

The ProR Approach:
Traceability of Requirements
and System Descriptions

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Michael Jastram

aus Reinbek

Düsseldorf, Mai 2012

aus dem Institut für Informatik

der Heinrich-Heine-Universität Düsseldorf

B61

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Michael Leuschel

Korreferent: Prof. Dr. Peter Fromm

Tag der mündlichen Prüfung: 26. Juni 2012

ISBN-13: 978-1478220060
ISBN-10: 1478220066

Es ist nicht genug zu wissen �
man muss auch anwenden.

Es ist nicht genug zu wollen �
man muss auch tun.

Johann Wolfgang von Goethe

4

Abstract

Creating a system description of high quality is still a challenging problem

in the �eld of requirements engineering. Creating a formal system

description addresses some issues. However, the relationship of the

formal model to the user requirements is rarely clear, or documented

satisfactorily.

This work presents the ProR approach, an approach for the creation of

a consistent system description from an initial set of requirements. The

resulting system description is a mixture of formal and informal artefacts.

Formal and informal reasoning is employed to aid in the process. To

achieve this, the artefacts must be connected by traces to support formal

and informal reasoning, so that conclusions about the system description

can be drawn.

The ProR approach enables the incremental creation of the system de-

scription, alternating between modelling (both formal and informal) and

validation. During this process, the necessary traceability for reasoning

about the system description is established. The formal model employs

re�nement for further structuring of large and complex system descrip-

tions. The development of the ProR approach is the �rst contribution of

this work.

This work also presents ProR, a tool platform for requirements engi-

neering, that supports the ProR approach. ProR has been integrated with

Rodin, a tool for Event-B modelling, to provide a number of features that

allow the ProR approach to scale.

The core features of ProR are independent from the ProR approach.

The data model of ProR builds on the international ReqIF standard,

which provides interoperability with industrial tools for requirements

engineering. The development of ProR created enough interest to justify

the creation of the Requirements Modeling Framework (RMF), a new

Eclipse Foundation project, which is the open source host for ProR. RMF

attracted an active community, and ProR development continues. The

5

6

development of ProR is the second contribution of this work.

This work is accompanied by a case study of a tra�c light system,

which demonstrates the application of both the ProR approach and ProR.

Zusammenfassung

Eine Systembeschreibung hoher Qualität zu erstellen ist nach wie vor ein

groÿe Herausforderung im Bereich Anforderungsmanagement. Einige der

Schwierigkeiten können mit formalen Systembeschreibungen verbessert

werden. Allerdings ist der Zusammenhang zwischen dem formalen Model

und den Nutzeranforderungen selten klar oder zufriedenstellend dokumen-

tiert.

In dieser Arbeit wird er ProR-Ansatz vorgestellt, der die Erstellung

einer konsistenten Systembeschreibung ermöglicht, die aus einem initialen

Satz von Anforderungen entwickelt wird. Die sich daraus ergebende Sys-

tembeschreibung besteht aus einer Mischung von formalen und form-

losen Artefakten. Formale und formlose Beweisführung unterstützen

den Prozess. Um dies zu ermöglichen, muss es eine Nachverfolgbarkeit

der Artefakte zur formalen und formlosen Argumentation geben. Diese

Nachverfolgbarkeit unterstützt und ermöglicht es, Aussagen über die Sys-

tembeschreibung zu machen.

Der ProR-Ansatz ermöglicht den inkremellen Aufbau der System-

beschreibung, indem abwechselnd modelliert (formal und formlos) und

validiert wird. Dabei wird die für die Argumentation notwendige Nachver-

folgbarkeit aufgebaut. Das Formale Modell kann Verfeinerung einsetzen,

um groÿe und komplexe Systembeschreibungen zu strukturieren. Die En-

twicklung des ProR-Ansatzes ist der erste Beitrag dieser Arbeit.

In dieser Arbeit wird ProR vorgestellt, eine Werkzeugplattform fürs

Anforderungsmanagement, die den ProR-Ansatz unterstützt. ProR wurde

mit Rodin integriert, einem Werkzeug für die Event-B-Modellierung. Mit

Hilfe dieser Werkzeugplattform kann der ProR-Ansatz skalieren.

Der Kern von ProR ist unabhängig von dem ProR-Ansatz. Das

ProR zugrunde liegende Datenmodell basiert auf dem internationalen

ReqIF-Standard, welcher Interoperabilität mit industriellen Werkzeugen

im Anforderungsmanagement ermöglicht. Die Entwicklung von ProR hat

genug Interesse geweckt, um die Gründung des Requirements Modeling

7

8

Frameworks (RMF) zu rechtfertigen, zu dem ProR nun gehört. RMF

ist ein Eclipse Foundation-Projekt, und ProR somit Open Source. Die

Entwicklung von ProR ist der zweite Beitrag dieser Arbeit.

Weiterhin enthält diese Arbeit eine Fallstudie eines Ampelsystems,

welches die Anwendung des ProR-Ansatzes und von ProR demonstriert.

Contents

1 Introduction 15

1.1 Specifying Systems . 15

1.1.1 Iterative Development 17

1.1.2 Stale artefacts . 18

1.1.3 Structuring the System Description 19

1.2 Traceability . 21

1.3 Modelling . 23

1.3.1 Semi-Formal Modelling with SysML 23

1.3.2 Formal Modelling with Event-B 24

1.4 Systems Development . 25

1.5 A List of Original Contributions 27

1.5.1 The ProR Approach 27

1.5.2 Tool Support: ProR and RMF 28

1.5.3 Umpublished, Accepted Work 29

1.6 Summary . 29

1.7 Acknowledgements . 30

1.8 Formal Mind . 30

2 Literature and Related Work 33

2.1 Systems Development . 33

2.2 Requirements and Speci�cations 34

2.3 Requirements Traceability 37

2.4 WRSPM . 38

2.5 Problem Frames . 38

2.6 Goal-Oriented Requirements Engineering 39

2.7 Formal Modelling and Event-B 41

2.8 Traceability to Formal Models 41

9

10 CONTENTS

3 The ProR Approach 43

3.1 Problem Statement . 45

3.1.1 Stakeholder Language 46

3.1.2 Co-Existence of Formal and Informal Artefacts . . . 47

3.1.3 Partial Formalisation 47

3.1.4 Support for Multiple Formalisms 48

3.1.5 Traceability Support 48

3.1.6 Requirements Evolution 50

3.1.7 Industrial Applicability 51

3.2 Traceability . 51

3.2.1 The WRSPM Reference Model 52

3.2.2 Adoptions of WRSPM for the ProR approach 55

3.2.3 Justi�cation, Realisation and Satisfaction Base . . . 57

3.2.4 Equivalence . 58

3.2.5 Evolution . 58

3.2.6 Usage of Phenomena 59

3.3 Formal Modelling and Re�nement 59

3.3.1 Overview of Event-B 59

3.3.2 Proof Obligations and Traceability 60

3.4 A Process for Systems Development 64

3.4.1 Incrementally Building the System Description . . . 66

3.4.2 Adequacy for Formal and Informal Requirements . . 69

3.4.3 Formalising Phenomena and Artefacts in Event-B . 71

3.4.4 Other Formalisms 73

3.5 Macroscopic Structure . 73

3.5.1 Problem Frames . 74

3.6 A Formal Meta-Model of the System Description 76

3.6.1 Formalising the Modi�ed WRSPM 76

3.6.2 Formalising Justi�cations and Realisations 77

3.6.3 Formalising the Distinction between Formal and

Non-Formal Artefacts 78

3.7 Discussion . 78

4 ProR Requirements Platform 81

4.1 A History of ProR . 81

4.1.1 Initial Development 82

4.1.2 Collaboration with Verde 83

4.1.3 Community Building 83

4.1.4 Eclipse Foundation Submission 85

4.2 the Development of ReqIF 85

4.2.1 History of the RIF/ReqIF Standard 86

CONTENTS 11

4.2.2 The Future of ReqIF 87

4.3 Goals for ProR . 88

4.3.1 Rodin Integration 89

4.3.2 Seamless integration with other tools possible 90

4.3.3 RIF/ReqIF support 90

4.3.4 Use outside Rodin possible 91

4.3.5 Longevity and Public Support 91

4.3.6 Industrial Strength 92

4.3.7 Scalability . 92

4.4 Technologies . 93

4.4.1 The Content and Structure of a ReqIF Model 93

4.4.2 Eclipse . 100

4.4.3 Java . 100

4.4.4 Eclipse Modeling Framework (EMF) 100

4.4.5 Modifying Generated EMF-Code 102

4.4.6 The Standard Widget Toolkit (SWT) and JFace . . 104

4.4.7 Agile Grid . 105

4.4.8 The ReqIF Core . 108

4.5 Using ProR . 109

4.5.1 Installing ProR . 109

4.5.2 Creating a ReqIF Model 109

4.5.3 New Attributes . 111

4.5.4 Con�guration of the Editor 112

4.5.5 Generating IDs . 112

4.5.6 Adding Requirements 114

4.5.7 Linking Requirements 115

4.6 Extending ProR . 115

4.7 Integration with Rodin . 118

4.8 Conclusion . 119

5 A Case Study 121

5.1 The Goal: Crossing the Street 121

5.2 Iteration 0: Elicitation of Requirements 122

5.3 Iteration 1: The Problem Diagram 124

5.4 Iteration 2: A First Step to Formalisation 127

5.4.1 Architectural considerations 128

5.4.2 The First Requirement 129

5.4.3 Formalisation . 130

5.4.4 Completing the Machine 131

5.4.5 Proof Obligations . 133

5.4.6 Modelling Tra�c Lights 134

12 CONTENTS

5.4.7 Realising Requirement R2.1 136

5.5 Iteration 3: Data Re�nement 138

5.5.1 Temporal Logic . 140

5.5.2 Validation with Animation 141

5.5.3 Adding Implementation Detail 143

5.6 Iteration 4: Modelling the Buttons 145

5.7 Iteration 5: Introducing Time 149

5.7.1 Hidden Domain Properties 150

5.8 Analysis and Conclusion . 151

6 Conclusions and Future Work 155

6.1 Contributions . 155

6.1.1 The ProR Approach 155

6.1.2 The ProR Platform 156

6.1.3 Case Study . 157

6.2 Future Work . 157

6.3 Conclusions . 158

A Eclipse Proposal for RMF 159

B Case Study Model 167

B.1 Iteration 0 . 167

B.1.1 Artefacts . 167

B.2 Iteration 1 . 168

B.2.1 Artefacts . 168

B.3 Iteration 2 . 169

B.3.1 Artefacts . 169

B.3.2 Context ctx02 . 170

B.3.3 Machine mac02a . 170

B.3.4 Machine mac02b . 173

B.4 Iteration 3 . 176

B.4.1 Artefacts . 176

B.4.2 Context ctx03 . 177

B.4.3 Machine mac03a . 177

B.4.4 Machine mac03b . 181

B.5 Iteration 4 . 185

B.5.1 Artefacts . 185

B.5.2 Machine mac04 . 186

B.6 Iteration 5 . 191

B.6.1 Artefacts . 191

B.6.2 Context ctx05 . 192

CONTENTS 13

B.6.3 Machine mac05 . 193

Bibliography 199

14 CONTENTS

Chapter 1

Introduction

This work is concerned with the creation of a system description from an

initial set of requirements, consisting of artefacts. The resulting system

description provides traceability between its artefacts, which may be

informal or formal. This work describes both the structure of the system

description, as well as the process of creating it. This is called the ProR

approach. The approach is supported by a tool called ProR. This chapter

sets the stage and introduces the concepts that will be used throughout

this work.

