A
ny

Ty
pe

s
in

%

Fig. 5. Correlation Between Unknown Calls and
Inferred Types

In Table 3, the results of some repos-459

itories4 and the mean value of the460

198 smallest community packages is461

shown. We give the amount of Prolog462

variables, and the percentage of which463

we can infer a type that is a strict sub-464

type of any. For reference, we also465

give the amount of calls to unknown466

predicates in order to give an idea how467

many missing types are caused by, e.g.,468

library predicates lacking annotations.469

Though, once a variable is assigned an470

any type, the missing precision typically is passed on to terms that are interacting with471

the any term as the predicate is implemented in a library.472

At first glance, the fraction of inferred types seems to be rather low. For some repos-473

itories, such as “dia” and “thousands”, a specific type could be inferred for a large per-474

centage of variables. Note that in return, the amount of unknown calls is relatively low.475

Then, there are repositories such as “bddem” and “plsmf”, which both are wrappers of476

a C library. As such, the interop predicates are unknown and the inferred types are sig-477

nificantly lower. Finally, there are packages like “maybe”, “quickcheck” and projects478

such as PROB, that make use of other libraries, conditional compilation, meta-calls and479

other features that decrease accuracy of type inference.480

Overall, we were surprised how small the amount of inferred types was. Though,481

one has to consider that a large amount of predicates are library calls, e.g. into the482

popular CLP and CHR libraries. In Fig. 5, we show this relation. One can clearly recog-483

nise that (unknown) library calls negatively impact the results of our type analysis. Yet,484

many auxiliary predicates are written to be polymorphic and deal with any type.485

4 Full results: https://github.com/pkoerner/plstatic-results/tree/wflp-20

13

https://github.com/pkoerner/plstatic-results/tree/wflp-20

With plstatic, we were able to find several errors: many SWI libraries have been486

broken with changes introduced in SWI Prolog 7 [19]. Strings now are proper strings,487

where legacy code relies on the assumption that they are represented as code lists. Fur-488

thermore, plstatic located calls in PROB that were guaranteed to fail every time due to489

type errors. These calls decide whether a backend is usable in order to solve a given490

predicate and always fail. Thus, the errors have gone unnoticed for eight years, as the491

backend simply was not used. One error was reported due to missing term expansion as492

we did not execute untrusted Prolog code. We found another false-positive due to meta493

predicate annotations which add the module to a goal, thus altering the term structure.494

Additionally, we found some extensions SICStus Prolog made to the ISO standard that495

we were not aware of: e.g., arithmetic expressions in SICStus Prolog allow expressions496

such as X is integer(3.14) or Y is log(2, 42). Thus, plstatic raised type errors497

for terms that did not match our type describing ISO arithmetic expressions.498

6 Conclusion and Future Work499

In this paper, we presented plstatic, a tool that re-uses its annotations in order to ver-500

ify types statically where possible. In several existing Prolog repositories, plstatic was501

able to locate type errors. Yet, without annotations of further libraries, the amount of502

actual inferred types remains relatively low. We invite the Prolog community to discuss503

whether such type annotations are desired and should be shipped as part of packages.504

There remains some work on plstatic: performance bottlenecks need to be reviewed.505

Furthermore, the analysis would heavily benefit from a mechanism for the term ex-506

pander to hook into library packages, manual annotations or generated annotations507

based on library source code as far as it is available. It might also be possible to anal-508

yse some pre-compiled library beforehand and re-use those results in the analysis of509

the main program. We also plan to implement semantics for new types, for which the510

structure is not specified, but they may only be created by libraries. E.g., Prolog streams511

cannot be created manually and one of the built-in predicates must be called. Other ex-512

amples include ordered sets or AVL trees, where it is possible to create or manipulate513

such a term, but it is heavily discouraged as it is very easy to introduce subtle errors.514

Moreover, it would be exciting to compare the amount of inferred types to similar515

implementations such as CiaoPP. We assume their analysis to be stronger, but suspect516

that Ciao’s approach might not scale as well for larger programs. Yet, comparison might517

be hindered, again, because features of other Prolog systems are not supported. It might518

also be interesting to see whether our semantics can be integrated into CiaoPP.519

