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Abstract. Partial order reduction (POR) has considerable potential to
reduce the state space during model checking by exploiting independence
between transitions. This potential remains, however, largely unfulfilled
for high-level formalisms such as B or TLA+. In this article, we report
on our experiments regarding POR: We empirically assess that our cur-
rent implementation of POR in ProB does not have any impact for a
vast majority of B machines. We then analyse why POR fails to achieve
reductions and identify minimal examples without reduction that make
use of high-level constructs in B, and provide several new ideas to make
POR pay off for more complex formal models. A proof-of-concept im-
plementation then yields two orders of magnitude reduction in the state
space for a particularly challenging case study, a railway interlocking
model that escaped our POR techniques thus far.
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1 Introduction

Partial order reduction (POR) [18,32,38] is a technique to tackle the state space
explosion problem in model checking [12]: Instead of executing all interleavings
of independent behaviour, only one is explored in the best case. In low-level
formalisms, such as Petri nets or Promela, and in process algebras like CSP or
mCRL2, POR is known to reduce the state space by several orders of magni-
tudes [7,17,19,25].

In contrast, the application of POR to high-level formalisms like TLA+ [26] or
B [1,2] has been disappointing thus far. Attempts at using POR for TLA+ using
TLC [39] were not successful and abandoned1. POR has also been implemented
for B using the ample set approach within ProB [13,14,15]. While considerable
reduction can be obtained for some specifications, the technique does not seem
beneficial for real-life examples. Another attempt of using POR for B was made
using LTSmin together with ProB [6,25]. It uses ProB to solve predicates
and calculate the next states while POR is provided by LTSmin. LTSmin’s

1 Private communication from Stephan Merz to Michael Leuschel at Schloß Dagstuhl;
see also the presentation by Kuppe [21].
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1 MACHINE NoReduction

2 VARIABLES xx , locked

3 INVARIANT xx ∈ POW (1..2) ∧ locked ∈ B
4 INITIALISATION xx := ∅ ∥ locked := ⊥
5 OPERATIONS

6 add(yy) = SELECT locked = ⊥ ∧ yy ∈ 1..2 ∧ yy ̸∈ xx

7 THEN xx := xx ∪ {yy} END;

8 lock = SELECT locked = ⊥ THEN locked := ⊤ END;

9 unlock = SELECT locked = ⊤ THEN locked := ⊥ END

10 END

Listing 1: Adding a Value Into a Set — No Reduction

approach to POR is based on the stubborn set theory [38] and works well for low-
level formalisms. Compared to ProB’s approach in [13,14,15], the approach of
LTSmin is more fine-grained (wrt. guards), yet rarely achieves (mostly slightly)
better reduction for B models2. Overall, POR rarely seems worth the effort for
practical B models.

This article re-visits the implementation of POR in ProB: first, we evaluate
its effectiveness in Section 3. The main insight we gained is that static analysis
of a model (before model checking) often does not determine a precise enough
independence relation. The techniques described in the rest of the paper focus
on POR for deadlock checking (as effectiveness is already low and LTL model
checking requires even more constraints): Many B models contain operations
drawing a parameter from a known finite set; such operations are treated as a
unit and, thus, independence between certain instances cannot be captured. We
propose to unroll such operations by replacing them with a new operation for
each parameter (Section 4). Additionally, operations that access a shared set
variable usually only interact with a small subset of its elements. We discuss
benefits and drawbacks of a constraint-based analysis as well as encoding sets
to SAT variables before applying a syntactical analysis (Section 5).

As an example, the model in Listing 1 can (automatically) be re-written to
an equivalent model depicted in Listing 2 by unrolling the add operation and en-
coding the set xx as booleans. The former model yields no state space reduction
using ProB’s POR, whereas the latter one does. Though some specifications
may require additional re-writes or more involved analysis techniques, the com-
bination of these two techniques allows state space reduction by POR on large,
real-world models. In Section 6, we share key insights based on a grand challenge
we set ourselves, a large model with many real-world features whose state space
should be significantly reduced using POR, yet escaped our approach so far.
With the techniques above, the expected reduction occurs.

2 Already the results in Section 4.3 and Table 3 of [24] for POR were unsatisfying.
Other techniques of LTSmin were very effective, however.
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1 MACHINE HasReduction

2 VARIABLES xx_1 , xx_2 , locked

3 INVARIANT xx_1 ∈ B ∧ xx_2 ∈ B ∧ locked ∈ B
4 INITIALISATION xx_1 := ⊥ ∥ xx_2 := ⊥ ∥ locked := ⊥
5 OPERATIONS

6 add_1 = SELECT locked = ⊥ ∧ xx_1 = ⊥ THEN xx_1 := ⊤ END;

7 add_2 = SELECT locked = ⊥ ∧ xx_2 = ⊥ THEN xx_2 := ⊤ END;

8 lock = SELECT locked = ⊥ THEN locked := ⊤ END;

9 unlock = SELECT locked = ⊤ THEN locked := ⊥ END

10 END

Listing 2: Unrolled and SAT Encoded Version of Listing 1 — POR is Successful

2 Background

The B-Method [1] and its successor Event-B [2] are methodologies that rely
on a correct-by-construction approach, i.e., an abstract specification is proven
correct and is iteratively refined as more details are added. Proofs accompany
all refinement steps, linking each iteration to the ones before.