In the following, only a few selected literature citations on key papers.

A much more elaborate list of related work is found in Chapter 2.

1.1 Specifying Systems

Everything is built twice: First an idea forms in the mind, then the idea

is realised. This is true from the smallest to the biggest projects, from

hanging up a picture to building a space rocket. In the case of the space

rocket, there would be a number of intermediate steps to account for the

complexity and scale of the task at hand.

The number of intermediate steps and types of documentation depends

on the size of the project, how critical it is, how many people are involved

and many other factors. But to give just one concrete number, Capers

Jones reports that a software system with one million lines of code requires

an average of 69 kinds of documentation [McConnell, 2004]. Requirements

and speci�cation are just two kinds of documentation � from this it should

be clear that this work only covers a small aspect of the development

process of a big project.

15

16 CHAPTER 1. INTRODUCTION

Nevertheless, requirements and speci�cation are artefacts that are so

important that they play part in all but the smallest projects. In fact,

I'd argue that they are the most important artefacts on the way from

start to �nish. Figure 1.1 depicts the major milestones that lead from an

idea (goal) to the actual thing (implementation), with requirements and

speci�cation as the intermediate steps. This is illustrated in the following:

Figure 1.1: The four major milestones that lead from goal to implemen-

tation

Every project has a goal, let it be as simple as �decorating the wall�

or as ambitious as �landing a man on the Moon and returning him safely

to the Earth� [Kennedy, 1961]. A goal typically says nothing about the

�how� (�How do I achieve this?�), but the �what� (�What is it that I want

to achieve?�). A goal is typically very simple and high-level. This does not

necessarily mean that it is not precise or quanti�able (consider Kennedy's

speech: the goal is certainly precise, and de�nitely measurable).

A requirement puts the goal into the context of the world. A require-

ment for hanging a picture on a wall is that it stays there, which in turn

has to take the picture's properties into account: The requirements for

hanging a 10 × 15 cm photograph certainly di�er from hanging an art-

work that is cast from plaster, measures 1 × 1.5 m and weighs over 200

kg. Note that the requirement still should not indicate how the picture is

mounted � one nail, two nails, screws, glue � because a good require-

ment does not provide a solution, but precisely describes the problem.

(What constitutes a �good� requirement is discussed in Section 2.2.)

For large projects, like going to the moon, it is not practical to

go directly from goal to requirements. The goal is typically broken

down in sub-goals, an overall architecture is established that allows

partitioning of the tasks at hand, etc. In addition, there is a lot of

overhead that does not directly contribute to the development, but that is

crucial nevertheless. This includes artefacts for sub-disciplines like project

management, testing, supply chain management, and many other areas of

interest.

It is the speci�cation that provide a solution to the problem. This is

the place that describes that a nail shall be used to put up the photo, and

where to put it. It is dangerous to look for solutions sooner than at this

1.1. SPECIFYING SYSTEMS 17

point, because it is easy to miss an important requirement or something

crucial regarding the context.

For big projects the step from requirements to speci�cation is chal-

lenging, because so many requirements have to be taken into account, and

interdependencies can easily be missed. Therefore, big projects employ

various techniques to cope with this (see Section 2.1).

The last step is the implementation of the system. This can be done

in �ve minutes, using a hammer and a nail. In this case, few would bother

to write down requirements or speci�cations. In fact, in a simple scenario

like hanging up a picture, one would probably not even consciously notice

that there are implicit requirements and a speci�cation.

Or it may take ten years. Sending men to the moon and bringing them

back safely took massive resources and required extensive collaboration.

The requirements and speci�cation are crucial tools that enable collabo-

ration in the �rst place � nobody would attempt such a project without

them (and a good measure of bureaucracy thrown in as well).

1.1.1 Iterative Development

Let's get back to Figure 1.1: it may not clear what the meaning of the

arrows is. It could be �time� or a �results in� relationship. Either way,

the picture implies a linear relationship akin to the so-called �waterfall

approach� [Royce, 1970], where no phase of the development process

is started until the preceding is completed, while never returning to

completed phases. In fact, Royce uses the waterfall approach in the cited

paper as an example of a �awed development process.

Figure 1.2: The construction process

18 CHAPTER 1. INTRODUCTION

In reality, for all but the simplest systems, the development is iterative,

as suggested in Figure 1.2. Even if the goal is clear (not always the

case), the requirements and domain properties still have to be elicited,

which, depending on the domain and the stakeholders, is not trivial.

Chances are that some are missed or incomplete. During the creation

of the speci�cation, problems with the requirements can be uncovered

and should be �xed right away. Further, partitioning of the system may

result in di�erent progress of di�erent parts of the system.

In Figure 1.2, the implementation is part of the iterative development

process. This is actually common in some environments. For instance,

the Scrum method expects runnable code at the end of each iteration,

which typically lasts from two weeks to two months. On the other

hand, the development of embedded controllers typically only produces

an implementation towards the end of the development. Approaches to

system development are discussed further in Section2.1.

1.1.2 Stale artefacts

There are a number of reasons why stale artefacts are a bad thing, both

during development and after completion. Figure 1.2 already gives a hint

why stale artefacts during the development are problematic: Any artefact

may be revisited an arbitrary number of times. For example, encountering

a requirement that contains outdated or incorrect information could result

in the addition of an incorrect speci�cation element, or even to breaking

something in the speci�cation that was correct before.

One could think that the artefacts do not matter after the development

is completed, but that is not true. In the maintenance phase, it is highly

advantageous to have the correct requirements, speci�cation and other

artefacts. Compare the situation to a completed house: surely one would

keep the blueprints around even after construction. They are invaluable

both for service (repairs, etc.) and for extensions.

The same applies to almost any system. People's needs change, and

that results in changes to the needs (goals and requirements) of the system

under development. If bugs or other issues are found, they are often

related to the requirements (e.g. by being ambiguous or contradicting).

Maintaining the artefacts can speed up troubleshooting and adding new

features signi�cantly.

Especially in fast-paced, non-critical software systems, this mainte-

nance is often not performed. Of course, life will still go on, but the

neglect comes at a price. How high depends on the precise circumstances.

For instance, a typical statement of people who prefer not to document

1.1. SPECIFYING SYSTEMS 19

is �the code is the documentation�. And this can actually be true. Well

written, well commented code should certainly be considered to be part

of the documentation. Likewise, the test code (if it exists) is also part of

the documentation, and running the tests regularly ensures that this part

of the documentation is up to date (at least in respect to the code). And

if the code is based on a well known architecture or on a well documented

framework, that part of the documentation can be slim. An example is the

Ruby on Rails framework [Hansson et al., 2012], which provides a certain

part of the architecture and that consequently does not require additional

documentation (except in those places where the system deviates from the

framework's conventions).

But again, in reality one is often confronted with outdated artefacts.

The reason is that maintaining artefacts manually is hard, and most of the

maintenance is done manually. In fact, even without the interdependency

between artefacts things are hard. Consider a requirements document of

one hundred pages, which is not unusual, written in natural language.

Who can be sure that there is not a contradiction between a statement

on page 5 and on page 95? Who has the con�dence to detect such a

contradiction with certainty?

Last, keeping and maintaining artefacts must not become an end in

itself. There will be bene�ts of up to date artefacts, but there is a cost

to, the cost of maintenance. If the cost is too high, it may be better to

dispose the artefact after it has been used, rather then keeping a stale

version around. Of course, understanding the cost and bene�ts is not

easy, and one tends to underestimate long term bene�ts and overestimate

short-term costs. Further, the cost-bene�t-ratio can sometimes be shifted

by using a new approach or a di�erent tool for the job.

1.1.3 Structuring the System Description

So far, the discussion of the artefacts from Figure 1.2 was rather casually.

But quite a bit of research went into understanding this relationship bet-

ter. Gunter, Jackson and Zave [Gunter et al., 2000] developed WRSPM as

a reference model for requirements and speci�cations. A reference model

is attractive for discussion, as it draws on what is already understood

about requirements and speci�cations, while being general enough to be

�exible. There are a number of concrete approaches that �t nicely into

the WRSPM reference model.

This thesis introduces a modi�ed WRSPM model (Section 3.2.2). The

central artefacts of that model are:

20 CHAPTER 1. INTRODUCTION

Domain Properties (W) describes how the world is expected to be-

have.

Functional Requirements (R) describe how the world should behave.

Non-Functional Requirements (N) describe quality properties of the

system to be build.

Speci�cations (S) bridge the world and the system.

Design Decisions (D) justify why the system was speci�ed in a certain

way.

Domain properties W and requirements R and N are typically found

in the requirements, according to Figure 1.2. There is a fundamental

di�erence between them: Requirements describe how the world should

behave, and the system is responsible for this. Domain properties describes

how the world is expected to behave, and the functioning of the system

depends on the domain knowledge holding.

Note that WRSPM does not have the concept of a goal. According to

WRSPM, a goal is merely a high-level requirement.

The speci�cation in Figure 1.2 corresponds to S and describes how the

requirements are to be realised, in the context of the domain.

The implementation from Figure 1.2 corresponds to the program P ,

which is another WRSPM artefact. Implementation is further discussed

in Section 3.2.2.

The reference model also de�nes phenomena, which act as the vocabu-

lary to formulate the artefacts. Phenomena are terms that typically desig-

nate states, events, and individuals (see Section 3.2.1) There are di�erent

types of phenomena based on their visibility. For instance, there may be

phenomena that the machine is not aware of. Consider a thermostat: the

controller is not aware of the temperature1, but only of a voltage at one

of its inputs.

The reference model can be applied to any requirement or speci�cation,

no matter whether they use natural language or a formalism. Once

applied, more formal reasoning about the speci�cation is possible, based

on the classi�cation of artefacts and phenomena and their relationship to

each other.

1To be precise, whether the controller is aware of the temperature or not depends

on where the line is drawn between system and environment. In this simple example,

the sensor is not part of the system (the controller).

