
State-of-the-Art Model Checking for B and
Event-B Using ProB and LTSmin

Philipp Körner1�[0000−0001−7256−9560], Michael Leuschel1, Jeroen Meijer2∗

1 Institut für Informatik, Universität Düsseldorf, Germany
{p.koerner, leuschel@cs.} uni-duesseldorf.de

2 Formal Methods and Tools, University of Twente, The Netherlands
j.i.g.meijer@utwente.nl

Abstract. In previous work, we presented symbolic reachability analy-
sis by linking ProB, an animator and model checker for B and Event-B,
and LTSmin, a language-independent model checker offering state-of-
the-art model checking algorithms. Although the results seemed very
promising, it was a very basic integration of these tools and much po-
tential of LTSmin was not covered by the implementation.
In this paper, we present a much more mature version of this tool inte-
gration. In particular, explicit-state model checking, efficient verification
of state invariants, model checking of LTL properties, as well as partial
order reduction and proper multi-core model checking are now available.
The (improved) performance of this advanced tool link is benchmarked
on a series of models with various sizes and compared to ProB.

1 Introduction

Formal methods, e.g., the B-Method [3], are vital to ensure correctness in soft-
ware where failure means loss of money or even risking human lives. Yet, for
industrial application, tooling often remains unsatisfactory [6,35]. One such tool
is ProB, an animator and model checker for B and Event-B. While ProB is
fairly mature after hundreds of man-years of engineering effort, it may still strug-
gle with industrial-sized models containing several millions of states. LTSmin,
however, is a language-independent model checker that offers symbolic algo-
rithms and many optimizations in order to deal with the state space explosion
problem.

In [4], we linked LTSmin with ProB in order to obtain a symbolic reacha-
bility analysis for B and Event-B. ProB was computing the B operational se-
mantics and providing static information about possible state transitions while
LTSmin was performing the symbolic reachability algorithm.

LTSmin offers further model checking algorithms and optimizations, both
for its symbolic and for its sequential backend. In this paper, we describe how
we extended the link between LTSmin and ProB using ZeroMQ [19] in order to
obtain a model checking tool for B and Event-B and evaluate the performance

∗ Supported by STW SUMBAT grant: 13859

on a set of real life, industrial-sized models. LTSmin’s language frontend that
interacts with ProB can directly be used with any model checker that speaks
the same protocol via ZeroMQ. The extension is based on [21] and includes:

– invariant checking (for both the symbolic and sequential backend),
– guard splitting for symbolic analysis of B models,1

– partial order reduction (with the sequential backend),
– (parallel) LTL model checking (with the sequential/multi-core backend),
– effective caching of transitions and state labels,
– short states, to transmit only relevant variables for each transition.

1.1 LTSmin

LTSmin [9] is an open-source, language-independent, state-of-the-art model check-
er that offers many model checking algorithms including partial order reduction,
LTL verification and distributed model checking. An overview of its architecture
can be found in Fig. 1. By implementing the Pins, i.e., the partitioned interface
to the next-state function, new language frontends can employ these algorithms.
At its core, Pins consists of three functions: one that provides an initial state
vector, a second, partitioned transition function that calculates successor states
and, lastly, a state labelling function.

Specification
Languages

Pins2Pins
Wrappers

Reachability
Tools

mcrl2 Promela . . . ProB

front-end

back-end

Transition
Caching

Variable Reordering,
Transition Grouping LTL

Partial Order
Reduction

Distributed Multi-core Symbolic Sequential

Fig. 1: Modular Pins architecture of LTSmin [20]

LTSmin provides four backends:

– a sequential backend that implements an explicit state model checking algo-
rithm similar to the one implemented in ProB,

– a symbolic backend that stores states as LDDs (List Decision Diagrams) [7],
– a multi-core backend that works similar to the sequential backend, but is

capable of using multiple CPU cores on the same machine,
– a distributed backend in order to utilize multiple machines for model check-

ing.

For this article, we will focus on the advances of the integration with ProB
using the sequential and symbolic backends but also experiment with the multi-
core backend. We have not done any experiment with the distributed backend
yet.

1 Due to technical limitations in ProB, we have not added this for Event-B yet.

1.2 ProB and the B-Method

ProB [26] is an open-source animator and model checker for several formalisms
including B, Event-B, CSP, Z and TLA+. It can be used in order to find invari-
ant or assertion violations or deadlock states in machine specifications. While it
implements a straightforward explicit state model checker, it also ships more ad-
vanced techniques, e.g., symmetry reduction [30], partial order reduction [16,17]
or symbolic model checking [23]. This style of symbolic model checking [10],
where states are stored as predicates, must not be confused with the symbolic
model checking that LTSmin provides, where states are stored as decision dia-
grams. ProB’s core is written in SICStus Prolog [11] and may also employ SMT
solvers [24], such as Z3 and CVC4, or SAT solvers, such as Kodkod [29].

When integrating ProB into LTSmin, we focus on two formalisms: B (some-
times referred to as “classical B”) is part of the B-Method [3], where software
is developed starting with a very abstract model that iteratively is refined to
a concrete implementation. This method aims for software to be “correct by
construction”. Event-B [1] is considered to be the successor of B that does not
include constructs that often hinder formal proof in the language, e.g., condi-
tional assignments or loops. Both formalisms offer a very high level of abstraction
and are based on set theory and first-order logic.