Both B and Event-B have seen particular use in the railway industry [9].
While the former focuses on software development, the latter is designed for
modelling systems. Event-B is most commonly used via the Rodin toolset [3],
and exported proof information can be used for model checking [5]. B and Event-
B are very expressive, encompassing first-order logic with (higher-order) sets,
sequences, functions, relations and records. Both formalisms are state-based with
(possibly non-deterministic) initial assignments of constants and state variables,
and guarded transitions (named operations in B and events in Event-B)3 yielding
successor states. A state of a B model is composed of values for all the constants
and variables of the model.

While we study both B and Event-B models, we will use the term operation
to denote both B operations and Event-B events. Small examples of a B spec-
ification are given in the motivating example in Listings 1 and 2. B machines
might include additional clauses such as the CONSTANTS clause (that declares
identifiers of constants similar to the VARIABLES clause), the PROPERTIES clause
(constraining the constants) or the SET clause (that contains, e.g., enumerated
sets). While the following concepts of operation and operation instance are re-
lated, it is important to distinguish between them:

Notation. An operation is the name of a guarded substitution (aka statement)
that may be parameterised. E.g., add or lock in Listing 1 are operations. The
guarded substitution is also called the body of the operation.
An operation along with values for all its parameters is called an operation
instance. E.g., add(1) is an operation instance. Another one is add(2).

An operation instance is thus a transition label.

3 Or actions in TLA+.
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ProB [28,29] is an animator, model checker and constraint solver for the B
language. It is written in SICStus Prolog [10] and its constraint-solving backend
makes use of coroutines and the CLP(FD) library [11]. Alternative backends are
available via translations to SAT and SMT: the work of Plagge and Leuschel [34]
uses the Kodkod [37] library to translate B to SAT, while the works of Krings,
Schmidt and Leuschel [20,35] translate B to SMT for using Z3 [30] as a solver.

Partial Order Reduction (POR) [4,32,33] is a model checking technique that
only explores a subset of the state space. POR is considered to be appealing
because, for n independent operation instances, one has to explore (in the best
case) only a single ordering rather than n! many. Thus, exponential reductions
are possible in concurrent systems that synchronise on few events. While the
underlying idea seems simple, the conditions to ensure correctness are intricate4.

POR exploits independent operation instances: Two operation instances are
independent, if they can be performed in any order without changing the result-
ing state. This is visualised in Fig. 1: If α and β are independent and simulta-
neously enabled in the original state space, this implies that β can be executed
after α and vice-versa, and the resulting states are identical. In short, this is the
case if the operation instances commute and do not disable each other.

Below, we will give a more formal definition. Note, as is usual when present-
ing POR, we assume that operation instances are deterministic, i.e., given an
operation instance α and a state s there is at most one successor state s′ such
that s

α−→ s′.5

Notation (Enabling Predicate). For an operation e, we define ene to be its
enabling predicate (its guard) that is evaluated over a state s.

Definition 1 (Independence). Two operation instances α and β are inde-
pendent, if the following constraint holds. Otherwise, they are dependent.
∀s, s1, s2 : enα(s) ∧ enβ(s) ∧ s

α−→ s1 ∧ s
β−→ s2 =⇒ ∃s′ : enβ(s1) ∧ enα(s2) ∧ s1

β−→ s′ ∧ s2
α−→ s′

The operation instance lock depends on add(1) (and vice versa, as the
independence relation is symmetric), because performing lock may (and will)
disable add(1). The operation instance add(1) is independent of add(2).
Usually, one approximates the independence relation during static analysis be-
fore model checking based on operations. Two operations are independent if
all respective operation instances are independent. As an example, the opera-
tions add and unlock are independent of each other because they write different
variables (and the read in the guard of add of unlock is not conflicting)6.

4 For example, an error in a twenty-year-old algorithm was recently discovered [36].
5 For Event-B it is straightforward to lift all non-determinism into parameters. In
Classical B this is more difficult; but the formalisation of independence with non-
determinism would make the presentation overly complex and detract from the main
points of the article.

6 More precisely, all operation instances of add are independent of unlock because
they can never be enabled at the same time.
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Fig. 1: Visualisation of the Operation Independence Definition

The Ample Set Approach As the POR implementation in ProB relies on
the ample set approach7, we introduce it more formally. For this article, it is not
necessary to understand why POR works in detail, but only what information
is required.