1.2. TRACEABILITY 21

Stakeholders rarely explicitly distinguish between requirements, do-

main knowledge, or even speci�cation elements and implementation de-

tails. More technical details of the ProR approach are covered in Sec-

tion 3.2.1.

1.2 Traceability

Traceability refers to the relationships between and within the artefacts

(i.e., elements of W , R, N , S, or D). In this work, the relationship of

artefacts and phenomena is clearly de�ned (Section 3.2.2). There may

be more relationship outside the design description (i.e. tests, project

management, etc.). These are plentiful and exist implicitly. In the

following, traceability of system description artefacts is discussed in more

general terms.

The arrows in Figure 1.1 suggest a possible traceability between the

elements of the shown �milestones�. This could be an �is realised by�

traceability, indicating that the milestone on the left (e.g. goal) is realised

by the elements from the milestone to its right (e.g. the requirements).

There are many more relationships. Consider a textual requirements

document. The order of the requirements represents a relationship

between the requirements to each other. Many requirements documents

have a glossary: There is a relationship between a glossary term and

the use of the term in the requirements. There is (or should be) a

causality between the requirements and the speci�cation: Any feature

in the speci�cation should be justi�ed by a requirement.

The implicit traceability can be made explicit. But by doing so, those

traces become themselves artefacts that must be maintained. Therefore,

the bene�ts and costs of making traces explicit must be weighed carefully

� as with some artefacts, the cost of stale traces may be higher than the

cost of no explicit traces.

Making traces explicit can in itself provide useful information. Con-

sider the �is realised by� relationship between requirements and speci�ca-

tion. Such a relationship would immediately identify those requirements

that are not speci�ed yet, namely those requirements that have no outgo-

ing traces. Such a requirement can then be inspected and the speci�cation

extended to realise it. After the speci�cation has been extended, a new

trace is created, marking the requirement as realised.

While this approach works in principle, there are at least two problems

with it. First, which elements will be traced? It would be nice if there was

a one-to-one relationship between requirements and speci�cation elements,

22 CHAPTER 1. INTRODUCTION

but this is true only for the simplest toy examples. In practice, this is an

n-to-m relationship, and sometimes one end of the trace can be elusive:

Consider quality requirements that apply to the system as a whole: non-

functional requirements like performance, user experience, responsiveness,

etc. are typically the result of the system as a whole, and are di�cult to

trace to individual speci�cation elements.

Maintenance is the second issue. Creating a trace correctly is one thing,

but keeping it updated is quite another. Consider again the �realised by�

relationship. All incoming traces would have to be veri�ed to make sure

that the speci�cation element still, in fact, realises all requirements that

it traces. But this works only if all traces have been created in the �rst

place. And when more corrections have to be done during this veri�cation

(both on requirements and speci�cation), it may trigger another wave of

veri�cations. Tool support can help to mark traces for veri�cation � but

how much this helps depends on the completeness and correctness of the

traceability.

The ease of traceability depends, amongst other things, on the struc-

ture and quality of the artefacts. For instance, one quality criteria for good

requirements is the absence of redundancy. Not having redundancy also

eases traceability. Further, there are many ways to structure the arte-

facts. A good structure can make traceability signi�cantly easier. The

structure depends on notation and approach. The approach guides the

artefacts towards a certain structure, while the notation constrains how

easy or di�cult it is to express something. Some notations require a cer-

tain approach and may also push the artefacts in a certain structure. This

is good if the notation is well-suited for the problem at hand, but it can

be counter-productive if this is not the case. Just imagine drawing the

blueprint of a house with UML, or to document an enterprise-system with

a mechanical drawing. Other notations are highly expressive, like natural

language. But the downside in this case is that the notation provides no

guidance, and can be ambiguous.

The ProR approach addresses these issues. It imposes a classi�cation

scheme on the system description artefacts and phenomena. It then intro-

duces a small number of well-de�ned traceability relationships, including

�realises�, �justi�es� and �uses� (see Section 3.2 for the details). Mainte-

nance is addressed by providing a mechanism for marking traces as suspect,

and thereby marking them for re-validation.

This discussion already gives a glimpse of the potential cost of estab-

lishing and maintaining a traceability. Some of this cost can be eased by

tool support and automation, as discussed in Chapter 4.

1.3. MODELLING 23

An analysis of current research in the area of traceability is presented

in Section 2.3.

1.3 Modelling

The structuring of artefacts as presented so far provides the foundation

for further modelling. A model is anything used in any way to represent

certain aspects of something else, in this case of the system to be build.

Many modelling languages exist, all with their respective advantages and

disadvantages. Modelling can also be applied on various levels of the

development process � for goals, requirements, the speci�cation and even

for the implementation.

Models typically constrain the structure of the model by their model

elements or their meta-model. Consider context diagrams, a notation that

can be used in the requirements elicitation process and that forces us to

de�ne the boundary of the system and to identify the actors that can

interact with it (Figure 1.3). Using a context diagram in the elicitation

process will leave its traces in the structure of the requirements (i.e. by

systematically enumerating all actors and how they interact with the

system).

Figure 1.3: An informal context diagram for a co�ee machine

1.3.1 Semi-Formal Modelling with SysML

Context diagrams are very informal. SysML2 is a notation that is

sometimes referred to as �semi-formal�, in that it is much more strict

than context diagrams, but not as rigorous as a mathematical notation.

2SysML is a variation of the better-known UML. In contrast to UML, it contains

the model element �requirement�.

24 CHAPTER 1. INTRODUCTION

UML and SysML contain some modelling rules and supports re�nement

activities, to a degree. However, systematic veri�cation is not possible

(with respect to consistency), merely a syntactic check of the connectivity

of elements.

SysML also contains context diagrams (called block de�nition dia-

grams). These are �more formal� than regular context diagrams, in the

sense that they have well-de�ned traceability relationships. Speci�cally,

SysML contains requirements diagrams holding requirements, which can

have �ve types of traces that allow to establish relationships between re-

quirements and other SysML model elements. The relationships are sim-

ple, which is one of the appeals of the method in industry. Requirements

in SysML are essentially just boxes with text in it. SysML provides the

following trace types:

Containment SysML allows requirement containment, with respect to

another requirement or name space (e.g. block or package).

DeriveReqt Indicates that one requirement is derived from another

requirement (but not other SysML elements).

Satisfy Describes how a design or implementation model satis�es one or

more requirements.

Verify Is used in SysML to represent veri�cation, etc. by a test case.

Therefore, it can relate to other SysML elements as well.

Re�ne Requirements can re�ne model elements and vice versa, which

may result in traces to other SysML elements.

Note that the modelling notation merely provides these model ele-

ments, but essentially it's just boxes with attributes (which are text),

connected by named traces. This may be useful for structuring require-

ments and the speci�cation, but it does not allow formal reasoning.

1.3.2 Formal Modelling with Event-B

In contrast to a semi-formal notation like SysML, a formal notation

will allow rigorous reasoning and is typically based on a mathematical

notation.

Formal methods are a particular kind of mathematically-based tech-

niques for the speci�cation, development and veri�cation of software and

hardware systems. Event-B is a formal method for system-level modelling

1.4. SYSTEMS DEVELOPMENT 25

and analysis. Key features of Event-B are the use of set theory as a mod-

elling notation, the use of re�nement to represent systems at di�erent

abstraction levels and the use of mathematical proof to verify consistency

between re�nement levels.

Event-B can be used for writing a subset of the speci�cation (see

Figure 1.2) by representing certain artefacts formally, according to 1.1.3.

Doing so can have certain advantages. For instance, a requirement

expressed as an invariant can be proven to never being violated � at

least, if the model captures the problem correctly.

While it is possible to express requirements and domain properties

exclusively in Event-, users may reject this. It is just not comprehensible to

the majority of the stakeholders3. Event-B can express desired properties

on a high level in a concise manner and then use re�nement to add more

and more details, even so far that constructing an implementation is

merely a mechanical translation process.

Not all artefacts can be captured concisely with Event-B. For those,

either other formalisms can be used, or they can be omitted from the

model altogether. Artefacts that are omitted must be considered at a

di�erent point of the development process.

Event-B does not have the notion of requirements or traceability. The

approach presented in this work aims to provide this: It combines Event-

B with other elements to create a traceability between requirements and

speci�cation. This approach does not assume that Event-B is well-suited

for providing a speci�cation for all requirements, as opposed to some other

approaches. It allows the selection of those requirements that should be

modelled formally and those that are speci�ed otherwise.

More details regarding Event-B and other formal methods are found

in Section 2.7.

1.4 Systems Development

Humans have been building systems for centuries, and are actually pretty

good at it: trains keep running, planes are astonishing reliable. They are

very careful to not exclude approaches that are proven to work. They

expect new work to complement existing approaches, not to replace them.

Today's system development approaches are typically unique to the or-

ganisations where they are practises � in fact, sometimes they are unique

3There may, of course, be situations where all stakeholders are �uent in predicate

logic. In those cases use Event-B all the way, by all means! But this is the exception,

not the rule.

26 CHAPTER 1. INTRODUCTION

to individual departments or even projects. This has been recognised a

long time ago, and today's approaches are designed to be tailored. A well-

known approach in software development in the Rational Uni�ed Process,

another one in systems development is the V-model, which is depicted in

Figure 1.4.

Verification
and

Validation
Project

Definition

Concept of
Operations

Requirements
and

Architecture

Detailed
Design

Integration,
Test, and

Verification

System
Verification

and Validation

Operation
and

Maintenance

Project
Test and

Integration

Implementation

Time

Figure 1.4: V-Model (Image Source: Wikipedia)

The V-model does not prescribe how the individual steps are realised

� it is up to the user of the process to �ll it with live. Nevertheless,

the arrow (�Veri�cation and Validation�) implies a traceability. It also

implies that the validation process is done after the project de�nition and

implementation stage. This is a signi�cant di�erence to the approach

presented here: It suggests to do a signi�cant amount of validation during

the project de�nition stage.

The V-model emphasises requirements-driven design and testing. All

design elements and acceptance tests must be traceable to one or more

system requirements and every requirement must be addressed by at least

one design element and acceptance test. Such rigour ensures nothing

is done unnecessarily and everything that is necessary is accomplished

[K. Forsberg and Cotterman, 2005]. However, it is one thing to postulate

this and another to realise this. The details are left to the implementer of

the V-model.

The approach presented in this work is no full-blown process. It does

not cover all aspects of systems development, but instead o�ers concrete

solutions for certain aspects of the system development process. There are

many elements of the V-model, for instance, that could be nicely covered

with this approach. An existing development process (based on the V-

model) can be modi�ed in small steps to include more and more elements

of this approach.

