A Systems Engineering Tool Chain Based on
Eclipse and Rodin

Michael Jastram®!2

! Heinrich-Heine Universitit Diisseldorf
2 Formal Mind GmbH

Abstract. Formal methods are experiencing a renaissance, especially in
the development of safety-critical systems. An indicator for this is the
fact that more and more standards either recommend or prescribe the
use of formal methods.

Using formal methods on an industrial scale requires their integration
into the system engineering process. This paper is exploring how an
integrated tool chain that supports formal methods may look like. It
thereby focusses on our experience with tool chains that are based on the
open source Eclipse platform in general, and the Rodin formal modeling
environment in particular.

Open Source allows organisations to remedy the risk of being dependent
on one single vendor. This includes the risk of the feature set provided:
users can add missing features themselves or commission their inclusion
to any competent party, rather than having to rely on the vendor to
implement it. It further includes the risk of maintenance and long-term
support.

We see industrial interest in open source for systems engineering in gen-
eral, and Eclipse in particular. Eclipse is attractive, because its license
is business-friendly. Further, its modular architecture makes it easy to
seamlessly integrate the various Eclipse-based tools for systems engineer-
ing.

This paper focuses on an ecosystem that is accumulated around two
Eclipse-based platforms, First, the Rodin platform is an open source
modeling environment for the Event-B formalism. Second, the Require-
ments Modeling Framework (RMF) is a platform for working with natu-
ral language requirements, supporting the international ReqlF standard.

1 Introduction

This paper is concerned with two trends in systems engineering. First formal
methods are finally deployed to complement informal development methods,
especially for the development of safety-critical systems [15]. Second, open source
is becoming a serious alternative to commercial tools, and Eclipse in particular
is being used more and more in systems development.

But both trends are at an early stage. The use of formal methods is still
the exception and not the rule. This is due to the fact that the established

development approaches still work, and that the risk and cost of using formal
methods is considered high [3].

Open source is considered risky as well. For the longest time, uncertainty with
respect to maintenance and support was an issue, and the quality of commercial
software used to be higher. But most of these issues have been addressed by
companies that specialize on this niche [13].

We believe that the majority of pieces for an Eclipse-based tool chain sup-
porting formal methods already exists. The task at hand is to provide the missing
pieces, to raise awareness of it and to encourage its use in academia and in in-
dustry.

This paper is structured as follows: In the reminder of the introduction (Sec-
tion 1) provides an overview of the developments in the area of formal methods,
as well as the disciplines in systems engineering that a successful tool chain must
cover.

Section 2, we investigate the available Eclipse-based tools for systems engi-
neering, and how they are used today.

Section 3 takes a closer look at Rodin and how it has been deployed in
industry. We also investigate its ecosystem, what extensions exist, and which
are missing for completing a systems engineering tool chain.

Section 4 concludes with an outlook and plans for making Eclipse-based
systems engineering a reality.

1.1 Formal Methods

The idea of using mathematics to precisely specify systems has been around
for a long time. Formal methods are a particular kind of mathematically-based
techniques for the specification, development and verification of software and
hardware systems.

Unfortunately, for a long time it was not clear how these methods could be
applied on an industrial scale. Furthermore, there were a number of misconcep-
tions about formal methods that discouraged potential users further [4]. Also,
formal methods can be applied in various stages of system engineering, from
formal requirements all the way to code generation. There are drastic variations
in pay-off, depending on the area of application [3].

The attitude is slowly changing, as industrial success stories become available
(see Section 3). Further, the value of formal methods has been recognized espe-
cially for the development of safety-critical systems [15]. This insight manifested
itself in various standards, which recommend or even mandate the use of formal
methods. Examples include ISO 26262 or certain Safety Integrity Levels (SIL).

In traditional development methods (e.g. [5], [11]), initially the project costs
are low and reach their peak during the implementation phase. In contrast, the
use of formal methods imposes high costs during the requirements elicitation
and specification phases, with the promise of much lower costs during the imple-
mentation phase. Further, the real pay-off is achieved during the maintenance
phase and reuse.

The formalism introduced in Section 3 is called Event-B. Key features of
Event-B are the use of set theory as a modelling notation, the use of refinement
to represent systems at different abstraction levels and the use of mathematical
proof to verify consistency between refinement levels.