By op(α) we denote the operation associated with an operation instance α.
We also define the enabled operations in a state s by enabled(s) = {op(α) | ∃s′ :
s

α−→ s′}.
An ample set is a subset of enabled operations in a state (referred to as s in

the following formulas) that are considered by model checking. In other words,
all operation instances for operations not contained in the ample set are ignored.
For example, in Figure 1, we could choose ample(s) = {op(α)} and thus ignore
β in s. To reach a sound reduction of the state space, one requires the following
conditions to hold (taken from [15]):

(A 1) Emptiness Condition: ample(s) = ∅ ⇔ enabled(s) = ∅
(A 2) Dependence Condition: Along every finite path in the original state space

starting at s, an operation dependent on ample(s) cannot appear before some
operation e ∈ ample(s) is executed.

The conditions (A 1) and (A 2) suffice for deadlock checking; LTL model checking
(which is used for invariant checking) has additional conditions (stutter and
cycle), yet those are out of scope for this paper. In ProB’s implementation, two
local criteria are used instead of (A 2). They have been proven correct in [14,15]:

(A 2.1) Direct Dependence Condition: Any (ignored) operation e ∈ enabled(s)\
ample(s) is independent of all operations in ample(s).

(A 2.2) Enabling Dependence Condition: Any (disabled) operation e ∈ Events\
enabled(s) that depends on some operation f ∈ ample(s) and is possibly co-
enabled with f may not become enabled by execution of operations e′ ̸∈
ample(s).

Two operations are considered to be possibly co-enabled if there exists a state s
in which both guards are satisfied. Note that such a state may not be reachable.

Thus, in practice, the independence relation, an enabling relation and a “may
be co-enabled” relation between operations are approximated during a static
analysis phase (which we will refer to as POR analysis).

7 The implementation in LTSmin uses stubborn sets. There is not much difference
concerning our argument as the analysis must extract mostly the same information.
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3 Experiments and Results

In order to evaluate the impact of ProB’s partial order reduction, we use a
collection of B and Event-B specifications [23] and compare the state space sizes
with and without applying POR. We consider 1894 B machines with at least
two operations in order to have an opportunity for independent events to occur.
The set of machines and produced results can be found on GitHub8.

All machines were model checked for 30 minutes (per configuration) with
2 GB of RAM on a single CPU core of an Intel E5-2697v2 (Ivy Bridge EP)
running at 2.70 GHz. A nightly version of ProB 1.11.0 was used (commit
1b6f14bbd533c2459b1ce675eb57ab24fee89caa).

For deadlock checking, we excluded 519 machines that time out with and
without POR; 17 machines that time out only with POR; and 25 machines (4̃ %
of machines with timeout) only timed out using the vanilla baseline implemen-
tation. We assume some reduction occurred for these 25 machines. 3 machines
are included due to some other error. Thus, 1330 machines are subject to this
analysis. 1121 are deadlock-free, and 209 contain a deadlock.

The original and reduced state space sizes are given in Fig. 2a and Fig. 2b.
Data points on the diagonal correspond to cases where no reduction occurs, while
data points below the diagonal correspond to a reduction due to POR. In the
right figure (Fig. 2b) data points can also be found above the diagonal, meaning
that model checking with POR did find the deadlock later than without POR.

Of the 1121 deadlock-free machines, only 191 (17 %) showed some reduction
with POR. On average the reduced state space has 54 % of the original size (i.e.,
a reduction of 46 %) for these 191 machines. The median is 56 % of the original
size. Similar, of 209 machines containing deadlocks, we can observe 36 (17.2 %)
with a reduced state space and 9 with a larger one (as discussed earlier).

Thus, even when adding the 25 machines with timeout when not using POR
above, we have less than 20 % of models where POR reduces the state space.

For invariant checking, we can analyse 1385 machines after excluding 452
where both model checking algorithms time out, 2 machines that only time
out with POR and 55 machines that only time out without POR. Again, we
assume some reduction for the latter cases (around 11 % of all machines featuring
any timeout). Further, we exclude 55 additional machines due to other errors.
This leaves 1331 machines to analyse here, of which 1169 machines preserve the
invariant.

The (reduced) state space sizes are visualised in Fig. 3a. Of these, we can
observe a state space reduction in 37 machines (3.2 %). On average, the reduced
state space has 76 % of the original size (i.e., a reduction of 24 %) for these
37 machines. The median is 86 % of the original size. Unexpectedly, a single
outlier lies above the diagonal, i.e., yields a larger state space with POR. This is
a machine that acts as a test for ProB’s randomisation library, and hence the
state space can change with each run. Even when assuming that all 55 machines
with timeout produce a reduction, we have a reduction in less than 10 % of cases.

8 https://github.com/hhu-stups/specifications/tree/por-experiments

https://github.com/hhu-stups/specifications/tree/por-experiments
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(a) Deadlock-Free Models
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(b) Deadlock-Containing Models

Fig. 2: (Reduced) State Space Sizes for Deadlock Checking

Of 162 machines with invariant violations (Fig. 3b), we observe 30 machines (18.5
%) with a reduced state space and 18 with a larger one.
Threats to Validity Many machines time out and are excluded, though they
might exhibit better reduction in reality. However, from our sample, we can also
observe the trend that smaller machines exhibit state space reductions more often
(cf. Figs. 2a and 3a). Indeed, our findings in Section 4 and Section 5 suggest that
constructs to structure larger machines hinder POR.