1.5. A LIST OF ORIGINAL CONTRIBUTIONS 27

1.5 A List of Original Contributions

This research makes a signi�cant contribution in providing a comprehen-

sive theory of tracing formal and informal elements of a system description.

A tangible result of this work is the ProR platform for requirements engi-

neering, an open source tool which �lled a vacuum in the Eclipse ecosystem

with respect to system engineering. ProR development continues with an

active community that consists of academic and industrial contributors.

The original contributions made by this research are listed below.

1.5.1 The ProR Approach

The papers listed here are concerned with the development of the ProR

approach (3) and may also mention tool support. Some also contain work

relating to the case study (Chapter 5).

Mixing Formal and Informal Model Elements for Tracing Re-

quirements [Jastram et al., 2011]

This research represents the foundation of the ProR approach. It brings

together the structuring of informal speci�cation artefacts using the

WRSPM approach and formal state-based modelling, including a theory

to traceability. My contribution concerns mainly the extension of the

WRSPM reference model and ProR tool support, as well as the case study.

An Approach of Requirements Tracing in Formal Re�nement

[Jastram et al., 2010]

This research demonstrates the ProR approach on a case study in which

traceability between natural language requirements and an Event-B model

is developed. My contribution concerns mainly the extension of the

WRSPM reference model and ProR tool support, as well as the case study.

Requirements, Traceability and DSLs in Eclipse with the Re-

quirements Interchange Format (RIF/ReqIF) [Jastram and

Graf, 2011d]

While this research is focused on tool support, it also demonstrates how

two di�erent approaches to traceability were realised, using the ProR

platform for requirements engineering. My contribution concerns the

Deploy-related research results and ProR tool support.

28 CHAPTER 1. INTRODUCTION

Strukturierung von Anforderungen für eine enge Integration mit

Modellen [Jastram, 2012a]

This work was presented in an industrial context and demonstrates the

applicability of the ProR approach in practice.

1.5.2 Tool Support: ProR and RMF

The papers listed here are primarily concerned with tool support (Chap-

ter 4), consisting of a mix of academic, semi-academic and industrial pub-

lications.

ReqIF � the new Requirements Standard and its Open Source

Implementation Eclipse RMF [Jastram and Graf, 2012]

This work represents an up to date status on the Requirements Modeling

Framework, the Eclipse project that ProR is part of. It is a con�rma-

tion of ProR's success in the requirements engineering community. My

contribution concerns the GUI-related aspects of RMF.

Requirements Modeling Framework [Jastram and Graf, 2011c]

Like the previous paper, this is a recent publication in an Eclipse-focused

industry magazine, emphasising the practical relevance of the ProR tool

and project hosting it, the Eclipse Requirements Modeling Framework.

ProR, an Open Source Platform for Requirements Engineering

based on RIF [Jastram, 2010]

This work presents ProR at an early stage, before it became an Eclipse

Foundation project. It provides a benchmark on the progress of tool

support, with respect to the two previous publications.

ProR � Eine Softwareplattform für Requirements Engineering

[Jastram, 2011]

This is another German-language publication that presents ProR at an

early stage.

Requirement Traceability in Topcased with the Requirements

Interchange Format (RIF/ReqIF) [Jastram and Graf, 2011b]

This work outlines the potential of ProR to be integrated with other

Eclipse-based o�erings, in this case the Topcased tool for UML and SysML

1.6. SUMMARY 29

modelling. My contribution concerns the GUI-related aspects of ProR and

the Deploy-related research results.

ReqIF in der Open Source: Das Eclipse Requirements Modeling

Framework (RMF) [Jastram and Brökens, 2012]

This work was presented in an industrial context and demonstrates the

applicability of ProR and RMF in practice. My contribution concerns the

GUI-related aspects of RMF.

1.5.3 Umpublished, Accepted Work

Work on both, the ProR approach and the tool continues. The work listed

here has been accepted for publication.

AMethod and Tool for Tracing Requirements into Speci�cations

[Hallerstede et al., 2012]

This paper builds heavily both on [Jastram et al., 2011] and this work,

but expands on the theory with respect to the Event-B formalism. It also

provides a case study that is unrelated to the one presented in this thesis.

My contribution concerns mainly the extension of the WRSPM reference

model, the process description and ProR tool support.

Managing Requirements Knowledge Book [Jastram, 2012b]

This book focuses on potentials and bene�ts of lightweight knowledge

management techniques applied to requirements engineering. My contri-

bution is the chapter �The Eclipse Requirements Modeling Framework�.

ReqIF: Seamless Requirements Interchange Format between

Business Partners [Jastram and Ebert, 2012]

This paper looks at the ReqIF standard and the RMF-based tool chain

from the point of view of project risks and product problems. My

contribution concerns all RMF-related aspects of this paper.

1.6 Summary

This chapter presented the basic steps and artefacts in systems develop-

ment � no matter whether something small or gigantic is to be built. For

all but the smallest projects, artefacts can get stale quickly, and reasoning

30 CHAPTER 1. INTRODUCTION

can be challenging. Formal models can make reasoning easier, but are not

always comprehensible to all stakeholders. A functional traceability can

help to identify and remedy stale artefacts.

In the following pages, a new approach to formal traceability is

presented. This approach is intended to be combined with existing

systems development processes. It allows for only a part of the system

to be modelled formally, while leaving the rest to traditional methods;

it provides a traceability between requirements and formal speci�cation

elements. And last, a tool platform is presented that is based on industrial

standards, as well as a proof of concept implementation.

1.7 Acknowledgements

This work would not have been possible, had I not gotten support from

a diverse group of people. I would like to thank Prof. Michael Leuschel

for giving me the opportunity and freedom to develop my ideas as I saw

�t. Further, the STUPS research group was extremely helpful and full of

advise, and always willing to listen, in particular Jens Bendisposto, Daniel

Plagge and Stefan Hallerstede. I'd also like to thank Peter Fromm who

agreed to review this work on a tight schedule.

I am grateful for the Deploy project, which provided some of my

funding. But beyond funds, many people in this group gave me invaluable

advice and provided guidance. For this I'd like to thank foremost Cli�

Jones, but also Michael Butler, Mike Poppleton, Colin Snook and Rainer

Gmehlich and Felix Lösch.

ProR would never be as mature as it is now, had we not joined forces

with the Verde project. In particular, I'd like to thank Andreas Graf and

Nirmal Sasidharan for their collaboration. Without them, Eclipse RMF

would probably not exist today. ProR takes advantage of the OpenSource

AgileGrid control, and I'd like to thank its creator Sihong Zhu.

And last, I would like to thank my wive Maha for keeping my back

free, so I could work on this thesis, as well as my parents, who always

encouraged me to advance my knowledge.

1.8 Formal Mind

One byproduct of this work is the founding of Formal Mind GmbH4 by

Prof. Michael Leuschel, Jens Bendisposto, Daniel Plagge and myself.

4http://formalmind.com

1.8. FORMAL MIND 31

Formal Mind is active in the area of systems engineering and bases its

products and services on the work described in this thesis, as well as

ProB [Leuschel and Butler, 2003]. Stimulating the foundation of new

companies was one of the objectives of the Deploy project [EU FP7

Project, 2012].

32 CHAPTER 1. INTRODUCTION

Chapter 2

Literature and Related

Work

This thesis is concerned with traceability of system descriptions. This

chapter provides an overview of the existing work in the areas of require-

ments, formal models and traceability. Part of this work is a tool platform

for requirements management, therefore there will be an overview of the

tool landscape.

The activities involved in the approach presented here fall in the �eld

of system development, which is covered in the next section in order to

put the work presented here into context.

2.1 Systems Development

In Section 1.4, the concept of systems development and the V-model

(Figure 1.4) were introduced. The V-model was published �rst in 1986

and was developed for the federal government of Germany. It has been

revised several times, the last one being the release of the V-model XT in

2005 [Broy and Rausch, 2005].

Another detailed development method is the Rational Uni�ed Pro-

cess (RUP) [Kruchten, 2004] and its �cousin� the Open Uni�ed Process

(OpenUP). OpenUP [Balduino, 2007] is a revision of the iterative Ra-

tional Uni�ed Process for software development process that is minimal,

complete, and extensible. The OpenUP can be browsed online1.

V-model and RUP fall in the category of �heavyweight� development

1http://epf.eclipse.org/wikis/openup/

33

34 CHAPTER 2. LITERATURE AND RELATED WORK

methods, in contrast to �lightweight� (or agile) methods like extreme

programming (XP) [Beck, 2001] or Scrum [Schwaber, 2004]. There are

many more, and a comparison can be found in [Awad, 2005].

In most development methods, there is the concept of requirements

and the concept of a speci�cation. Even light approaches like XP capture

requirements, although typically in a very practical format, like user

stories [Cohn, 2004]. They also have the concept of a speci�cation,

although the interface of a class may already be su�cient as a speci�cation

with these approaches.

Contrast this with OpenUP, which lists �ve di�erent requirements arte-

facts (Glossary, System-Wide Requirements, Use Case, Use-Case Model

and Vision), and various artefacts regarding the speci�cation.

The standard IEEE 830-1998 [IEEE, 1997] is concerned with software

requirements speci�cations (SRS) and is heavily used and cited in industry.

It is concerned both with the end result (the SRS), as well as the process

of authoring it. It provides completeness and quality criteria for SRS that

concern individual requirements as well as the SRS as a whole. In that

regard, it provides sample outlines that can be used as a starting point of

creating an SRS. The standard is independent of a notation or a speci�c

tool. Therefore, even though it is targeted at industrial users who use

natural language requirements, it explicitly acknowledges that it could

be applied to specialised speci�cation languages and points out the risks

associated with such an approach. The standard explicitly doesn't cover

aspects like design or project requirements.

Reveal [Praxis, 2003] is an engineering method based on Michael

Jackson's �World and the Machine� model, which is applied in industry by

the company Altran Praxis2. There are some similarities to the approach

described in this thesis, including the acknowledgement of requirements

that are not part of the formal model. However, Reveal is more of a

process description of the overall requirements engineering process. It

could be quite attractive to combine the Reveal process with the approach

described here.

2.2 Requirements, Domain Properties and

Speci�cations

Requirements and speci�cations are central in this work. In [Zave,

1997], the authors provide an overview of research e�orts in requirements

2http://www.altran-praxis.com/reveal.aspx

2.2. REQUIREMENTS AND SPECIFICATIONS 35

engineering by providing a classi�cation scheme. It is intended to provide

an overview and a coherent framework for further study.

Section 2.4 contains a well-de�ned de�nition of the terms �requirement�

and �speci�cation�, according to WRSPM. But these terms also have a

slightly di�erent meaning in the context of requirements engineering and

common language, which is covered in the following section.