1.3 Theoretical Background

We repeat the most important definitions used in [4] on the following contrived
example:

MACHINE example
CONSTANTS c
PROPERTIES c = 100
VARIABLES x , y
INVARIANT x : INTEGER & y : INTEGER &

x <= c & x + y <= 2 ∗ c
INITIALISATION x := 0 | | y := 0
OPERATIONS

incx = SELECT x < c THEN x := x + 1 END;
doublex = SELECT x < c /2 & x > 0 THEN x := x ∗ 2 END;
incy (n) = SELECT n > 0 & n < c & y < c

THEN y := y + n END;
incxmaybey = SELECT x < c

THEN x := x + 1 | |
IF x mod 2 = 0 THEN y := y + 1 END

END

Fig. 2: Contrived B Machine example

Definition 1 (Transition System). A Transition System (TS) is a structure
(S,→, I), where S is a set of states, → ⊆ S × S is a transition relation and
I ⊆ S is a set of initial states. Furthermore, let→∗ be the reflexive and transitive
closure of →, then the set of reachable states is R = {s ∈ S | ∃s′ ∈ I . s′→∗ s}.

Such transition systems are induced by both B and Event-B models. As all
variables have to be typed, the set of states S is the Cartesian product of all
types. All possible initial states are given in the INITIALISATION machine clause.
The union of all operations define the transition relation→. For symbolic model
checking however, it is very important that the transition relation is split into
groups.

Definition 2 (Partitioned Transition System). A Partitioned Transition
System (PTS) is a structure P = (Sn, T ,→m, In), where

– Sn = S1 × . . .× Sn is the set of states, which are vectors of n values,
– T = (→1, . . . ,→m) is a vector of M relations, called transition groups, →i ⊆

Sn×Sn (∀1 ≤ i ≤ m)
– →m =

⋃m
i=1→i is the overall transition relation induced by T , i.e., the union

of the m transition groups, and
– In ⊆ Sn is the set of initial states.

We write s→i t when (s, t) ∈ →i for 1 ≤ i ≤ m, and s→m t when (s, t) ∈ →m.

Strictly speaking, the transition relation in Definition 2 is not partitioned, as
individual B operations can have same effect. We implemented an easy mental
model where each transition group represents exactly one operation in the B
model.

For the example in Fig. 2, the only initial state is init (c,x,y) = (100, 0, 0).
We agree on a notation where the ordering of the variables in an individual
state is given once as a superscript. In LTSmin, the ordering of the variables
is fixed and unambiguous. Then, In = {(100, 0, 0)}, Sn = Z × Z × Z and T =
(incx, doublex, incy, incxmaybey) with, e.g., incx = {(100, 0, 0)→1 (100, 1, 0) ,
(100, 0, 1)→1 (100, 1, 1) , (100, 1, 0)→1 (100, 2, 0) , . . .}.

Symbolic Model Checking and Event Locality In many B models, opera-
tions only read from and write to a small subset of variables, which is known as
event locality [12]. Symbolic model checking benefits from event locality, allow-
ing reuse of successor states when only variables changed that are irrelevant to
the state transition.

In order to employ LTSmin’s symbolic algorithms [8,27,28], ProB provides
several dependency matrices about the B model that shall be checked: A read
matrix and may-write matrix is used in order to determine independence between
transition groups for symbolic model checking. These two matrices for Fig. 2 are
given in Fig. 3. Entries are set to 1, if the operation reads or writes the variable,
and otherwise to 0. Further matrices are shown once their use-case is introduced.


c x y

incx 1 1 0
doublex 1 1 0
incy 1 0 1
incxmaybey 1 1 1


(a) Read Matrix


c x y

incx 0 1 0
doublex 0 1 0
incy 0 0 1
incxmaybey 0 1 1


(b) May-Write Matrix

Fig. 3: Dependency Matrices

ZeroMQLTSmin
extension

B Parser

B Inter-
preter

Constraint
Solver

Model
Checker

ProB

ProB
language
frontend

LTSmin

POR

Caching

...

Reordering
Symbolic
Backend

Sequential
Backend

Multi-Core
Backend

Distributed
Backend

Fig. 4: Overview of the Tool Integration LTSmin↔ProB

2 Architecture Overview of LTSmin↔ProB Integration

LTSmin and ProB typically run as two separate processes which can be launched
both manually or start each other. They are linked as shown in Fig. 4. The pro-
cesses are linked via one IPC (local inter-process communication) socket per tool
provided by ZeroMQ [19], a library offering distributed messaging. We employ a
request-reply pattern on these sockets, where LTSmin sends requests and ProB
responds. In order to handle messaging in ProB, we added a small layer in C.

In order to expose information about the loaded model to LTSmin, ProB’s
response to an initial request includes, amongst others, names of state variables
and transition groups, an initial state and dependency matrices.

LTSmin expects a model to have a single initial state, while B and Event-B
models allow for nondeterministic initialization. Thus, the initial state trans-
ferred to LTSmin consists of dummy values for all variables. Furthermore, we
add a state variable named is_init that is initially set to false. Via a special
transition $init_state which is only applicable if is_init is false, the actual
initial states of the specification are exposed. For all these states (and their suc-
cessors), is_init is set to true. This technicality leads to special cases in the
entire implementation which we will omit.

In order to call ProB’s next-state function, LTSmin sends a request con-
taining the transition group and a state. ProB then will answer with a list of
successor states. Since ProB is implemented in Prolog, it is hard to exchange
states reasonably. Prolog terms have a limited life-span when using SICStus’
foreign function interface. Thus, we serialize and deserialize state variables in-
to/from blobs (binary large objects) by making use of an undocumented Prolog
library named fastrw. Each variable is stored in a separate blob, such that, a

state is only a vector of blobs for LTSmin. Naturally, repeated (de)serialization
comes with an overhead that we chose to accept for now.

The labelling function is called in the same way, providing a label name and
a state. ProB will answer with either true or false.

3 Implementation

In order to extend the prior integration, ProB needs to expose more of the B
model to LTSmin. In this section, we describe what information is additionally
exchanged, how it is calculated and used by considering the running example in
Fig. 2.

3.1 State Labels and Invariant Checking

In a labelled transition system, a set of atomic propositions is assumed. An
atomic proposition is any predicate that we will call “state label”. ProB will
implement the labelling function, i.e., it will receive a state and a state label and
return true or false.