Further, the set of machines may not be representative, as it includes many
examples from literature, small machines used for teaching, different versions or
instantiations of the same machine, etc., and not larger, confidential machines
from industry. From our experience, POR does not work well for these machines.
The bias may even be towards machines well-suited for POR, as several models
meant for testing the POR implementation are included.

4 Idiom 1: Parameterised Operations

ProB’s partial order reduction and the POR analysis identifies operations by
their name. However, there may be several operation instances, i.e., combinations
of a name and concrete parameter values. A trivial example is part of Listing 1.

From a high-level point of view, this machine has three operations where
only add and lock can be enabled simultaneously but are dependent. Thus, the
state space cannot be reduced. Yet, the operation instances add(1) and add(2)

satisfy exactly our definition of independence (Fig. 1), as add(1) and add(2)

commute (see Fig. 4)!
In this example, the independence of some operation instances within the

same operation is not exploited. In many cases, certain operation instances of one
operation are independent of certain operation instances of another operation.
An example is described based on our grand challenge in Section 6.2.
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(b) Invariant-Violating Models

Fig. 3: (Reduced) State Space Sizes for Invariant Checking
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Fig. 4: State space of the machine in Listing 1. Each state consists of the set xx
(at the top) and the boolean locked (at the bottom). The commutativity of the
add operation instances is highlighted.

4.1 Solution: Unrolling of Operations

The example above has one important property: for the considered operation
add, we can statically determine a finite set of possible values for the parameters
(i.e., either yy = 1 or yy = 2). In this case we can replace the operation with
all its operation instances, by hardwiring the parameter values. For the example
above, this gives rise to two operations add 1 and add 2 in Listing 3.
Advantage: Necessary Preprocessing This technique is the bare minimum
to locate independence between operations that share at least one variable. Thus,
it is the foundation for the techniques below.
Drawback: Infinite Sets This unrolling technique is not always applicable
given that parameter choices for all states have to be considered. Indeed, the
calculation of all possible parameter values may be expensive and yield a large
or infinite number of values (due to an overapproximation by the static analysis).
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1 OPERATIONS

2 add_1 = SELECT locked = ⊥ ∧ 1 ̸∈ xx THEN xx := xx ∪ {1} END;

3 add_2 = SELECT locked = ⊥ ∧ 2 ̸∈ xx THEN xx := xx ∪ {2} END;

4 lock = SELECT locked = ⊥ THEN locked := ⊤ END;

5 unlock = SELECT locked = ⊤ THEN locked := ⊥ END

Listing 3: Unrolled add Operation

Drawback: Multiple Evaluations While unrolling an operation may be suit-
able for POR analysis, it duplicates the majority of sub-expressions. Each op-
eration is considered individually in ProB, and shared sub-expressions have to
be re-evaluated which results in a slow-down during model checking.

Below, we assume that all operation instances are unrolled. Thus, there is no
difference between the concepts of operation and operation instance and their
independence. In case an operation cannot be unrolled, it is retained as-is and
syntactic independence can still be determined.

5 Idiom 2: Usage of Compound Values (Sets, etc.)

With the simple unrolling technique above, we have established that the POR
analysis could now in principle spot the independence between operation in-
stances. In practice, the POR analysis in ProB will, however, not determine
the independence if two operations write to the same variable.

For performance reasons, the POR analysis focuses mostly on syntactic as-
pects in order to yield a fast approximation9. It considers the (action) read and
write sets of two operations (AR1, AR2, R1, R2, W1 and W2). A variable is
contained in the action read set AR of an operation, iff the substitution reads
it; in the read set R iff the guard or the substitution reads it; and in the write
set W iff the variable is written to. The POR analysis then follows the flowchart
depicted in Fig. 5, where only the disabling analysis uses semantic aspects.

If we re-consider the operations in Listing 3, we can observe that both add_1

and add_2 write to the same variable xx. Obviously, the intersection of the two
write sets W1∩W2 is not empty and a syntactic POR analysis yields that the two
operations are (race) dependent. Yet, set union is associative and commutative
and the operations should be classified as independent because (xx∪ {1})∪ {2}
= (xx ∪ {2}) ∪ {1}.

5.1 Solution 1: Constraint-Based POR Analysis

Since the original syntactic approach depicted in Fig. 5 does not suffice, we added
a new constraint-based semantic approach. Instead of syntactically classifying a

9 Which is precise enough for some formalisms (at least using LTSmin’s POR), but
not for others [25].
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Fig. 5: Syntactically Determining the Independence Relation of Two Operations

pair of operations as race or action dependent (see Fig. 5), we use a constraint
solver (ProB, Kodkod or Z3) during the POR analysis. Below, we present how
we determine operations to be independent by considering non-disabling and
commutativity constraints separately (see Def. 1). Further, in order to be able
to check (A 2.2) on the fly, we also use constraints to determine which other op-
erations may (not) be enabled by a specific operation. Finally, again for (A 2.2),
one also has to determine which operations may be co-enabled. For the overall
approach, we use the notion of before-after predicates and enabling predicates:

Notation (Before-After Predicate). For an operation instance e, we define
BAe(s, s

′) to be the before-after predicate. It is a conjunction of the guard of
operation op(e) and the predicate whose solutions s′ form the successor states of
s using e.