According to [Project Management Institute, 2008], a requirement is:

(1) a condition or capability needed by a user to solve a problem or achieve

an objective;

(2) a condition or capability that must be met or possessed by a sys-

tem, system component, product, or service to satisfy an agreement,

standard, speci�cation, or other formally imposed documents;

(3) a documented representation of a condition or capability as in (1) or

(2);

(4) a condition or capability that must be met or possessed by a system,

product, service, result, or component to satisfy a contract, standard,

speci�cation, or other formally imposed document. Requirements

include the quanti�ed and documented needs, wants, and expectations

of the sponsor, customer, and other stakeholders.

This de�nition is also referenced by various standards, e.g.

ISO/IEC/IEEE 24765, which is widely used in industry.

The approach described in this work uses natural language require-

ments as the starting point. While requirements can be stored in forms

other than natural language, it is the most natural way for stakehold-

ers to express their perception of the model [Ambriola and Gervasi, 1997].

Natural language requirements can also be processed (semi-)automatically

[Goldin and Berry, 1997], which is outside the scope of this work.

The quality of requirements is a big concern, as all subsequent artifacts

in the development process depend on them. The quality of requirements

can be improved by using a catalogue of criteria, as described in [Hood

and Wiebel, 2005], or by analysing linguistic properties [Fabbrini et al.,

1998]

Various approaches exist to categorise requirements. It is common to

distinguish between functional and non-functional requirements, where a

functional requirement describes a system in terms of inputs and expected

outputs (as well as exceptions) [Rupp, 2007]. A nonfunctional requirement

does not, well, relate to functionality. Instead, it relates to attributes like

usability, performance, reliability, etc.

36 CHAPTER 2. LITERATURE AND RELATED WORK

Pohl [Pohl, 2007] prefers the separation into functional and quality re-

quirements. The motivation is the �abuse� of non-functional requirements

in practice, which he claims are often under-speci�ed functional require-

ments. These can typically be broken down into more detailed functional

requirements and quality requirements.

The distinction between functional requirements and �others� is in so

far important in this work, as only functional requirements are typically

modelled formally. In fact, depending on the formalism employed, even

some functional requirements may be di�cult to model. There is a lot

of material regarding this issue. In [Chung and do Prado Leite, 2009],

the authors provide a good introduction into the matter, while there are

a number of methods that provide guidance in designing a system's non-

functional requirements, e.g. [Gross and Yu, 2001]. Some approaches take

one step further back and introduce goals, as we will see in the next section.

A domain property is something that is assumed to be always true. In

practice, domain properties are often recorded together with requirements.

For non-experienced users it is easy to confuse requirements and

domain properties, as they both are expected to hold for the �nal system.

But the main di�erence stems from the underlying reason for them to

hold:

• The domain properties hold irrespective of the system that was built.

If they do not hold due to external in�uences, the system cannot be

expected to continue to work as designed.

• The requirements hold because the system was designed that way,

but only under the assumption of the domain properties holding.

It is not unusual to omit some domain properties, because they are

�obvious�. This can be the source of severe problems. A prominent

example is the crash of the Ariane 5 rocket on June 4th, 1996 [Consulting

and Ninomiya, 1997]. The Ariane 5 software reused the speci�cations

from the Ariane 4. Due to the rocket's greater acceleration, a data

conversion from a 64-bit �oating point to 16-bit signed integer value caused

an arithmetic over�ow, ultimately destroying the rocket. The underlying

problem was the omission to record the maximum acceleration as a domain

property.

Many more formal approaches recognise the need to record domain

properties, including WRSPM (Section 2.4) and Problem Frames Sec-

tion 2.5. Another approach that makes this explicit is the Rely-Guarantee

approach, which explicitly lists the properties that a system component

relies upon [Coleman and Jones, 2007].

2.3. REQUIREMENTS TRACEABILITY 37

Informally, a speci�cation is the name for a system description that

consists of requirements. DeMarco [DeMarco, 1979] provides a classic

description of the speci�cation and its creation process. This is quite

di�erent from the de�nition in Section 2.4, where the term speci�cation

refers to all the information that a developer needs to build a system that

ful�ls the given requirements.

The purpose of the speci�cation is to describe accurately how the

system to be designed �ts into the real world. In [Jones et al., 2007], the

authors argue that the task of ��xing� the speci�cation into the external

physical world can be more challenging than the development itself.

2.3 Requirements Traceability

Requirements traceability is de�ned in the International Institute of Busi-

ness Analysis Body of Knowledge V2.0 as, �The ability to identify and doc-

ument the lineage of each requirement, including its derivation (backward

traceability), its allocation (forward traceability), and its relationship to

other requirements.� [IIBA, 2009]. Another de�nition for traceability is

the �discernible association among two or more logical entities, such as

requirements, system elements, veri�cations, or tasks� [IEEE, 2010]. It

is a di�cult problem [Bjørner, 2008,Gotel and Finkelstein, 1994,Jastram

et al., 2010].

Abrial [Abrial, 2006] recognises the problem of the transition from

informal user requirements to a formal speci�cation. He suggests to

construct a formal model for the user requirements, but acknowledges that

such a model would still require informal requirements to get started. He

covers this approach in [Abrial, 2010].

Rather than creating a traceability from natural language, it is possible

to create di�erent kinds of models. This approach is used by the UML-B

plug-in [Snook and Butler, 2006], which generates Event-B (Section 2.7)

from UML. As the knowledge and understanding of UML is much more

widespread than Event-B, it may in some circumstances be acceptable to

confront the stakeholders directly with a UML model.

An approach that is concerned mainly with the domain properties is

described in [Kaindl, 1997], which creates a traceability between require-

ments de�nition and an object model, thereby creating a more complete

and better structured de�nition of the requirements.

A one-to-one traceability between requirements and formal model

elements would be desirable, but is elusive. Depending on the formalism,

this may be achievable for some requirements. For instance, some safety

38 CHAPTER 2. LITERATURE AND RELATED WORK

requirements can be expressed concisely as an invariant, or some timing

properties as an LTL expression. This tends to be the exception, rather

than the rule, as can be seen in Chapter 5.

An important task of traceability is to support change management.

In [Hammad et al., 2009], the authors automatically identify changes that

impact code-to-design traceability. This is a useful concept that could be

incorporated into the approach described in this thesis.

2.4 WRSPM

The WRSPM reference model [Gunter et al., 2000] was attractive for

this work, because it allowed us to discuss the speci�cation in general

terms, while still being meaningful in the context of a speci�c approach

like Problem Frames (Section 2.5) , KAOS (Section 2.6) or the functional-

documentation model [Parnas and Madey, 1995].

The idea of the WRSPM reference model has been advanced in

current research. In [Marincic et al., 2007], the authors introduce a

model of formal veri�cation based on non-monotonic re�nement that

incorporates aspects of WRSPM. Problem Frames (Section 2.5) could be

useful for identifying phenomena and for improving the natural language

requirements. In [Loesch et al., 2010], the authors show how Event-B

and Problem Frames are being applied to an industrial case study. This

work drew some inspiration from their e�orts, especially with regard to

the relation between WRSPM and Event-B.

WRSPM is central to the ideas in this work. The concept of WRSPM

is introduced in Section 3.2.1.

2.5 Problem Frames

The Problem Frames [Jackson, 2001] approach aims to properly describe

a problem �rst, before attempting to solve it. It consists of a notation

and a method. As realistic problems are too big and complex to handle

in just on e step, problem frames allow the structuring as a collection of

interacting subproblems. Eventually, subproblems are so small and simple

that they �t an existing problem frame, for which the concerns it raises

are known.

The Problem Frames notation introduces problem diagrams, which

extend the notation of context diagrams (see Figure 1.3) that make

the problem explicit by showing the requirements in the diagram. The

notation of context diagrams is also formalised by distinguishing between

2.6. GOAL-ORIENTED REQUIREMENTS ENGINEERING 39

machine domain, designed domains and given domains. The notation

further introduces problem frame diagrams for concisely recording problem

frames.

The Problem Frames approach employs the frame concern, which

�captures the fundamental criterion of successful analysis for problems

that �t� a given problem frame. This concept could be applied with the

ProR approach for reasoning about informal artefacts (see Section 3.3.2).

The Problem Frames approach is a concrete approach that can be

aligned with the WRSPM reference model (Section 2.4. The case study

in Chapter 5 uses Problem Frames to improve the initial requirements.

There have been successful attempts in applying Problem Frames and

Event-B together. In [Loesch et al., 2010], the authors show how these

are being applied to an industrial case study.

2.6 Goal-Oriented Requirements Engineering

Goals can be seen as high-level requirements that capture the objec-

tives of a system. The discipline goal-oriented requirements engineer-

ing [Van Lamsweerde et al., 2001] starts with a high-level description of a

system (goal) and uses them for �eliciting, elaborating, structuring, speci-

fying, analysing, negotiating, documenting, and modifying requirements�,

where requirements have a well-de�ned meaning.

A prominent method in this category is KAOS [Darimont et al., 1997].

In KAOS, goals are re�ned into expectations, domain properties or re-

quirements. Further, a requirement is laced under the responsibility of

exactly one agent. Besides the goal model, KAOS provides an object

model, a responsibility model and an operation model, providing a com-

plete modelling environment, from high-level goal to formal speci�cation.

Figure 2.1 shows an example from a KAOS model. It shows how a

requirement is broken down into sub-requirements and associated with

actors that are responsible for ful�lling them. What is shown here is still

textual and can be formalised using the KAOS temporal logic notation.

KAOS does not permit requirements to be omitted from the formal

model. Instead, it provides so-called �soft-goals� that are broken down

into requirements that can still be modelled formally.

While elements from KAOS could in theory be used independently, the

approach is designed for everything � either use KAOS all the way or not

at all. This can discourage potential users from buying into an approach. I

found the approach too constraining to be useful in this work, and suggest

a more open and more �exible approach. Nevertheless, if someone would

40 CHAPTER 2. LITERATURE AND RELATED WORK

Figure 2.1: Extract from a KAOS model describing an elevator

use KAOS consequently throughout the development from high-level goal

to low-level temporal model, this would be very powerful. Reasoning

across many layers of the development would be possible, the relationship

would disclose dependencies, and the formalism would ensure that the

model has certain properties regarding soundness and consistency. How

much would depend on the stage at which the model would stop using

natural language.

Other methods in this category include NFR [Chung and

do Prado Leite, 2009], i* [Yu, 1997] and Tropos. Besides goals, they

share common concepts, as described in [DEPLOY Project, 2009]. These

include the concept of re�nement/contribution between sub-goals: a set of

child goals logically entails or, less formally, contributes to the satisfaction

of the parent goal � enabling the modelling of system-wide collaborations

to reach some goal.