The entire invariant can be seen as a single atomic proposition. However, if
only some variables change from one state to its successor, not all conjuncts need
to be re-evaluated. Thus, we split the invariant into its conjuncts. Each conjunct
is announced as a state label to LTSmin by providing a unique identifier. In order
to expose which state label depends on which variable, additionally a state label
matrix is included.

In our example in Fig. 2, initially, four state labels are created. The corre-
sponding state label matrix is shown in Fig. 5.


c x y

x ∈ Z 0 1 0
y ∈ Z 0 0 1
x ≤ c 1 0 1
x + y ≤ 2c 1 1 1


Fig. 5: State Label Dependency Matrix

Since predicates are split at conjunctions, well-definedness issues might arise.
As an example, consider the following predicate: x 6= 0∧100 mod x = 1. ProB’s
constraint solver will reorder the conjuncts in order to exclude any division by
zero. Once the predicate is split into x 6= 0 and 100 mod x = 1, it will only
receive a single conjunct and cannot do any reordering. Thus, in a state with
x = 0, the second conjunct on its own will result in a well-definedness error.

Thus, if a well-definedness error arose, another part of the original predicate
has to be unsatisfied and we can assume the offending conjunct to be false as
well.

Proof Information Event-B models exported from Rodin [2] include infor-
mation about discharged proof information. ProB uses this information, e.g.,
in order to avoid checking an invariant that has been proven to be preserved
when a specific action is executed [5]. If an invariant has been fully proven to be
correct, i.e., that it holds in the initial states and all transitions preserve it, we
can exclude it from the list of invariants exposed to LTSmin.

Even though the machine in Fig. 2 is written in classical B, i.e., there is no
proof information available, the two invariant conjuncts x ∈ Z and y ∈ Z are
dropped. The type checker can already prove that they will hold. Thus, there is
no need to check them separately.

3.2 Short States

In order to call ProB via an interface function, LTSmin needs to transmit the
entire state to ProB. ProB then deserializes all variables individually before the
interpreter is called. Obviously, not all values are required in order to calculate a
state transition or evaluate a predicate, rendering some overhead obsolete. Such
an interface function is called long function, analogously a state that consists of
all state variables is called a long state.

Instead of transmitting the entire state, LTSmin can make use of the depen-
dency matrix in order to project a long state to state vector that only contains
the values of accessed variables. Such a state is named short state and is relative
to either a state label or transition group. An interface function that receives
a short state is, analogously, named a short function. Short states can also be
expanded back to long states by inserting values for the missing variables, e.g.,
those of a predecessor or initial state.

Short states come in two flavors: firstly, regular short states are of a fixed
size per transition group or state label and only contain values both written to
and read from. Consider the initial state init (c,x,y) = (100, 0, 0) from Fig. 2. The
corresponding short state for incx only contains c and x since y is not accessed.

The projected short state, thus, is init
(c,x)
short = (100, 0).

On the other hand, R2W short states (read to write) differ in the contained
variables. LTSmin passes only read variables to ProB which in turn answers
with written variables only. For incx, the R2W short state that is passed to

ProB also is init
(c,x)
read = (100, 0) because all written variables also are read.

However, c is a constant, thus the value does not change. Thus, the returned

state only consists of x, i.e., init
(c,x)
read →1= init

(x)
write with init

(x)
write = (1).

Because there might be non-deterministic write accesses to variables (“may
write”), a so-called copy vector is additionally passed to LTSmin. This copy
vector is a bitfield marking which variables were actually written to and which
values are taken from an earlier state. Additionally, the must-write matrix is
given to LTSmin in order to expose which variables will be updated every single
time.

The must-write matrix for Fig. 2 is given in Fig. 6. The difference to the may-
write matrix is printed in bold. Note that if an entry in the must-write matrix


c x y

incx 0 1 0
doublex 0 1 0
incy 0 0 1
incxmaybey 0 1 0


Fig. 6: Must-Write Matrix

is 1, it has to be 1 in the may-write matrix, but not vice versa. Then, consider
the operation incxmaybeincy from Fig. 2. This operation only writes to y when

x is an even number. Thus, for s
(c,x,y)
read = (100, 2, 2) and s→4 s′, s′

(x,y)
write = (3, 3)

and cpy
(x,y)
s→s′ = (0, 0), because both variables were actually written to. However,

for ŝ
(c,x,y)
read = (100, 3, 2) and ŝ →4 ŝ′, ŝ

′(x,y)
write = (4, 2). Yet, cpy

(x,y)
ŝ→ŝ′ = (0, 1) since

y was not written to and the old value was copied.
Internally, LTSmin may use both long and short states and convert freely

between them. The ProB language frontend always communicates R2W short
states in order to minimize overhead by communication and (de)serialization.
However, the caching layer works on regular short states, while, e.g., the variable
reordering uses long states.

3.3 Caching Mechanism

While the symbolic backend calls the next-state function once with a state that
represents a set of states, the sequential backend calls it for each of the states
and transition groups. Analogously, the same holds true for state labels and calls
to the labelling function.

Since we already calculate dependency matrices, which contain information
about which variables are read and, in case of the next-state function, are written
to, we can calculate the corresponding short state instead. Then, in order to
avoid transferring and (de)serializing states as well as calculating the same state
transition or state label multiple times, we can store results in hash maps, one per
transition group and state label each. These hash maps map the corresponding
short state to either a list of (short) successors states or a Boolean value in case
of state labels. Only if the lookup in the hash table fails, the state is transferred
to ProB. Otherwise, LTSmin can calculate the result by itself.

Currently, all operations are cached. Obviously, as more variables are ac-
cessed by an operation, caching offers lower benefit in exchange to the amount
of memory consumed.