As an example, the before-after predicate for the operation add_1 is10:

BAadd1(s, s
′) ≡ locked = ⊥ ∧ 1 ̸∈ xx︸ ︷︷ ︸

enadd1
(s)

∧ xx′ = xx ∪ {1} ∧ locked ′ = locked︸ ︷︷ ︸
substitution of add1

Before-after predicates do not exist for all operations, e.g., those containing a
WHILE-loop.

Non-Disabling Constraint. Independent operations must not disable each other
and commute. The constraint below checks whether operation α can disable the
operation β. The conjunct Info might contain additional information, such as
the values of constants, proven theorems or (parts of) the state invariant. Also

10 We will directly refer to the state variables by their name; e.g., xx is part of state
s, and xx′ is a variable of s′.
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note that the states s and s′ may not be reachable in the state space, and, thus
the following computes a (safe) approximation of disabling:

∃s, s′.(Info ∧ enβ(s) ∧ BAα(s, s
′) ∧ ¬enβ(s

′))

For example, to check whether add_1 may disable add_2, we have to consider
the constraint:

∃s, s′.(Info ∧ locked = ⊥ ∧ 2 ∈ xx︸ ︷︷ ︸
enadd2

(s)

∧ locked = ⊥ ∧ 1 ̸∈ xx ∧ xx′ = xx ∪ {1} ∧ locked ′ = locked︸ ︷︷ ︸
BAadd1

(s,s′)

∧ ¬(locked ′ = ⊥ ∧ 2 ∈ xx′)︸ ︷︷ ︸
¬enadd2

(s′)

)

As this constraint is a contradiction, we can conclude that add 1 cannot disable
add 2 (and, analogously, vice versa). This does not suffice for independence,
and we have to continue to check the commutativity of the operations (see
below). However, lock can (and will) disable add 1 and the operations cannot
be independent. The same holds for lock and add 2.
Commuting Constraint. The next constraint below encodes counter examples
to commutativity in Def. 1. egain, if a solution is found, a timeout occurs or
unknown is returned by the solver, we conclude that the operations might be
non-commuting and thus dependent:

∃s, s1, s2, s3, s4.(Info∧BAα(s, s1)∧BAβ(s, s2)∧BAα(s2, s3)∧BAβ(s1, s4)∧s3 ̸= s4)

E.g., to find that add 1 and add 2 commute, the following constraint is used:

∃s, s1, s2, s3, s4.( locked = ⊥ ∧ 1 ̸∈ xx ∧ xx1 = xx ∪ {1} ∧ locked1 = locked︸ ︷︷ ︸
BAadd1

(s,s1)

∧ locked = ⊥ ∧ 2 ̸∈ xx ∧ xx2 = xx ∪ {2} ∧ locked2 = locked︸ ︷︷ ︸
BAadd2

(s,s2)

∧ locked2 = ⊥ ∧ 1 ̸∈ xx2 ∧ xx3 = xx2 ∪ {1} ∧ locked3 = locked2︸ ︷︷ ︸
BAadd1

(s2,s3)

∧ locked1 = ⊥ ∧ 2 ̸∈ xx1 ∧ xx4 = xx1 ∪ {2} ∧ locked4 = locked1︸ ︷︷ ︸
BAadd2

(s1,s4)

∧¬(xx3 = xx4 ∧ locked3 = locked4)︸ ︷︷ ︸
s3 ̸=s4

)

Due to the associativity and commutativity of the set union, the two operations
will commute. Further, as they do not disable each other, the constraint can be
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found to be unsatisfiable. Hence, we know for certain that for all states Def. 1
holds and the operations are independent of each other.
Non-Enabling Constraint. For condition (A 2.2), we also have to know which
operations can enable each other. In order to determine whether operation α
can enable β, we need a constraint similar to the non-disabling constraint:

∃s, s′.(Info ∧ ¬enβ(s) ∧ BAα(s, s
′) ∧ enβ(s

′))

As an example, add 1 cannot enable add 2 and vice versa. However, both these
operations can be enabled by unlock.
Co-Enabledness Constraint. Again, for condition (A 2.2), we need to know which
operations are potentially co-enabled. The constraint below is true if the opera-
tions α and β are co-enabled in some state:

∃s.(Info ∧ enα(s) ∧ enβ(s))