Another shared concept is the con�ict/negative contributions between

goals, meaning that under some circumstances, two (or more) goals cannot

be enforced together. A solution to this dilemma must be found.

Last, these method share the concept that the assignment of a goal to

an agent (which is responsible for its realisation) must have the capability

to realise it. Such goals are then formally called �requirements�.

2.7. FORMAL MODELLING AND EVENT-B 41

2.7 Formal Modelling and Event-B

Formal methods are a particular kind of mathematically-based techniques

for the speci�cation, development and veri�cation of software and hard-

ware systems. There are many di�erent methods [Wing, 1990,Clarke and

Wing, 1996].

Formal methods are used to specify and verify systems. While formal

methods do not guarantee correctness, they can greatly increase the

understanding of a system and help revealing inconsistencies, ambiguities

and incompleteness that might otherwise go undetected [Clarke and Wing,

1996]. A formal speci�cation captures system properties. Depending on

the formalism, this can include functional timing properties, performance

characteristics or internal structure.

Formal methods can further be distinguished on whether they focus

on specifying sequential behaviour (Z [Woodcock and Davies, 1996], VDM

[Jones, 1990], Larch [Guttag et al., 1993]) or concurrent behaviour (CSP

[Hoare, 1978,Hoare, 2004], CCS [Moller and Tofts, 1990]). Some methods

attempt to combine both (RAISE [Nielsen et al., 1989], LOTOS [Brinksma

et al., 1995]).

Once a speci�cation is formalised, it can be veri�ed using model

checking [Clarke, 1997, Leuschel and Butler, 2003] or theorem proving

[Cook, 1971].

This work describes an approach that is independent of a speci�c

formal method. The case study described in Section 5 uses the Event-

B formal method [Abrial, 2010], which is described in more detail in

Section 3.3.1.

Event-B is considered an evolution of B (also known as classical B

[Schneider, 2001]). It is a simpler notation which is easier to learn and use.

It comes with tool support in the form of the Rodin Platform [Coleman

et al., 2005].

2.8 Traceability between Requirements and

Formal Models

There have been attempts to provide traceability between requirements

and Event-B models. Abrial applies an informal approach in [Abrial,

2010]. As this approach is applied to the relatively small examples in the

book, it is not clear how that approach would scale.

In contrast, [Matoussi et al., 2008] is a �rst attempt to create trace-

ability between a KAOS model and Event-B, while [Loesch et al., 2010]

42 CHAPTER 2. LITERATURE AND RELATED WORK

attempts the same for Problem Frames.

The structure of the requirements determines how well they can be

traced, and the Map Requirements Modelling approach [Babar et al., 2007]

begins with the structuring of requirements in the elicitation phase and

ends with a formal model using the B-Method.

Another approach outlined in [Ball, 2008] describes the development

of multi-agent systems using Event-B. The developer is provided with

guidance to construct formal Event-B models based on the informal design.

This work also includes modelling patterns that provide fault-tolerance for

Event-B models of interacting agents. Like the approach described in this

work, this is an incremental process.

Chapter 3

The ProR Approach

A challenge in formal modelling is the traceability between requirements

and the formal speci�cation. A method for such tracing should permit to

deal e�ciently with changes to both the requirements and the model. It

should not require all requirements to be modelled formally � after all,

some requirements may not bene�t much from formal modelling.

This chapter introduces the ProR approach, an incremental approach

that models the system description stepwise by alternating between re-

quirements validation and systems modelling. This results in a scalable

approach that supports change management and requirements evolution.

The ProR approach supports the formal modelling of a subset of the system

description. This work expends on what has been presented in [Jastram

et al., 2010,Jastram et al., 2011,Hallerstede et al., 2012].

With the ProR approach, the initial requirements, provided by the

stakeholders, are used to iteratively develop a system description consist-

ing of formal and informal artefacts. Artefacts mainly describe require-

ment items domain properties, speci�cation elements. They are expressed

with phenomena, which act as vocabulary for the artefacts. Structured

this way, reasoning about these artefacts is possible and a central aspect

of the ProR approach.

Reasoning about the system description can be informal or formal

(if all relevant artefacts have been formalised). Even informal reasoning

demands �rm conclusions with respect to correctness and completeness

with respect to the requirements. This is achieved by formal or informal

proofs, consisting of validation statements. In order to map validation

statements to the system description, a method for tracing artefacts is

employed.

43

44 CHAPTER 3. THE PROR APPROACH

The ProR approach does not require any artefacts to be modelled

formally. But it supports the incremental addition of formal artefacts

to the system description, which then allows reasoning by formal proof.

This takes advantage of the high degree of automation that is possible

in formal modelling environments, regarding validation, traceability and

formal reasoning. Further, re�nement can be used for formalising artefacts

incrementally.

The ProR approach supports managing change in the system descrip-

tion. It is speci�cally designed iteratively, as it is expected that the sys-

tem description changes frequently, particularly in the early development

phase. But even after completion, changes tend to continue for mainte-

nance and to provide additional functionality.

The ProR approach is based on the WRSPM reference model [Gunter

et al., 2000] (see Section 2.4). It is concerned with classifying artefacts and

phenomena in common categories. It speci�es soundness conditions that

the artefacts must satisfy. This work extends WRSPM by distinguishing

functional and non-functional requirements, and by deemphasising im-

plementation details. It then introduces a notion of traces that relates

artefacts to proofs (formal and informal), and to react to change by iden-

tifying a�ected artefacts.

The macroscopic structure of the system description is orthogonal

to the structuring imposed by the ProR approach, and is not central to

this work. Macroscopic structuring is concerned with organising large

collection of artefacts (in natural language and otherwise), and many

approaches to macroscopic structuring permit to be combined with the

ProR approach, including [IEEE, 1997, Jackson, 2001]. In fact, some

approaches, like Problem Frames [Jackson, 2001], complement the ProR

approach well and are used in the case study.

To be applicable with the ProR approach, a formal method should

be compatible with the predicative reasoning style employed here. The

case study employs Event-B [Abrial, 2010], but also provides an example

using LTL [Plagge and Leuschel, 2010]. Event-B is well-suited, because

it is straight forward to specify state-based systems and to express

artefacts with invariants, and it supports re�nement. Further, tool

support is available in the form of the Rodin platform [Abrial et al., 2010].

Rodin is well-suited for tool integration, and Chapter 4 demonstrates

this by integrating Rodin with ProR, a requirements engineering platform

[Jastram, 2010].

This chapter describes the theory behind the ProR approach. Chapter 5

contains a small case study, while Chapter 4 describes tool support.

3.1. PROBLEM STATEMENT 45

3.1 Problem Statement

There are broadly two approaches to specifying systems which have

complementary advantages. One approach is the use of natural language

(or other informal notations). The main bene�t is the ubiquity that makes

it easy for all stakeholders to understand the speci�cation, but at the

expense of clarity: Keeping an informal speci�cation correct, complete

and unambiguous is labor-intensive and error prone.

On the other and, formal speci�cations are typically unambiguous and

rigorous reasoning can be used. But they are often not comprehensible to

non-experts, and often, there are some speci�cation elements that can be

expressed formally only with di�culty, or not at all.

This leads to the following problem statement:

Develop a practical approach for specifying systems that com-

bines formal and informal speci�cation methods to take advan-

tage of their respective advantages and minimises their respec-

tive disadvantages.

To address this problem, I identi�ed the following properties that the

approach should have. These properties are described in detail below. In

Section 3.7 it is discussed whether the ProR approach succeeds.

• The approach is based on a language that the stakeholders under-

stand (Section 3.1.1).

• The approach allows formal and informal artefacts to co-exists

(Section 3.1.2).

• The approach allows the partial formalisation of the system descrip-

tion (Section 3.1.3).

• The approach is not tied to a speci�c formalism (Section 3.1.4).

• The approach supports traceability (Section 3.1.5).

• The approach supports the evolution of requirements (Section 3.1.6).

• The approach is suited for industrial use (Section 3.1.7).

Let's look at these properties one by one.

46 CHAPTER 3. THE PROR APPROACH

3.1.1 Stakeholder Language

A stakeholder is an individual or organisation having a right, share, claim,

or interest in a system or in its possession of characteristics that meet

their needs and expectations [IEEE, 2010]. Common stakeholders include

customer and developer. Examples of other stakeholders include the

system administrator, project manager or the quality assurance team.

Communicating e�ectively with all stakeholders can be challenging.

The smallest common denominator is often natural language. Natural

language has the big advantage of being universal and extremely rich.

Many complicated requirements can be expressed concisely in natural

language.

One downside of natural language is its ambiguity. There are tech-

niques that help reduce ambiguity, but ultimately, writing clear require-

ments is labor intensive (see Section 2.2).

Even if individual requirements are stated clearly and without ambi-

guities, managing large speci�cation is challenging. It may be hard to �nd

an inconsistency in an 80-page speci�cation if there is a contradiction on,

say, page 5 and on page 76. Also, it takes discipline to use a well-de�ned

vocabulary.

One way to address these concerns regarding natural language are �best

practises, as can be found in [IEEE, 1997], for instance. This standard

contains template outlines of requirements documents that help to identify

missing content; it provides quality criteria that can be systematically

applied to improve the overall quality; they recommend the creation and

maintenance of glossaries; etc. These approaches are e�ective and are

being employed in industry. But they are labour-intensive.

However, even when natural language is used and carefully formulated,

there is plenty of room for misunderstandings. Language can be ambigu-

ous. Many domains have their own jargon. Consider the legal domain,

where many common terms have a well-de�ned meaning. This can create

problems when all stakeholders believe that they understand the require-

ments, but interpret them di�erently.

There are cases where the stakeholders have a common domain-

speci�c language (DSL), at least for some aspects of the system under

development. In that case it is preferable to use that language. DSLs

could simplify the application of the ProR approach, especially if required

information could be extracted from the DSL. The tool platform ProR has

been successfully integrated with DSL editors [Jastram and Graf, 2011d].

This has not been investigated further in this work.

In this work, the stakeholder's language is accepted as a given, with all

3.1. PROBLEM STATEMENT 47

its potential problems. This approach attempts to compensate some of the

weaknesses of the stakeholder's language, without a�ecting its strength.

3.1.2 Co-Existence of Formal and Informal Artefacts

Formal methods allow rigorous reasoning about a model by using math-

ematics. If stated formally, the use of formal methods allows to ensure

that certain properties are satis�ed, either by mathematical proof [Abrial

et al., 2006] or model checking [Clarke, 1997]. Formal methods, however,

come at a price [Berry, 1999]. This price may be worth paying for �highly

safety- and security-critical systems, for which the cost of failure is death

or is considered very high�. But even in those cases, modelling the system

as a whole formally may be prohibitively expensive. Modelling just the

safety-critical subset may be su�cient to bene�t from the advantages of

formal methods, while keeping the costs in check.