3.4 Guard Splitting

Operations (aka events or state transitions) are guarded, i.e., the action part that
substitutes variables may only be executed if the guard predicate is satisfied.
When LTSmin asks ProB to calculate successor states for a given transition

group, ProB will evaluate the guard and, if applicable, try to find all (or a
limited amount of) successors.

It is easy to make the following two observations: firstly, it is often more
performant to evaluate single conjuncts of a guard individually. Usually, they
access only a very limited amount of variables and can easily be cached. As
an example, the guard x < c of incx in Fig. 2 only reads two state variables
(of which one is constant). Secondly, the same conjunct might guard multiple
operations and, if evaluated for one operation in the same state, does not require
additional evaluation for another operation. In Fig. 2, both incx and incxmaybey

share the same guard x < c.

LTSmin’s symbolic backend supports splitting the action from evaluating its
guard. A new interface function next-action is provided that works similar to
the next-state function, but assumes the guard of an operation to be true. Then,
only the action part is evaluated. A special matrix (reads-action) is required for
the next-action function that only contains variables that are read during the
action part.

Additionally, each guard predicate is split into its conjuncts and associated
with the corresponding transition groups in the guard matrix. Each conjunct is
added to the state labels announced to LTSmin and their accessed variables are
stored in the state label matrix. Parameter constraints however are considered
to be part of the action. E.g., the guard n > 0∧n < c∧y < c of incy(n) in Fig. 2
is split into two: only y < c is the actual guard for LTSmin and n > 0∧n < c is
evaluated when calling the next-action function. The new matrices and the new
rows in the state label matrix can be found in Fig. 7. Differences between the
read matrix from Fig. 3 and the reads-action matrix are highlighted in bold.


c x y

incx 0 1 0
doublex 0 1 0
incy 0 0 1
incxmaybey 1 1 1


(a) Reads-Action Matrix


c x y

x < c 1 1 0
x < c/2 1 1 0
x > 0 0 1 0
y < c 1 0 1


(b) Extension of the
State Label Matrix


x < c x < c/2 x > 0 y < c

incx 1 0 0 0
doublex 0 1 1 0
incy 0 0 0 1
incxmaybey 1 0 0 0


(c) Guard Matrix

Fig. 7: Matrices for Guard-Splitting

3.5 Partial Order Reduction

Partial order reduction (POR) [31,32] is a technique that reduces the amount of
considered states based on a property that is checked. This is achieved by making
use of additional information that can usually be inferred by static analysis.

In the following, we describe which relationships need to be calculated in
order to achieve the best reduction with LTSmin.

Definition 3 (According with, based on [25]). Let t1, t2 ∈ T be any two
operations. We define t1 to be according with t2, iff

∀s, s1, s2 ∈ R : s
t1−→ s1 ∧ s

t2−→ s2 =⇒ ∃s′ : s1
t2−→ s′ ∧ s2

t1−→ s′

or as graphical representation:

s

s1 s2

s′

⇒s2

s

s1

t1 t2

t2 t1

t1 t2

We define that no t ∈ T accords with itself.

Accordance of transition groups expresses that they are independent from
each other, i.e., depending on the property, not all interleavings have to be
considered. ProB underapproximates the according-with relationship. Instead,

the constraint ∀s, s1, s2 ∈ S : s
ti−→ s1 ∧ s

tj−→ s2 =⇒ ∃s′ : s1
tj−→ s′ ∧ s2

ti−→ s′

is evaluated for a given pair ti, tj ∈ T , i 6= j, considering the guards and the
before-after predicates of both transitions. This does not ensure that any state
is reachable. However, it is a valid overapproximation of the does not accord
relationship matrix that is passed to LTSmin by negating all entries.

LTSmin uses a heuristic in order to determine which of the calculated stub-
born sets [31] might yield the best state space reduction. It requires a good
approximation of the necessary enabling sets to do so:

Definition 4 (Necessary Enabling Set (NES), based on [25]). Let g be
any state label that is disabled in some state s ∈ R, i.e. ¬g(s).

A set of transitions Ng is called the necessary enabling set for g in s, if

for all states s′ ∈ R with some sequence s
t1,...,tn−−−−−→ s′ and g(s′), for at least one

transition ti (1 ≤ i ≤ n) we have ti ∈ Ng.

We can use an already existing implementation of the test_path procedure
(cf. [15], definition 2) in order to calculate the necessary enabling set. In the
implementation, it is just tested for any given state, whether a single transition
can enable the guard label. In particular, this means that the states s and s′ in
Definition 4 may not be reachable at all. This results in a safe approximation
but may lose precision.

Along with the NES, a necessary disabling set (NDS) is approximated. It is
calculated in the same way but uses the negation of the state label.

s

s1 s2

s′ s̄

t1 t2

t2 t1

t′

Fig. 8: Reduction Using
Co-Enabledness

Information about the NES and NDS matrices can
syntactically be approximated from the dependency
matrix. Solving the given constraints often results in
a better approximation and, thus, a better reduction.

Furthermore, with additional information one
might prove that out of at least three transition, e.g.,
t1, t2 and t′, some transitions, e.g, t2 and t′ might not
be enabled at the same time. Then, not all interleav-
ing of t1 and t2 need to be considered. This situation
is depicted in Fig. 8, where s1 does not have to be vis-
ited. Then, a may-be co-enabled matrix is calculated,
based on the following definition:

Definition 5 (Co-Enabledness, based on [25]). Two state labels l, l′ ∈ L
are co-enabled in a state s ∈ R iff they both evaluate to true in s, i.e. l(s) =
true = l′(s).

Again, instead of working on reachable states, it is checked whether there is
any state in the Cartesian product of types where both labels are enabled. If the
co-enabledness of two state labels cannot be determined, they are considered as
may-be co-enabled.