1.2 Systems Engineering Disciplines

The objective of this paper is to explore what is missing for an integrated systems
engineering tool chain. To answer this question, we need to identify the disci-
plines for which tool support must exist, and how the tools must be integrated.
The following broad disciplines were taken from OpenUP [2].

Requirements. How to elicit, analyse, specify, validate, and manage the re-
quirements for the system to be developed.

Architecture. How to create software architecture from architecturally signif-
icant requirements. The architecture is built in the Development discipline.

Development. How to design and implement a technical solution that con-
forms to the architecture and supports the requirements.

Test. How to provide feedback about the maturing system by designing, imple-
menting, running, and evaluating tests. This typically includes validation.

Project Management. How to coach, facilitate, and support the team, help-
ing it to deal with risk and obstacles found when building software.

Deployment. How to plan for and deploy a solution.

Environment. How to customize process and tools for a project or organiza-
tion.

2 Systems Engineering with Eclipse

A variety of open source software for systems engineering is available®. However,
most of these tools are designed as stand-alone software. While integration with
other tools is possible, the result is rarely seamless.

Eclipse is an open source framework for building platform-independent GUI
applications. It consists of an extensible plug-in system that is designed for
extensibility. To be more precise, the Eclipse core merely provides the capability
of managing plug-ins, the actual functionality that is relevant to the user is
always provided by plug-ins. Further, plug-ins that have the potential to be re-
used, typically provide “extension points”, which are interfaces that can be used
by other plug-ins. This allows the seamless integration of Eclipse-based tools that
were developed independently. Section 3 provides an example of this, where the
two independent tools Rodin and ProR (part of the RMF project) are integrated
to realise traceability between requirements and formal specifications.

While Eclipse enables integration on the tool level, interoperability on the
data level is important to allow individual components to be exchanged. Stan-
dards are crucial in this respect, and the effect of standardization could be seen

3 Examples at http://wiki.developspace.net/Open_Source_Engineering_Tools

in the area of modeling: After the specification of UML, a lot of publications
and work concentrated on this standard, paving the way for low-cost and open-
source tools. In the area of requirements engineering, the recently established
ReqlF standard seems to have a similar effect.

Eclipse is managed by the Eclipse Foundation, which ensures that official
Eclipse projects are interoperable and follow certain intellectual property guide-
lines. As of this writing, the foundation manages roughly 250 projects. Countless
other Eclipse project exists, which are not managed by the foundation, including
the formerly mentioned Rodin platform.

While Eclipse was initially designed as an Integrated Development Environ-
ment for Java and later for Software in general, it recently gained attention in
the embedded market. In particular, Airbus decided to cosponsor the develop-
ment of Topcased, a software environment primarily dedicated to the realisation
of critical embedded systems including hardware and/or software [6]. An inte-
gration of Topcased with RMF has been proposed and is under development
(8].

The Eclipse ecosystem provides a number of projects that could be used in
a systems engineering tool chain. This includes reporting tools; team support;
modeling frameworks, both textual and graphical; modeling notations like UML
and SysML; requirements management; domain specific language support; and
real time software components.

In addition to these, there is a vast number of projects that are not managed
by the Eclipse foundation. These are typically available through open source
hosting services like Eclipse Labs, Git Hub or SourceForge, as well as public
academic and commercial repositories.

Last, the Eclipse Public License makes it relatively easy to mix open source
code with commercial closed-source offerings.

2.1 Systems Engineering Tool Chains

Typically, users start with a base installation of Eclipse that is already tailored,
and customize it by installing additional plug-ins. A number of such base instal-
lations exist. A small number of popular base installations can be downloaded
from the Eclipse web site, but many projects offer their own base installations
on their respective project web sites.

There are a number of base Eclipse installations for systems engineering —
examples include Topcased, Unicase or the Open System Engineering Environ-
ment (OSEE). Acknowledging the need for domain-specific tools, the Eclipse
automotive working group started to develop an industry-specific tool.

However, there is also possible to start with one component of the systems
development tool chain and to add all the missing pieces to it. We will present
this approach in Section 3, where we step by step extend the Rodin platform to
cover most aspects of systems engineering.

3 A Rodin-based Systems Engineering Platform

Our objective is to build a systems engineering platform that integrates for-
mal modelling into the development process. There is support for several formal
methods in Eclipse, like CZT (Z) or Overture (VDM) In this paper, we focus on
the Rodin platform for Event-B modeling [1]. The Event-B formalism uses set
theory and refinement, allowing the representation of different abstraction levels
of the system. Consistency between the refinement levels is verified by mathe-
matical proof. The Rodin tool consists of a modeling and proving environment.