When modelling just a subset of the system formally, it is important

to understand the interdependence of formal and informal properties. As

an example, consider modelling a state machine with a formalism for

discrete systems modelling. Many such formalisms do not support timing

properties, and it is reasonable to exclude these from the formal model. In

such a case it is important not to forget to validate the timing properties

as well, which has to happen outside the formal model1.

The ProR approach takes this into consideration and allows the mixing

of formal and informal artefacts.

3.1.3 Partial Formalisation

In the previous section it was stated that formal and informal artefacts can

co-exist. It left open whether the formal artefacts also have an informal

representation, and vice versa. This creates the following three scenarios:

The informal artefact has no formal representation. If the e�ort

required to model an artefact formally is not justi�ed by the result (e.g.

because it is not a safety-critical property), it may be left as is. Such

artefacts still have to be validated.

The formal artefact has no informal representation. If all stake-

holders understand the formal representation, the informal representation

can be omitted. Note that di�erent artefacts have di�erent stakeholders.

1Such a situation is described in the case study in Section 5, where a tra�c light

system for pedestrians is developed.

48 CHAPTER 3. THE PROR APPROACH

The group of people dealing with the speci�cation S is probably di�erent

from those dealing with requirements R.

Formal and informal artefact coexist. Even if a concise formal

representation had been found, it may not be comprehensible to all

stakeholders. Therefore, the informal representation must not only be

kept, but also maintained: If the formal representation is modi�ed, the

informal representation must be adjusted to re�ect the new meaning.

3.1.4 Support for Multiple Formalisms

Many formalisms exist, and the ProR approach is designed to work with

more than one, as long as they operate on the same model. For example,

the case study in Chapter 5 expresses some system properties as invariants

(Section 5.4.3) and some as LTL expressions (Section 5.5.1).

This also results in di�erent approaches to validation. In the case

study, invariants are validated with a theorem prover and LTL expressions

with a model checker. Further, some properties are validated by inspection

of the model (Section 5.7) or animation (Section 5.5.2).

On step further is the use of di�erent models. For instance, in the

Bosch cruise control study [Loesch et al., 2010], the project partners

decided only to model the signal evaluation subsystem in Event-B, as

it was well-suited for that formalism. They omitted the velocity control

subsystem, which calculates an acceleration demand based on the current

vehicle speed and the stored target speed. In a real project, this subsystem

would be modelled in a modelling tool for dynamic systems, like Simulink.

The ProR approach supports di�erent models in principle, by employing

the same methods that are use for mixing informal and formal artefacts.

However, this is not covered by the case study.

3.1.5 Traceability Support

The concept of traceability in general was introduced in Section 2.3, and

the traceability between requirements and formal models in Section 2.8.

The traces used by the ProR approach are described in Section 3.2.

Traceability is practised for four reasons [Gotel and Finkelstein, 1994].

These four reasons are listed below, combined with an analysis on how

they relate to the problem statement, and how they are addressed in the

ProR approach:

Purpose driven. Traceability exists to achieve something. It can be

3.1. PROBLEM STATEMENT 49

used to demonstrate that a requirement has been understood, or

even to ful�l certain legal obligations.

Solution driven. Traceability exists to document the solution to a prob-

lem, for instance, a realisation trace from the system speci�cation

to a requirement.

Information driven. Traceability exists to connect related elements,

e.g. functions and data to requirements or to each other.

Direction driven. Traceability exists to emphasise a forward or back-

ward direction, for instance following an element through the devel-

opment life cycle.

Any trace may address multiple purposes at the same time. A

�realisation� trace that connects system speci�cation elements to the

requirement that they realise addresses all four reasons.

Traceability in the ProR approach has the overarching purpose of

improving the quality of the system description and is therefore purpose

driven. This is done by demonstrating adequacy of the speci�cation with

respect to the requirements document, while allowing to mix formal and

informal artefacts. These relationships are formalised in Section 3.3 and

materialise in the form of the traces introduced in Section 3.2.

Once the traceability is established, it can be used to reason about the

relationship between artefacts, speci�cally:

Find out which artefacts have been realised or justi�ed. This

also indicates whether the realisation is formal, informal or a mixture of

both.

Find out which formalisations must be validated against infor-

mal artefacts. This is necessary for artefacts with justi�cation or equiv-

alence traces to informal artefacts. A tool can track the traced artefacts

and mark a trace as suspect (9), if the source or target of the trace have

changed.

Find problems in artefacts through the model. If there is a

problem with the model, it may be tracked back to a problematic artefact.

If, for instance, an invariant cannot be proven by a theorem prover due

to a contradiction, it may be possible to track this back to contradicting

artefacts.

50 CHAPTER 3. THE PROR APPROACH

Manage change. Evolving the model will inevitably also change the

artefacts. By analysing the suspect (9) traces, the impact of changes can

be assessed, and the changed model systematically re-validated.

Find problems. Establishing a traceability can uncover problems like

ambiguities or contradictions simply through the process of classifying

them and/or formulating artefacts in a formal notation.

If traceability is not done right, it can be more harmful than helpful and

waste valuable resources. In the ProR approach, traceability is precisely

de�ned (what traces exist, how are they used, when are they validated).

This reduces the risk of an incomplete traceability and supports the

process of keeping the system description consistent.

While the focus of this work is on the traceability between artefacts,

there are many more areas where traces can be used. These include

project management and testing. Consequently, the tool ProR (Section 4)

supports a generic form of traceability. A customisation of the tool,

speci�cally for the ProR approach, is provided in the form of a plug-in

(Section 4.7).

Requirements traceability is an established concept in industry, and

most industrial-strength tools supports it [Hood et al., 2007].

3.1.6 Requirements Evolution

The initial requirements document from the stakeholders rarely stays

unchanged during the speci�cation process, as issues are identi�ed and

addressed. These include removing ambiguities, resolving contradictions,

adding missing information and the like. This may result in the removal

of artefacts or the addition of new ones.

In addition the ProR approach requires a certain structure, and estab-

lishing this structure will lead to more changes. This includes the identi-

�cation of phenomena and the classi�cation of artefacts into requirements

and domain properties.

The evolution of the requirements document must be documented.

This suggests an iterative approach that was �rst introduced in [Jastram

et al., 2010]. Each artefact in the requirements document must be

traceable to its origin in order to justify its existence.

Working iteratively has the danger that the validation of existing for-

malisations has to be repeated. Also, managing the traceability informa-

tion manually is labor-intensive and error prone. Tool support can help.

The ProR approach is supported by a tool development called ProR that

is described in detail in Section 4. By marking traces as suspect and by

3.2. TRACEABILITY 51

giving users the ability to removing the suspect status by validating the

trace, the e�ort of keeping all traces validated is minimised.

3.1.7 Industrial Applicability

A �rm requirement of this work is the applicability in industry. For one,

part of this work has been sponsored by the Deploy Project [EU FP7

Project, 2012], which has the explicit aim

�to make major advances in engineering methods for depend-

able systems through the deployment of formal engineering

methods. (...) The work of the project will be driven by the

tasks of achieving and evaluating industrial take-up, initially

by DEPLOY's industrial partners, of DEPLOY's methods and

tools, together with the necessary further research on methods

and tools.�

It is my personal goal to commercialise this work upon completion of

the doctorate program (Section 1.8). Therefore, industrial applicability

was a core requirement.

3.2 Traceability

When discussing approaches to development, it is easy to intermix the

notions of notation and method. Examples include the Event-B method

and the Event-B notation, or the Problem Frames method and notation.

The ProR approach di�ers from such approaches, in that it does not have

its own notation. The ProR approach is concerned with the structure of

the system description, but it does not require a speci�c notation. Instead,

it is designed to work with any notation, including natural language.

The ProR approach allows the formalisation of a subset of artefacts,

but even here, no speci�c notation is prescribed. Section 3.4.3 explores

how a subset of artefacts could be formalised using state-based modelling

and re�nement.

The starting point for the ProR approach is typically an initial set of

requirements from the stakeholders in natural language. A main concern

of the ProR approach is the classi�cation, structuring and extension of

those initial artefacts. The foundation for such structuring is the WRSPM

reference model (Section 3.2.1).

The next section introduces the reference model, followed by the

extension of the mode for the ProR approach in Section 3.2.2. The

52 CHAPTER 3. THE PROR APPROACH

result is a classi�cation scheme for artefacts and phenomena, as well as a

number of properties, of which adequacy is an important one. The system

description should be su�cient to realise the requirements, but without

being abundant.

Next, a number of relationships between artefacts is established as the

foundation for the traceability. This includes justi�cation of artefacts,

which is used for reasoning (Section 3.2.3), equivalence, which is a strong

form of justi�cation (Section 3.2.4), evolution, which allows to follow the

history of artefacts (Section 3.2.5) and uses to trace how phenomena are

used in artefacts (3.2.6).

3.2.1 The WRSPM Reference Model

The ProR approach is based on the WRSPM [Gunter et al., 2000], which

is introduced here. WRSPM is a reference model for applying formal

methods to the development of user requirements and their reduction to

a behavioural system speci�cation. The modi�cations to WRSPM for the

ProR approach are presented in Section 3.2.2.

Figure 3.1 is taken from the above paper and depicts the main artefacts

of WRSPM.

W R S P M

e
h
 e

v
s

v
 s

h

visibility control

Artifacts

Phenomena

Figure 3.1: The elements of the WRSPM reference model [Gunter et al.,

2000]

The artefacts are broadly classi�ed into groups that pertain mostly to

the system versus those that pertain mostly to the environment. These

are:

3.2. TRACEABILITY 53

Domain Knowledge (W) describes how the world is expected to be-

have.

Requirements (R) describe how the system should a�ect the world's

behaviour.

Speci�cations (S) bridge the world and the system.

Program (P) provides an implementation of S.

Programming Platform (M) provides an execution environment for

P .

Artefacts are written in various languages that require a problem-

speci�c terminology. The reference model demands a clari�cation of the

primitive terms used in the WRSPM artefacts. Terms typically designate

states, events, and individuals and are referred to as phenomena.

WRSPM distinguishes phenomena by whether they are controlled by

the system (belonging to set s) or the environment (belonging to set

e). They are disjoint (s ∩ e = ∅), while taken together, they represent

all phenomena in the system (s ∪ e = �all phenomena�). Furthermore,

they are distinguished by visibility. Environmental phenomena may be

visible to the system (belonging to ev) or hidden from it (belonging to

eh). Correspondingly, system phenomena belonging to sv are visible to

the environment, while those belonging to sh are hidden from it. These

classes of phenomena are mutually disjoint. Formally stated, this means:

eh ∪ ev = e

eh ∩ ev = ∅

sh ∪ sv = s

sh ∩ sv = ∅

The distinction between environment and system is an important one;

omitting it can lead to misunderstandings during the development. In the

ProR approach, the boundary is not �xed and may change depending on

project characteristics. It also serves to illustrate that the boundary may

be moved as development progresses. Clearly de�ning the boundary of

the system clari�es responsibilities and interfaces between the system and

the world and between subsystems. Making that distinction explicit can

avoid many problems at an early stage.