While ProB offers an implementation partial order reduction as well [16,17],
the partial order reduction algorithm implemented in LTSmin uses a finer heuris-
tic. ProB checks whether a transition can enable another transition, LTSmin
uses information about whether individual guards of the event can be enabled,
often resulting in a better reduction.

However, this reduction comes with a tradeoff: to calculate the additional
matrices, more constraints have to be solved by ProB in order to determine the
additional relationships, resulting in a longer analysis time. ProB only calculates
accordance of transitions and one row in the NES matrix per transition instead
of per guard conjunct. Furthermore, LTSmin does not allow both transitions to
be enabled and not generating any successors at the same time. This is possible
in ProB when no suitable parameters exist. Thus, an additional guard is added
which is an existential quantification of the parameters and often rather costly
to evaluate. This quantification has to be solved both on evaluation of the guard
and computation of successor states.

3.6 LTL Formula Checking

In order to check LTL properties, both tools need to have access to the for-
mula: only ProB is capable of dealing with atomic propositions properly since
it implements the syntax and semantics of the B language. LTSmin, however,
requires the formula in order to generate the corresponding Büchi automaton.

Thus, ProB parses the formula first. All atomic propositions in the formula
are replaced with a newly generated state label. In order to evaluate these new
atomic propositions, the state labelling function is extended in ProB. Further-
more, the formula is wrapped in a “next” operator in order to skip the artificial

initial state introduced earlier. This modified formula is then pretty printed into
a format that LTSmin can parse.

4 Evaluation

In this section, we will evaluate the performance of the tool integration of
LTSmin and ProB using both the sequential and symbolic backend. We will
compare the model checking time on several models from literature and in-
dustrial applications which are publicly available under https://github.com/

pkoerner/prob-ltsmin-models. Benchmark scripts are included in the reposi-
tories as well.

Furthermore, we will compare the impact of the implementations of par-
tial order reduction for a different set of models, where the state space can be
reduced.

Each benchmark was run on a machine featuring two Intel Xeon IvyBridge
E5-2697 with twelve cores each running at 2.70 GHz and 100 GB of RAM. Two
CPUs were reserved for each run of invariant verification, partial order reduction
and LTL model checking. For multi-core benchmarks, we reserved as many CPUs
as there are worker threads plus one CPU for ZeroMQ overhead.

The given values are the median value of ten repetitions.

4.1 Invariant Checking

We benchmarked three backends on multiple B and Event-B models:

– ProB: the vanilla ProB model checker
– LTSmin (seq): the sequential backend of LTSmin with the ProB interpreter,
– LTSmin (sym): the symbolic backend of LTSmin without guard-splitting

and the ProB interpreter.

We omit results with guard-splitting enabled since they are very similar to
the symbolic backend without guard-splitting for applicable models, i.e., those
written in classical B.

Runtimes and memory consumption can be found in Table 1. Runtimes of
LTSmin’s sequential and symbolic backend do not include ProB’s startup time
which includes parsing and minor analysis of the model. None of the considered
models has any invariant violation and, thus, all models have to be explored
exhaustively.

Only for one of models benchmarked, the “Set Laws” machine, a single back-
end of LTSmin is slower than ProB. Apart from that, we can observe speed-ups
ranging from two-fold up to more than two hundred times. For most models,
LTSmin is at least an order of magnitude faster than ProB.

The “Train” machine cannot be checked by vanilla ProB on the bench-
marking machine, as it runs out of main memory after three days, exploring
about half the state space. Both LTSmin backends manage to verify the entire

https://github.com/pkoerner/prob-ltsmin-models
https://github.com/pkoerner/prob-ltsmin-models

Tool ProB
LTSmin LTSmin

(seq) (sym)

Four Slot Runtime 26.33 0.99 1.12
(Simpson’s Algorithm) Speed-up 1.00 26.60 23.51

46 657 states Memory 227.21 11.14 426.07

Landing Gear Runtime 61.38 1.04 0.65
[18] Speed-up 1.00 59.02 94.43

43 306 states Memory 244.01 11.95 425.77

RETHER protocol Runtime 77.75 4.87 6.09
[34] Speed-up 1.00 15.97 12.77

42 253 states Memory 304.08 12.61 430.36

Set Laws Runtime 232.37 120.57 301.03
Speed-up 1.00 1.93 0.77

35 937 states Memory 428.45 87.05 501.86

Earley Parser Runtime 24612.00 15153.00 6476.00
(J.-R. Abrial) Speed-up 1.00 1.62 3.80
472 886 states Memory 4218.62 5224.57 4833.13

CAN Bus Runtime 131.51 2.68 2.80
(John Colley) Speed-up 1.00 49.07 46.97
132 599 states Memory 346.74 24.14 435.50

Mercury Orbiter Runtime 2608.28 14.14 10.76
[14] Speed-up 1.00 184.46 242.41

589 278 states Memory 2360.06 68.66 428.34

Mode Protocol Runtime 1393.97 317.90 381.20
‡ [14] Speed-up 1.00 4.38 3.66

336 648 states Memory 1097.70 151.36 536.55

Core Runtime 1921.58 315.77 320.05
Speed-up 1.00 6.09 6.00

160 946 states Memory 1751.64 314.94 742.17

Train Runtime 600000 † 33124.00 49120.00
[1] Speed-up 1.00 18.11 12.21

61 648 077 states Memory > 100 000 18 887.32 19 815.79

Train Runtime 98.59 51.79 71.01
(reduced version) Speed-up 1.00 1.90 1.39

24 636 states Memory 198.48 39.00 493.39

Table 1: Invariant Checking Performance (Runtime in Seconds, Mem-
ory in MB) of ProB alone compared to LTSmin with ProB.
†: Estimated Runtime, ‡: Limited Amount of Initializations

state space in several hours. Only in few instances, LTSmin requires more mem-
ory than ProB. Surprisingly, the sequential backend often requires an order of
magnitude less memory, even though it maintains a cache. In the only instance
where it uses more memory, i.e., “Earley Parser”, only few variables re-use the
same values. Thus, almost no sharing between in states is possible and the entire
fastrw representation for almost every state has to be stored.