We focus on Rodin, because it attracted a vibrant community, and a num-
ber of extensions for systems engineering already exist. The author’s institution
created two such extensions, the ProB model checker [12] and the ProR require-
ments tool [9]. But even more important, we provide a seamless integration of
these tools with the Event-B modeling environment.

A simple “integration” of Eclipse tools can be achieved by installing them in
the same base installation. But the added value of this is little more than running
two application next to each other. The real value from integration comes by
through the integration of the actual data.

In the following, we will explore the various systems engineering disciplines,
starting with the core Rodin platform.

Modeling and Development. Development is the process of “designing and im-
plementing a technical solution”. The focus of the core Rodin platform is on
the design process, where an abstract specification is refined step by step to add
more and more implementation detail. The development must conform to the
architecture and support the requirements. This is discussed below.

A central idea behind the development of Event-B was to keep the core of
the language minimal. In an industrial context, this approach can be painful,
as crucial features may be missing. But these needs have been addressed by the
community in the form of additional plug-ins.

It is possible to further use the formal model and generate code from it. A
few code generation facilities are available for Rodin. However, it is often more
cost-effective to omit this last step and to use the formal model just as the
specification [3].

Requirements. While Event-B models can be proven to be consistent, it is not
always clear whether they are correct with respect to their requirements. This
has been addressed by providing an integration with the ProR requirements
tool [10]. ProR is part of the Requirements Modeling Framework (RMF), an
Eclipse Foundation project. ProR is using the ReqlF standard for exchanging
requirements as the underlying data model. This gives it interoperability with
industrial requirements tools.

ProR and Rodin are both Eclipse-based, and therefore, a seamless integra-
tion was possible. We developed an integration plug-in [10], which allows linking
of requirements and model elements with drag and drop, as well as colour high-
lighting of model elements in the requirements. The tool is accompanied with

a method, the ProR approach, which ensures consistency between the require-
ments and the formal model.

Architecture. One approach to architecture is the use of UML. While the Eclipse
ecosystem has solid UML support, these tools have not yet been integrated.
However, the UML-B plug-in for Rodin [14] provides a facility for generating
Event-B models from UML class and state diagrams, thereby providing a tight
integration.

UML-B state machines can also be animated and are therefore useful for
validating the model’s behaviour.

Testing and Validation. While Rodin generates proof obligations for the model,
they only allow to check the model’s consistency (i.e. with respect to invariants
or refinements). But the model must also be validated against the requirements.
The ProB validation platform provides a number of mechanisms for this pur-
pose. First, models can be animated — this allows users to inspect the model’s
behaviour. Further, ProB can also generate tests via the MBT plug-in.

Deployment. At this point, the Rodin ecosystem has little to offer for deploy-
ment. Considering how weak the code generation facilities are, this is not that
surprising. Eclipse provides technologies for deployment, but these are mainly
targeted towards deploying code to application servers — but this differs vastly
from what is needed when deploying embedded systems. There is certainly room
for improvement here.

Environment and Project Management. Both, environment and project man-
agement are crucial to systems engineering, but not particularly specific to the
use of formal methods. Promising tools can be found in the Eclipse ecosystem,
but have not been explored specifically in the past. We believe that this is due
to the fact that most projects where Rodin has been used were either academic
or industrial research projects, but not commercial productions.

One powerful tool for both environment and project management is the
Eclipse Process Framework, a customizable software process engineering frame-
work. A useful tool for project management is Mylyn*, a task and applica-
tion lifecycle management framework. Mylyn provides tight integration with
programming environments, and a corresponding integration with the Event-B
modeling environment could be realised.

3.1 Integration of Rodin and ProR

The figure gives an impression on how the integration between Rodin and ProR
has been realized, following an approach described in [10]. It shows some require-
ments of a traffic light system in the upper pane. Each row represents either a
requirement or a trace (preceeded by a triangle). Each column represents an