In [18] and also in the evaluation of plspec [7], it was determined that the overhead520

of run-time type checks can be enormous, especially if applied to recursive predicates.521

With additional type information, a large amount of run-time checks can be eliminated,522

as, e.g., proposed by [18]. It is fairly straightforward to generate a list of already dis-523

charged annotations and use that as a blacklist in plspec. This could move the tool524

towards gradual typing [17], combining benefits of static typing and reducing overhead525

of static checks with the potential for many optimisations.526

It is well-known that compilers often benefit heavily from type information. An in-527

teresting research question is to investigate the impact of type information, e.g. gained528

14

by plstatic or by annotations, when added to the binding-time analysis of a partial eval-529

uator, such as LOGEN [10]. This might greatly reduce the work required of manually530

improving generated annotations in order to gain additional performance.531

As a more pragmatic approach to future work, it would be greatly appreciated if the532

state-of-the-art of Prolog development tooling could be improved. Currently, IDEs and533

editor integrations are lacking. Including type information would be a great start.534

References535

1. P. Cousot. Types as abstract interpretations. In Proceedings POPL, pages 316–331. ACM,536

1997.537

2. J. P. Gallagher and K. S. Henriksen. Abstract domains based on regular types. In Proceedings538

ICLP, pages 27–42. Springer, 2004.539

3. M. V. Hermenegildo, F. Bueno, M. Carro, P. López-Garcı́a, E. Mera, J. F. Morales, and540

G. Puebla. An overview of Ciao and its design philosophy. TPLP, 12(1-2):219–252, 2012.541

4. D. Jeffery. Expressive Type Systems for Logic Programming Languages. PhD thesis, Depart-542

ment of Computer Science and Software Engineering, The University of Melbourne, 2002.543

5. M. Jimenez, T. Lindahl, and K. Sagonas. A Language for Specifying Type Contracts in544

Erlang and Its Interaction with Success Typings. In Proceedings ERLANG, pages 11–17.545

ACM, 2007.546

6. S. P. Jones. Haskell 98 language and libraries: the revised report. Cambridge University547

Press, 2003.548

7. P. Körner and S. Krings. plspec – A Specification Language for Prolog Data. In Proceedings549

WFLP, volume 10997 of LNAI, pages 198–213. Springer, 2017.550

8. T. Lakshman and U. S. Reddy. Typed Prolog: A Semantic Reconstruction of the Mycroft-551

O’Keefe Type System. In ISLP, volume 91, pages 202–217, 1991.552

9. M. Leuschel and M. J. Butler. ProB: A model checker for B. In Proceedings FME, volume553

2805 of LNCS, pages 855–874. Springer, 2003.554

10. M. Leuschel, S. J. Craig, M. Bruynooghe, and W. Vanhoof. Specialising interpreters using555

offline partial deduction. In Program Development in Computational Logic, volume 3049 of556

LNCS, pages 340–375. Springer, 2004.557

11. R. Milner. A theory of type polymorphism in programming. Journal of computer and system558

sciences, 17(3):348–375, 1978.559

12. A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog. Artificial intelligence,560

23(3):295–307, 1984.561

13. F. Pfenning. Types in logic programming. MIT Press Cambridge, Massachusetts, USA, 1992.562

14. F. Pfenning. On the undecidability of partial polymorphic type reconstruction. Fundam.563

Inform., 19(1/2):185–199, 1993.564

15. E. Rohwedder and F. Pfenning. Mode and termination checking for higher-order logic pro-565

grams. In Proceedings ESOP, volume 1058 of LNCS, pages 296–310. Springer, 1996.566

16. T. Schrijvers, V. S. Costa, J. Wielemaker, and B. Demoen. Towards typed Prolog. In Pro-567

ceedings ICLP, volume 5366 of LNCS, pages 693–697. Springer, 2008.568

17. J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined criteria for gradual typing.569

In Proceedings SNAPL. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.570

18. N. Stulova, J. F. Morales, and M. V. Hermenegildo. Reducing the overhead of assertion571

run-time checks via static analysis. In Proceedings PPDP, pages 90–103. ACM, 2016.572

19. J. Wielemaker. SWI-Prolog version 7 extensions. In Proceedings CICLOPS-WLPE, page573

109, 2014.574

15

	Effectiveness of Annotation-Based Static Type Inference