Overall, LTSmin is able to outperform ProB in almost all instances. Ob-
viously, caching is really important for the sequential backend. We tried two
implementations of a similar caching mechanism for ProB in order to benefit
from similar speed-ups: firstly, by hashing short states as well as asserting them
as Prolog facts, and, secondly, by serializing the state via the fastrw library and
storing the result in a hash map in C. However, neither implementation had a
similar impact. Often, they even slowed ProB down. In the first case, we assume
that the hashing algorithms for Prolog terms are too slow. For the second imple-
mentation, the overhead to serialize every state, in particular for cache lookups,
was too costly.

4.2 LTL Model Checking

We benchmarked LTL model checking on a few of aforementioned models that
are reasonably sized. Since no LTL formulas were included in the models, we
arbitrarily picked some that allow reasoning about the models. ProB’s special
syntax is used in the formulas: e(x) means that the operation x is enabled. The
results are given in Table 2

We can see that for LTL formulas that hold, the good speed-ups and low
memory consumption of LTSmin that was presented in Section 4.1 can also
be observed for LTL model checking. If a formula is not satisfied, LTSmin can
be more than thousandfold faster. While ProB generates the state space of
the transition system first, LTSmin features an on-the-fly LTL model check-
ing algorithm where the state space consisting of the Cartesian product of the
corresponding Büchi automaton and the actual transition system is generated
as necessary. Thus, accepting loops can be found quickly without exploring the
entire transition system and speed-ups may be more than thousandfold.

4.3 Partial Order Reduction

From benchmarks conducted in [21,17], it became clear that, in typical B and
Event-B models, partial order reduction usually does not work well in combina-
tion with invariant verification. For the models above, none or very little reduc-
tion was achievable. Instead, we compare the results of partial order reduction
for deadlock checking.

In ProB, we use the “least” heuristic for the partial order reduction. In order
to reduce analysis time for LTSmin, the timeout is set to 20 milliseconds per
predicate.

Results are shown in Table 3 comparing the performance of ProB’s POR
for deadlock checking with the one of LTSmin. B models that offer no reduction

RETHER protocol [34] Tool ProB LTSmin
G (not e(reserve) Runtime 76.67 0.14

=⇒ X(e(grant) & e(no grant))) † Speed-up 1.00 547.64
Memory 335.92 5.57

RETHER protocol [34] Tool ProB LTSmin
GF e(pass token) Runtime 77.50 4.79

Speed-up 1.00 16.18
Memory 335.31 15.02

CAN Bus (John Colley) Tool ProB LTSmin
GF e(Update) Runtime 125.49 3.18

Speed-up 1.00 39.46
Memory 439.01 29.21

CAN Bus (John Colley) Tool ProB LTSmin
G (e(T1Wait) =⇒ X(T1 timer > 0)) † Runtime 126.80 0.24

Speed-up 1.00 528.33
Memory 435.25 6.23

Mode Protocol [14] Tool ProB LTSmin
GF e(evt DeliverOK) † Runtime 1406.91 0.30

Speed-up 1.00 4689.70
Memory 1336.25 6.39

Table 2: Runtimes (in Seconds) and Speed-ups of LTL Model Checking.
†: LTL formula does not hold. Speed-up compared to ProB without LTSmin.

with either tool are omitted (which are more than half). Again, the startup time
of ProB that includes parsing the machine file, is not included.

As can be seen in Table 3, LTSmin is – as discussed in Section 3.5 – able
to find a reduction that is equal to ProB’s or even better (for the “Set Laws”
machine, the additional state is the artificial initial state). Indeed, for the “Mer-
cury Orbiter” and “Landing Gear”, ProB cannot reduce the state space at all
with the given heuristic, whereas LTSmin reduces the state space by about a
quarter up to a half.

However, fine-tuning of the time-outs for the static analysis is important.
For machines with many unique guards, analysis time can easily exceed model
checking time. This can be observed for the “Landing Gear” and the extremely
reduced “Four Slot”. With the default time-out value of 300 milliseconds, the
analysis time of the “Mercury Orbiter” can exceed a minute, which is more than
four times the time required for model checking without any reduction. A reason
could be that the constraint solver cannot solve the necessary predicates easily
and time-outs are raised often.

Four Slot Tool ProB LTSmin
46 657 states Analysis Time 0.08 0.23

Model Checking Time 24.37 0.90
States (after reduction) 44 065 44 065

Landing Gear [18] Tool ProB LTSmin
43 306 states Analysis Time 0.98 2.43

Model Checking Time 87.94 1.25
States (after reduction) 43 306 29 751

Set Laws Tool ProB LTSmin
35 937 states Analysis Time 0.30 0.37

Model Checking Time 0.14 0.07
States (after reduction) 33 34

CAN Bus (John Colley) Tool ProB LTSmin
132 599 states Analysis Time 1.38 1.49

Model Checking Time 94.90 2.24
States (after reduction) 85 515 67 006

Mercury Orbiter [14] Tool ProB LTSmin
589 278 states Analysis Time 51.00 9.29

Model Checking Time 2757.33 16.19
States (after reduction) 589 278 316 164

Table 3: Runtimes (in Seconds) and Impact of POR in ProB Alone and LTSmin
with ProB for Deadlock Checking.

4.4 Multi-Core Model Checking

In order to evaluate the performance of the multi-core backend, we performed
multi-core invariant verification on the five B models with the largest runtime
in Section 4.1.

The runtime of runs with different amount of workers are shown in Table 4.
Speed-ups are visualized in Fig. 9. This time, ProB’s startup time is included
because the multi-core extension of LTSmin starts up ProB.