For example, add 1 and add 2 are both enabled in the initial state. However,
lock and unlock are never co-enabled as their guards form a contradiction.
Advantage: Precision Overall, such a constraint-based analysis is very precise
and, in an optimal world, would obtain all necessary information for POR.
Drawback: Required Information In practice, (proven) invariants often are
important to determine independence (i.e., they should be part of the Info pred-
icate above). E.g., if x > 0 ⇒ x = y is known, we can infer that the guards
x > 0 and y ≤ 0 are mutually exclusive. However, adding conjuncts to the Info
predicate can also make a constraint solver time out. We were not able to find
a heuristic that selects additional information for the solver and consistently
succeeds for more complex models.
Drawback: Analysis Overhead For many constraints the solvers time out,
which vastly increases the POR analysis time. We found that for many models,
such an analysis surpasses the actual model checking time for the full state space.
The issue is further discussed regarding the interlocking example in Section 6.2.
Drawback: Instability of Solver Integrations ProB’s own constraint solver
does not perform well in finding unsatisfiability of the commuting constraints.
Other integrated solvers on the other hand, i.e., Kodkod and Z3 fit extraordinar-
ily well. However, for some constraints Kodkod and Z3 will occupy all available
memory (including swap space), leading to crashes during POR analysis.

5.2 Solution 2: SAT Encoding of Finite Sets

While the constraint-based approach above works well for smaller models, the
blow up of analysis time renders it less favourable for larger ones. Thus, we
have implemented a prototype11 that aims to expose syntactic independence
by automatically re-writing finite set variables (as well as finite relations) into a
series of boolean variables. This is technique often refered to as “bit blasting”, or
“data refinement” in the context of modelling and refinement. It also is used in

11 Available at: https://github.com/JanRossbach/fset

https://github.com/JanRossbach/fset
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Kodkod’s translation to SAT, and similar re-writes are required when encoding
such a model in lower-level formalisms, such as Promela. In Listing 2, an example
encoding is given for the machine in Listing 3.

One can see that the (original) set variable xx can contain at most two
values that can be determined statically (i.e., 1 and 2). Then, the original set
xx is replaced by a group of boolean variables, here xx_1 (that equals TRUE iff
1 ∈ xx) and xx_2 (that equals TRUE iff 2 ∈ xx). Finally, a membership check
is a comparison with TRUE (or FALSE for non-membership, e.g., in the guard of
add_1), and the set union with a singleton set just sets the according boolean to
true (e.g., in the body of add_1). Most operators concerning sets, functions and
relations can be re-written (though some translations are rather involved [37],
and are omitted here).
Advantage: Faster Analysis The POR analysis yields a pretty precise result
even if the original, fast syntactical analysis in Fig. 5 is re-used. For example,
add_1 reads and writes only xx_1 and does not require xx_2, and vice versa for
add_2, resulting in independent operations on a syntactical level. Further, as the
behaviour of the machine is not altered, one could also verify that this is a valid
refinement in order to ensure correctness.
Drawback: Performance There are several aspects of performance overheads
to consider here: first, the translation itself requires some time, especially if all
operations are unrolled and if complicated invariants are used. For larger models,
our prototype of the translation may take several minutes. Second, the translated
model does not perform as well during model checking with ProB, and may be
several times slower. Thus, a sensible option would be to use the translated
model for POR analysis only and map the results to the original model.
Drawback: Translatable Subset Unfortunately, not all operators in the B
language have a straightforward mapping to a SAT encoding. As a fallback, one
may re-calculate the original set by combining all boolean values it is spliced
into. Yet, in these instances, one loses all syntactic independence again.

6 Case Study & Challenge: Railway Interlocking System

In his book on Event-B [2], Abrial presents a model12 of a railway interlocking
system. The role of an interlocking is to safely operate signals and points within
an area of the train network. This means that the interlocking controller has to
ensure that trains do not collide and that points are not moved while a train is
driving over them.

In this section, we investigate the impact of the POR analysis techniques
we presented above with this interlocking system by Abrial [2, Chapter 17] (cf.
Listing 4). Although it is an academic model intended for teaching, we chose
it because (i) it shares several features with real-world models, (ii) while SAT-
based approaches are able to verify small to medium-sized interlockings [8,31],
the verification of larger interlockings is still an active research area and chal-
lenge, (iii) applying ProB’s POR yields no state space reduction, (iv) it requires

12 https://github.com/pkoerner/train-por/blob/main/Train 1 beebook TLC.mch

https://github.com/pkoerner/train-por/blob/main/Train_1_beebook_TLC.mch
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Fig. 6: Example interlocking track layout based on page 524 of [2] with 5 signals,
5 points, one crossing and 14 tracks segments

vast resources for model checking — its state space for the simple topology from
Fig. 6 consists of 61 648 077 states and invariant checking with ProB would take
about six days (based on estimates [22] — without distributed model checking,
the process ran out of memory and crashed), (v) one can identify that partial-
order reduction is in principle possible because the route_freeing operation
is independent of all other operations. One can hand-code this insight into the
model [27] by forcing this operation (route_freeing) to be taken as soon as it
is enabled13, thereby reducing the state space to 672 174 states. Our challenge
for the last years has been to identify why our current approach fails and to
obtain this two-order of magnitude reduction by (an improved) POR.