* http://www.eclipse.org/mylyn/

@ maco (Trafficlight.rif-xmi (IE *Specification Document & =0

[R Specification Document

4 D | Description |WRsPWN| Link
W-1 [Pedestians] observe the trafficlights [t_peds]. This means that
they may move [moving] when the traffic lights allows them to
i @ [go]. Upon indicating [stop]. they finish fo move [stopping] and Wi Orel-2
then wait [waiting].
. Al\owsl. all legal Isfofe transitions via the guard, except from set_Pedesfrians
stopping to waiting.
Handles the transition from stopping to waiting. We have a .
P dedicated event to account for the delay. gsfoppmgpeds
W-2 [Cars] observe the trafficlights [t_cars]. This means that they may
13 | @ [ove [meynal when the affic lights aliows inem 101901 UP°" w (o) over-2
[2i Rodin Problems ([3_\ Problems [EI Properties &2 E.Tasksw 7 ke ¥ =0
Property | Value |
Type Event-B Type
event stopping_peds
where
@W1_a Pedestrians = stopping
Description then

@W1_b Pedestrians = waiting
@W3 delay_peds = FALSE
end

Integration of ProR with an Event-B formal model.

attribute, the most prominent one being the requirements text. Some words are
highlighted, representing elements that have been modelled formally. The details
for the currently selected element (“stopping_peds”) are shown in the Properties
pane on the bottom. The corresponding model element is shown there, in this
case the event “stopping_peds”.

Links between the formal model and requirements can be established by using
drag and drop. In addition, the system marks links where source or target have
changed, thereby allowing the user to re-validate the relationship.

4 Conclusion and Outlook

What we presented in the previous section is not yet a complete tool chain.
However, we learned that Eclipse is well-suited as an integration platform for
such a tool chain, and that many building blocks already exist.

In our work, we realised that the formal specification takes on a central
role in the development process: It is based on the architecture, it realises the
requirements, it drives the implementation, it defines, to a degree, the tests, and
it aids in measuring the progress for project management.

Work on Rodin and its ecosystem continues. Amongst others, the FP7 AD-
VANCE project specifically focusses on Rodin to “develop of a unified tool-based
framework for automated formal verification and simulation-based validation of

cyber-physical systems”. Irrespective of the success of Rodin, it is clear that
Eclipse is here to stay in systems engineering.

Last, the recently started ITEA project openETCS [7] aims to use Eclipse-

based open technologies and formal methods to develop systems that allow cross-
European rail transportation. If this succeeds, it will be a big step forward for
Eclipse based systems engineering.

Acknowledgements. The work in this paper is partly funded by DEPLOY and
ADVANCE, both European Commission Information and Communication Tech-
nologies FP7 projects.

References

1.

10.

11.

12.

13.

14.

15.

J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: An open toolset for modelling and reasoning in event-B. STTT, 12(6):447—
466, 2010.

R Balduino. Introduction to openup (open unified process). eclipse.org, 2007.

D. M Berry. Formal methods: the very idea — some thoughts about why they work
when they work. Science of computer Programmaing, 42(1):11-27, 1999.

J. P Bowen and M. G Hinchey. Seven more myths of formal methods. In FME’9/:
industrial benefit of formal methods: Second International Symposium of Formal
Methods Furope, Barcelona, Spain, October 24-28, 1994: proceedings, page 105,
1994.

M. Broy and A. Rausch. Das neue v-modell® xt. Informatik-Spektrum,
28(3):220-229, 2005.

P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crégut,
and M. Pantel. The topcased project: a toolkit in open source for critical aeronautic
systems design. In Embedded Real Time Software, 2006.

Klaus-Riidiger Hase and Jean Koulischer. openetcs: Open source prinzipien fiir
das europaische zugsicherungssystem. In ZFE Vrail Tagungsband, 2012.

M. Jastram and A. Graf. Requirement traceability in Topcased with the require-
ments interchange format (RIF/ReqlF). First Topcased Days Toulouse, 2011.

M. Jastram and A. Graf. Reqif — the new requirements standard and its open source
implementation eclipse rmf. Technical report, Commercial Vehicle Technology
Symposium, 2012.

Michael Jastram. The ProR Approach: Traceability of Requirements and System
Descriptions. Inaugural-Dissertation. CreateSpace, 2012.

P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley
Professional, 2004.

M. Leuschel and M. Butler. ProB : an automated analysis toolset for the B method.
International Journal on Software Tools for Technology Transfer, 10(2):185-203,
2008.

D. Riehle. The commercial open source business model. In Value Creation in E-
Business Management, Lecture Notes in Business Information Processing. Springer
Berlin Heidelberg, 2009.

C. Snook and M. Butler. UML-B: formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol., 15(1):92-122, 2006.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal
methods. ACM Computing Surveys, 41(4):1-36, October 2009.