Currently, each worker thread maintains its own cache. Since caching works
fairly well for many B machines, it is quite costly to fill each cache individually.
This explains that often, for the first few workers the speed-up is nearly linear,
but grows slower when more than ten workers participate.

An exception is the “Earley Parser”: the standalone sequential backend does
not offer much speed-up (cf. Section 4.1). Thus, the caching effects are lower.
Additionally, ProB spends much time deserializing the state variables because
the Prolog terms grow quite large. Hence, a more linear speed-up is possible for
many workers.

0 5 10 15 20
0

5

10

15

20

Workers

S
p

ee
d
-u

p

Core

Train

Train (reduced)

Mode Protocol

Earley Parser

Fig. 9: Speed-ups of Multi-Core LTSmin+ProB Model Checking for Complex
Models

Earley Parser Workers 1 4 8 12 16 20 23
(J.-R. Abrial) Runtime 15152 4051 2030.76 1358.06 1030.59 834.46 735.76
472 886 states Speed-up 1.00 3.74 7.46 11.16 14.70 18.16 20.59

Mode Protocol Workers 1 4 8 12 16 20 23
‡ [14] Runtime 328.29 150.71 94.23 68.74 62.46 45.96 48.48

336 648 states Speed-up 1.00 2.18 3.48 4.78 5.26 7.14 6.77

Core Workers 1 4 8 12 16 20 23
Runtime 317.48 93.18 54.73 44.82 36.48 27.57 28.60

160 946 states Speed-up 1.00 3.41 5.80 7.08 8.70 11.52 11.10

Train Workers 1 4 8 12 16 20 23
[1] Runtime 32805 11215 5889 4464 3612 3536.60 3710

61 648 077 states Speed-up 1.00 2.93 5.57 7.35 9.08 9.28 8.84

Train Workers 1 4 8 12 16 20 23
(reduced) Runtime 62.39 30.59 14.43 12.18 15.54 8.68 9.02

24 636 states Speed-up 1.00 2.04 4.32 5.12 4.01 7.19 6.92

Table 4: Runtimes (in Seconds) and Speed-ups of Multi-Core LTSmin
with ProB Model Checking on the High-Performance Cluster.
‡: Limited Amount of Initializations

5 Conclusion, Related and Future Work

In this paper, we presented and evaluated significant improvements of the ex-
isting link of ProB and LTSmin. It allows state-of-the-art model checking of
industrial-sized models with large state spaces, where the vanilla ProB model
checker struggles due to time or memory constraints. E.g., the “Train” exam-
ple can only be checked successfully with ProB on its own by distributing the
workload onto several machines, whereas with LTSmin, it could be verified on
an ordinary notebook or workstation.

We have compared symbolic reachability analysis to the impact of alternative
techniques that can speed up state space generation, e.g., partial order reduction
and symmetry reduction in [4]. A discussion of the impact of algorithms that
are implemented in both LTSmin and ProB can also be found in Section 4.

Additionally, there is another toolset named libits [13]. It supports, like
LTSmin, symbolic model checking using decision diagrams, variable reordering
and LTL as well as CTL model checking. As we understand, its input formalisms
are translated into its guarded action language (GAL). An integration for B
might prove to be infeasible because a constraint solver is required in order to
compute some state transitions and would have to be implemented in GAL itself.
We do not know yet whether linking ProB with libits in order to compute
state transitions is possible.

The caching performed by LTSmin seems to be particularly efficient. For
several realistic examples, the ProB and LTSmin link achieves two to three
orders of magnitude improvements in runtime. Yet, there are several aspects
that require future work: currently, the ProB front-end of LTSmin does not
support parallel symbolic model checking with Sylvan [33]. Furthermore, caches
are local per worker. A shared cache will most likely improve the scaling for
massive parallel model checking. Additionally, the cache does not implement
R2W semantics, which loses information about write accesses and requires more
memory and additional state transformations.

Moreover, there is room for interesting research: while we know from expe-
rience that, for most B models, partial order reduction often only has little to
no impact on the state space, we are unsure why. Would alternative algorithms
perform better? Is the constraint solver not strong enough? Is the approximation
given to LTSmin not precise enough? Does partial order reduction not perform
with the modeling style employed in B? If so, are there any patterns which hin-
der it? Additionally, a proper survey of distributed model checking of B and
Event-B specifications – which we did not touch upon due to page limitations
– between, e.g. LTSmin’s distributed backend, ProB’s distb [22] and TLC [36]
should be considered.

With the gained experience and shared know-how about both LTSmin and
ProB, we now aim to extend the implementation for CSP‖B, where the execu-
tion of classical B machine is guided by a CSP specification. While ProB pro-
vides both an animator and model checker for this formalism, ProB currently
is not a satisfactory tool for this formalism. Interleaving of several processes
causes an enormous state space explosion that we hope the symbolic capabilities
of LTSmin can manage.

Acknowledgement. Computational support and infrastructure was provided
by the “Centre for Information and Media Technology” (ZIM) at the University
of Düsseldorf (Germany). We also thank Ivaylo Dobrikov and Alfons Laarman
for their helpful explanations concerning partial order reduction algorithms.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 1st edition, 2010.

2. J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. International
journal on software tools for technology transfer, 12(6):447–466, 2010.

3. J.-R. Abrial, M. K. Lee, D. Neilson, P. Scharbach, and I. H. Sørensen. The B-
method. In Proceedings VDM, volume 552 of LNCS. Springer, 1991.

4. J. Bendisposto, P. Körner, M. Leuschel, J. Meijer, J. van de Pol, H. Treharne, and
J. Whitefield. Symbolic Reachability Analysis of B through ProB and LTSmin. In
Proceedings iFM, volume 9681 of LNCS. Springer, 2016.

5. J. Bendisposto and M. Leuschel. Proof assisted model checking for B. In Interna-
tional Conference on Formal Engineering Methods, volume 9675 of LNCS, pages
504–520. Springer, 2009.