6.1 Interlocking Model Overview

The rail network is divided into individual blocks; the blocks in Fig. 6 are named
A – N. The interlocking allows trains to follow a fixed number of statically
determined routes through the network. Fig. 6 contains 10 routes, named R1 –
R10. For example, route R1 goes through blocks L, A, B, C, while route R2 goes
through L, A, B, D, E, F, G and route R6 is the reversed route of R1, going
through C, B, A, L (analogously for R7 – R10).

The model also contains the following constants and variables: fst and lst

are functions that map a route to its first and last block, respectively. nxt is
a function that — given a route — returns a function mapping a block to its
successor. rtbl is a relation storing the routes for each block. resbl (reserved
blocks) resrt (reserved routes) and rsrtbl (blocks reserved for routes) store
information about reservations. OCC keeps track of blocks that are occupied. frm
stores which routes are formed on the physical track (TRK). LBT maps a route to
the last block of the train.

Operations are usually called within a certain order: first, a route has to be
reserved (route_reservation) and the points need to be positioned to match
the route (point_positionning). Then, these points are locked as the route is
formed (route_formation). On formed routes, trains may enter and leave blocks

13 https://github.com/pkoerner/train-por/blob/main/Train 1 beebook tlc POR.mch

https://github.com/pkoerner/train-por/blob/main/Train_1_beebook_tlc_POR.mch
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1 MACHINE Train_1_beebook_TLC

2 SETS BLOCKS ={A,B,C,D,E,F,G,H,I,J,K,L,M,N};

3 ROUTES ={R1,R2 ,R3,R4,R5 ,R6,R7,R8 ,R9,R10}

4 CONSTANTS fst , lst , nxt , rtbl

5 VARIABLES LBT , TRK , frm , OCC , resbl , resrt , rsrtbl

6 INITIALISATION

7 resrt := ∅ ∥ resbl := ∅ ∥ rsrtbl := ∅ ∥ OCC := ∅ ∥ TRK := ∅ ∥
8 frm := ∅ ∥ LBT := ∅
9 OPERATIONS

10 route_reservation(r) =

11 SELECT r ̸∈ resrt ∧ (rtbl−1)[{r}] ∩ resbl = ∅
12 THEN resrt := resrt ∪ {r} ∥
13 rsrtbl := rsrtbl ∪ (rtbl ▷ {r}) ∥
14 resbl := resbl ∪ (rtbl−1)[{r}] END;

15 route_freeing(r)

16 SELECT r ∈ resrt \ ran(rsrtbl)

17 THEN resrt := resrt \ {r} ∥ frm := frm \ {r} END;

18 FRONT_MOVE_1(r) =

19 SELECT r ∈ frm ∧ fst(r) ∈ resbl \ OCC ∧ rsrtbl(fst(r)) = r

20 THEN OCC := OCC ∪ {fst(r)} ∥ LBT := LBT ∪ {fst(r)} END;

21 FRONT_MOVE_2(b) =

22 SELECT b ∈ OCC ∧ b ∈ dom(TRK) ∧ TRK(b) ̸∈ OCC

23 THEN OCC := OCC ∪ {TRK(b)} END;

24 BACK_MOVE_1(B) =

25 SELECT b ∈ LBT ∧ b ̸∈ dom(TRK)

26 THEN OCC := OCC \ {b} ∥ rsrtbl := {b} ◁− rsrtbl ∥
27 resbl := resbl \ {b} ∥ LBT := LBT \ {b} END;

28 BACK_MOVE_2(b) =

29 SELECT b ∈ LBT ∧ b ∈ dom(TRK) ∧ TRK(b) ∈ OCC

30 THEN OCC := OCC \ {b} ∥ rsrtbl := {b} ◁− rsrtbl ∥
31 resbl := resbl \ {b} ∥ LBT := LBT \ {b} ∪ {TRK(b)} END;

32 point_positionning(r) =

33 SELECT r ∈ resrt \ frm

34 THEN TRK := ((dom(nxt(r)) ◁− TRK)

35 ▷− ran(nxt(r))) ∪ nxt(r) END;

36 route_formation(r) =

37 SELECT r ∈ resrt \ frm ∧
38 (rsrtbl−1)[{r}] ◁ nxt(r) = (rsrtbl−1)[{r}] ◁ TRK

39 THEN frm := frm ∪ {r} END

40 END

Listing 4: Grand Challenge: Abrial’s Interlocking System (Excerpt)

in the corresponding order (via the operations FRONT_MOVE_1, FRONT_MOVE_2,
BACK_MOVE_1 and BACK_MOVE_2). Once a train finishes its route, the route is
freed again (route_freeing).