6. J. C. Bicarregui, J. S. Fitzgerald, P. G. Larsen, and J. Woodcock. Industrial
practice in formal methods: A review. In International Symposium on Formal
Methods, volume 5850 of LNCS, pages 810–813. Springer, 2009.

7. S. Blom and J. van de Pol. Symbolic Reachability for Process Algebras with
Recursive Data Types. In J. S. Fitzgerald, A. E. Haxthausen, and H. Yenigun,
editors, Proceedings ICTAC, volume 5160 of LNCS, pages 81–95. Springer, 2008.

8. S. Blom and J. van de Pol. Symbolic Reachability for Process Algebras with
Recursive Data Types. In Proceedings ICTAC, volume 5160 of LNCS, pages 81–
95. Springer, 2008.

9. S. Blom, J. van de Pol, and M. Weber. LTSmin: Distributed and Symbolic Reach-
ability. In Proceedings CAV, volume 6174 of LNCS. Springer, 2010.

10. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and computation, 98(2):142–
170, 1992.

11. M. Carlsson, J. Widen, J. Andersson, S. Andersson, K. Boortz, H. Nilsson, and
T. Sjöland. SICStus Prolog user’s manual. Swedish Institute of Computer Science
Kista, 1988.

12. G. Ciardo, R. M. Marmorstein, and R. Siminiceanu. The saturation algorithm for
symbolic state-space exploration. STTT, 8(1):4–25, 2006.

13. M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg. Towards distributed
software model-checking using decision diagrams. In International Conference on
Computer Aided Verification, pages 830–845. Springer, 2013.

14. D. Deliverable. D20–Report on Pilot Deployment in the Space Sector. FP7 ICT
DEPLOY Project. January, 2010. Available at http://www.deploy-project.eu/

html/deliverables.html.
15. I. Dobrikov and M. Leuschel. Optimising the ProB Model Checker for B using

Partial Order Reduction. In D. Giannakopoulou and G. Salan, editors, Proceedings
SEFM 2014, volume 8702 of LNCS, pages 220–234, 2014.

16. I. Dobrikov and M. Leuschel. Optimising the ProB model checker for B using
partial order reduction. Formal Aspects of Computing, 28(2):295–323, 2016.

17. I. M. Dobrikov. Improving Explicit-State Model Checking for B and Event-B.
PhD thesis, Universitäts- und Landesbibliothek der Heinrich-Heine-Universität
Düsseldorf, 2017.

18. D. Hansen, L. Ladenberger, H. Wiegard, J. Bendisposto, and M. Leuschel. Valida-
tion of the ABZ Landing Gear System Using ProB, volume 433 of CCIS. Springer,
2014.

http://www.deploy-project.eu/html/deliverables.html
http://www.deploy-project.eu/html/deliverables.html

19. P. Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc.,
2013.

20. G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk.
LTSmin: High-Performance Language-Independent Model Checking. In Proceed-
ings TACAS, pages 692–707, 2015.

21. P. Körner. An Integration of ProB and LTSmin. Master’s thesis, Heinrich Heine
Universität Düsseldorf, February 2017.

22. P. Körner and J. Bendisposto. Distributed Model Checking Using ProB. In Pro-
ceedings NFM 2018, volume 10811 of LNCS. Springer, 2018.

23. S. Krings and M. Leuschel. Proof assisted symbolic model checking for B and
Event-B. In Proceedings ABZ, pages 135–150. Springer, 2016.

24. S. Krings and M. Leuschel. SMT Solvers for Validation of B and Event-B Models.
In Proceedings iFM, volume 9681, pages 361–375. Springer, 2016.

25. A. Laarman, E. Pater, J. Van De Pol, and M. Weber. Guard-based partial-order
reduction. In Proceedings SPIN Workshop, pages 227–245. Springer, 2013.

26. M. Leuschel and M. Butler. ProB: A model checker for B. In Proceedings FME,
volume 2805 of LNCS. Springer, 2003.

27. J. Meijer, G. Kant, S. Blom, and J. van de Pol. Read, Write and Copy Dependencies
for Symbolic Model Checking. In Proceedings HVC, volume 8855 of LNCS, pages
204–219. Springer, 2014.

28. J. Meijer and J. van de Pol. Bandwidth and Wavefront Reduction for Static
Variable Ordering in Symbolic Reachability Analysis. In Proceedings NFM, volume
9690 of LNCS, pages 255–271. Springer, 2016.

29. D. Plagge and M. Leuschel. Validating B,Z and TLA + Using ProBand Kod-
kod. In D. Giannakopoulou and D. Méry, editors, Proceedings FM, pages 372–386.
Springer, 2012.

30. C. Spermann and M. Leuschel. ProB gets nauty: Effective symmetry reduction for
B and Z models. In Proceedings TASE, pages 15–22. IEEE, 2008.

31. A. Valmari. Stubborn sets for reduced state space generation. In Proceedings
ICATPN, volume 483 of LNCS, pages 491–515. Springer, 1989.

32. A. Valmari. A stubborn attack on state explosion. In Proceedings CAV, volume
531 of LNCS, pages 156–165. Springer, 1990.

33. T. van Dijk and J. van de Pol. Sylvan: multi-core framework for decision diagrams.
STTT, 19(6):675–696, 2017.

34. C. Venkatramani and T.-c. Chiueh. Design, implementation, and evaluation of a
software-based real-time ethernet protocol. ACM SIGCOMM Computer Commu-
nication Review, 25(4), 1995.

35. J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods:
Practice and experience. ACM computing surveys (CSUR), 41(4), 2009.

36. Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifications. In
Proceedings CHARME, volume 1703 of LNCS. Springer, 1999.

	State-of-the-Art Model Checking for B and Event-B Using ProB and LTSmin