Since only some routes share blocks, several routes can be reserved, formed
and several trains may be on the tracks at the same time. For example, route
R1 does not share any block with route R4 or R5. On the other hand, route R3
and R4 both include the blocks F and G.
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6.2 Insights

Operation Unrolling As previously mentioned, this is the key technique for
the POR analysis that avoids re-writing the POR implementation itself. In our
case study, one can unroll all operations, as parameters are either one of the ten
routes or fourteen blocks. Then, the unrolled model has 92 operations. If the
operations were not unrolled, one could not exploit that some pairs of routes do
not overlap (and the corresponding operation instances are, thus, independent).
One consequence is that the POR analysis cannot infer the independence of, e.g.,
the route reservation of the disjoint routes R1 and R5. Another consequence is
that, e.g., route_reservation and route_formation are overapproximated as
dependent, even though some pairs of routes do not overlap (and the corre-
sponding operation instances are, thus, independent).
Constrained-Based Analysis The constraint-based approach is able to yield
a precise independence analysis. This, however, comes with a cost: if opera-
tions are dependent on each other, solvers usually time out rather than return-
ing a counterexample or unknown. As many operations do not commute (or
may enable or disable each other), this drastically increases POR analysis time.
As 4186 (unordered) pairs of operations exist, a full analysis that checks the
non-disabling, commutativity (for independence) as well as non-enabling and
co-enabledness constraints (for (A 2.2)) takes several hours even on modern
hardware due to the amount of timeouts. Finally, even though the obtained
information was pretty precise, we did not achieve any reduction with this ap-
proach. The POR analysis was not able to determine that a crucial pair of oper-
ations cannot be co-enabled (cf. (A 2.2)), and was not precise enough concerning
the enabling relation. In particular, for the same parameter route R, the oper-
ation instance route_freeing(R) may disable both point_positionning(R)

and route_formation(R) and, thus, is not independent of them. However, the
operations are never enabled at the same time. If this co-enabledness was dis-
proven, the reduction would occur as expected.
SAT Encoding Finally, the SAT encoding of the original model14 in combina-
tion with the constraint-based analysis yielded the most precise POR analysis
results. In consequence, the technique also allowed the POR algorithm to achieve
the same reduction as the hand-written version. Analysis and model checking
takes about 30 minutes (1881 seconds) and requires 5048 MB of memory. In com-
parison, the hand-written version without ProB’s POR takes around 7 minutes
(397 seconds) and uses 2038 MB of memory. The faster runtime is due to the
overhead of the POR as well as the less efficient encoding of the refinement. Rea-
sons for the additional memory usage include a larger refined model and larger
states, storage of POR analysis results, etc.

7 Conclusions and Future Work

In this paper, we have identified two idioms in B and Event-B — operation
abstraction by parameters and usage of high-level data types — that often hinder

14 https://github.com/pkoerner/train-por/blob/main/train auto4.mch

https://github.com/pkoerner/train-por/blob/main/train_auto4.mch
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the POR analysis and, henceforth, successful state space reduction. Certainly,
there are further patterns that may be uncovered in the future. Thus, our main
conclusion is that the usage of high-level constructs prevalent in B are indeed
the root cause for our previous unsatisfying experiences with POR and, thus,
deeper analysis is required.

We have described three techniques in Sections 4 and 5, (i.e. unrolling of
operations, constraint-based POR analysis of operations based on before-after
predicates and/or a precise SAT encoding of finite set variables). Individually,
each technique is no universal remedy and brings its own drawbacks to the
table. In combination, however, one can exploit their individual advantages and,
indeed, we were able to match the two order of magnitude state space reduction
of the hand-written version for deadlock checking of the interlocking case study.

Related work is dynamic POR [16] which is especially useful for model check-
ing of concurrent software systems, where possible parameter values are drawn
from large or infinite sets such as integer values. It avoids static analysis alto-
gether, tracks information dynamically during execution traces and backtracks
later if alternative paths that need to be explored are identified. One main ben-
efit is that one does not need to keep the entire state space in memory but only
the execution that is currently considered. While this is quite different from our
approach, it still requires precise information on the dependence relation and,
thus, cannot yield better reduction alone. Yet, evaluating the dependency rela-
tion lazily — i.e., considering only combinations of operation instances which are
actually encountered — can help where our improvements in Sections 4 and 5
currently fail, i.e., when parameters are drawn from infinite sets or when sets
are statically unbounded.

The constraint-based analysis still has room for improvement: for one, there
might be useful heuristics for similar operation pairs to avoid timeouts. If missing
information was made more transparent to the user, one might also assist the
POR analysis by providing (proven) theorems. Yet, our implementation of SAT
encoding is not mature enough for large-scale benchmarking. In the future, we
aim to evaluate our new approach in the large.

Finally, the focus of this study lies on deadlock checking — invariant or LTL
model checking may require different or additional techniques. In particular, it is
often hard to prove that operations preserve the invariant (which is required for
operations to be stutter events, which in turn is required for successful reduction
during LTL model checking). Thus, work in this direction might benefit from
integrating provers to obtain information about invariants that are guaranteed
to be preserved by individual operations.
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