W and R may only be expressed using phenomena that are visible

in the environment, which is e ∪ sv. Likewise, P and M may only be

54 CHAPTER 3. THE PROR APPROACH

expressed using phenomena that are visible to the system, which is s∪ ev.
S has to be expressed using phenomena that are visible to both the system

and the environment, which is ev ∪ sv.

The objective in systems development is to construct a program P ,

executed on a machine M which realises the requirement R, as long as the

domain properties W hold. This is called adequacy and can be expressed

as follows:

∀e s ·W ∧M ∧ P ⇒R (3.1)

The goal of WRSPM is to decouple the implementation P from

the requirement R by means of a speci�cation S. There are practical

reasons for doing this: The task of recording requirements and domain

properties is typically done by a di�erent group of people than the task

of implementing the system.

A simpli�ed but intuitive approach is to model S ∧W ⇒ R, and that

M ∧ P ⇒ S. This would decouple W and R from P and M . The �rst

property is called adequacy with respect to S:

∀e s ·W ∧ S⇒R (3.2)

This simply says that the speci�cation constrains the world such that

the requirements are realised. The trivial solution to (3.2) is obviously

not interesting, meaning that no e and s exist to satisfy W and S.

Given both hidden and visible environmental (e) and system (s)

phenomena, the system speci�cation (S), under the assumption of the

�surrounding� world (W), is strong enough to establish the requirements

(R), which also follow from (3.2).

In addition to adequacy (3.2), consistency has to be shown as well.

This goes beyond showing that a non-trivial solution exists: a property

that says that any choice of values for the environment variables visible to

the system is consistent with M ∧ P if it is consistent with assumptions

about the environment [Gunter et al., 2000]. Taking into account that P

shall not be part of the property, this results in strengthened version of

relative consistency for S :

∀ev · (∃eh s ·W)⇒ (∃s · S) ∧ (∀s · S⇒∃eh ·W) (3.3)

The system-side proof obligation is a similarly strengthened version

of relative consistency for M ∧ P with respect to S and can be found

in [Gunter et al., 2000] as well.

In this work, a simpler notion of consistency is employed, based on

state-based modelling, as described in Section 3.3.

3.2. TRACEABILITY 55

3.2.2 Adoptions of WRSPM for the ProR approach

The ProR approach di�ers in �ve signi�cant ways from WRSPM:

The ProR approach is marginally concerned P andM . P represents

a program that implements the speci�cation using the programming

platform M . A good system speci�cation S from the requirements is

already very useful in practice, even without a formal extension to P .

Further, including the programming platform my discourage, rather than

encourage the adaption of the ProR approach: it is easier to modify existing

development processes if the elements to be modi�ed are as small as

possible (while still adding value). Nevertheless, it can be useful in practice

to add implementation details to the system description as shown in the

case study in Section 5.7.

The ProR approach introduces design decisions D. The speci�ca-

tion contains artefacts that represent design decisions. These typically

cannot be justi�ed by any of the existing WRSPM artefacts. Instead,

they are introduced by the designer, who decides on a solution based on

experience.

The ProR approach introduces non-functional requirements N .

While WRSPM designates all requirements, in ProR approach R refers

only to the functional requirements, while N represents the non-functional

requirements.

The ProR approach distinguishes formal and informal artefacts.

WRSPM makes no assumption about the formality of the artefacts (in

fact, [Gunter et al., 2000] provides informal artefacts in an example). In

the ProR approach, formal and informal artefacts may be distinguished.

The ProR approach uses the superscripts F (AF) and I (AI) to indicate

whether an artefact is formal or informal, respectively.

The ProR approach relies on re�nement. For formal artefacts, the

ProR approach employs re�nement to iteratively add formalised artefacts

to the system description.

Figure 3.2 depicts the various artefacts, and how they relate to the

phenomena.

With respect to the original WRSPM model from Figure 3.1, the

visibility of phenomena for W , R, S P and M did not change.

56 CHAPTER 3. THE PROR APPROACH

Figure 3.2: The modi�ed WRSPM model used in the ProR approach

The design decisions D may only be expressed using phenomena that

are visible in the environment, which is e ∪ sv. As they must justify

decisions for S, they must be as expressive as S. In addition, part of the

justi�cation may be other phenomena from the environment that are not

explicitly modelled (eh). A corresponding argument can be made for the

non-functional requirements.

With the extended model, adequacy with respect to S (3.2) takes on a

new form, incorporating the design decisions:

∀e, s·W ∧ S⇒R ∧D . (3.4)

In addition to the requirements, now the speci�cation constrains

the world such that the design decisions are realised as well. The

speci�cation is expected to be feasible assuming a non-trivial W (meaning

¬(∃e, sv ·W)).

The implementation should also satisfy a condition similar to adequacy,

taking design decisions D into account:

∀e, s·W ∧M ∧ P ⇒R ∧D . (3.5)

This can also be achieved by using the speci�cation S instead of R and

D, if adequacy (3.4) has been established:

∀e, s·W ∧M ∧ P ⇒ S . (3.6)

The latter formula (3.6) re�ects the re�nement condition for relations

presented in [Hoare and Jifeng, 1998].

This approach distinguishes functional and non-functional require-

ments. The latter depend on design decisions in particular, as discussed

in [Chung and do Prado Leite, 2009]. Speci�cally, design decisions may

introduce architectural concepts or constrain the implementation. Func-

tional requirements may add some additional non-functional, as well, they

3.2. TRACEABILITY 57

may suggest a certain technology, for instance. Therefore, R and D have

to be taken into account as well:

∀e, s·W ∧R ∧ S ∧D⇒N . (3.7)

Non-functional requirements will rarely be formal. Hence, formula

(3.7) will usually consist of formal and informal artefacts with the conclu-

sion N being informal.

The implications in the formulae (3.4) to (3.7) indicate relationships

between speci�c artefacts. For instance, a speci�c speci�cation element

Si may imply a speci�c requirement item Rj , therefore suggesting a

realisation trace between them. The modi�ed reference model provides

the foundation for the ProR approach of requirement traceability.

3.2.3 Justi�cation, Realisation and Satisfaction Base

An artefact B justi�es A2, if B justi�es the presence of A. This can be

written as B ← A. The underlying idea is that all artefacts that are

present in the system description should be there for a reason. But more

importantly, if the implication from (3.4) is read from right to left, it

can be interpreted as justi�cation relationships, speci�cally, R∧D justify

W ∧ S. In other words, the inclusion of every speci�cation element or

domain property should justi�ed by by requirements and design decisions.

If the justi�cation is read the the reverse direction, A→ B, it becomes

a new meaning and can be read as A realises B. Again, (3.4) can be

interpreted as W ∧ S realise R ∧D. In other words, every requirement or

design decision must be realised in the form of speci�cation elements and

domain properties.

The notion of the realisation relationship corresponds even closer to

the implication in (3.4), as the justi�cation relationship corresponds to

reverse implication.

For the realisation of each R and D, not all of W ∧ S may be

necessary. A subset SB of the artefacts S ∪W is called satisfaction base

for R ∧ D, if SB ⇒ R ∧ D [Tennant, 2005, Kang and Jackson, 2010] .

A small satisfaction base is advantageous for two reasons: First, a small

satisfaction base provides a more precise justi�cation than a bigger one

(or S ∪W). Second, as a consequence of this, if the justi�cations have to

be validated by hand, a small satisfaction base reduces the work load on

the user.

2It will be clear further down why B and A are not reversed

58 CHAPTER 3. THE PROR APPROACH

A single smallest satisfaction base may not exist, and �nding it may

not be feasible, even if it exists. For practical purposes, a good estimate

is su�cient.

3.2.4 Equivalence

During the formalisation of artefacts, there may be direct correspondences

between informal artefacts AI and formal ones BF . Such artefacts are

considered equivalent, which is denoted as AI ↔ BF .

Such a relationship is particularly useful if a formal justi�cation for

BF has been found: In such a case, AI is justi�ed as well.

Unfortunately, an equivalence cannot always be found. Instead, one of

the artefacts is stronger then the other. Whether this is acceptable or not

depends on the artefact, with respect to the relations (3.4) to (3.7).

Domain properties W are always on the left side of the implications in

those formulae. Therefore, the relation BF → AI re�ects the implication

BF ⇒ AI If AI and BF are only related by implication following this

correspondence, statements about formal world properties may not hold

with respect to the corresponding informal world properties. For this

to hold we need either AI → BF , that is the formal assumption about

the world are not stronger than the informal assumptions, or equivalence

AI ↔ BF . Equivalence means that the informal domain properties are

not stronger than needed for building the system.

For requirements, the opposite is true, as they only appear on the right

side of the implications in formulae (3.4) to (3.7). If equivalence cannot

be established, then the informal requirements must be realised by formal

constructs BF , as in BF → RI .

3.2.5 Evolution

As the model evolves over time from A to B due to the process of

modelling, changing requirements, and the like. This is written as A B,

for A evolves into B.

Evolution does not follow logical implication. Instead, an approxima-

tion of the change of artefacts over time can be recorded. Tracing the

evolution of artefacts allows stakeholders to follow original requirements

in the system description.

3.3. FORMAL MODELLING AND REFINEMENT 59

3.2.6 Usage of Phenomena

The traces described so far concerned the relations between artefacts,

nothing so far has been said about the relation between phenomena and

artefacts.

An artefact A uses phenomena p, written as p ∈ A. Section 3.2.2

describes, and Figure 3.2 depicts the phenomena that are permissible for

use in the various artifact types. These restrictions apply to informal and

formal artefacts alike.

Further, formalised artefacts may only use those phenomena that

are used by the corresponding artefacts, identi�ed by justi�cation or

equivalence. There are few means for achieving consistency between

formal and informal artefacts. Usage traces are a simple but e�ective,

and comparable to type checking or the use of alphabets in UTP [Hoare

and Jifeng, 1998].

3.3 Formal Modelling and Re�nement

The ProR approach allow the mixing of formal and informal artefacts. This

work uses the Event-B formalism, which was introduced in Section 3.3.1.

Event-B is not expressive enough to allow the formalisation of all artefacts.

Therefore, formal and informal reasoning must be combined. For instance,

Event-B is well-suited for state-based modelling, but not for expressing

temporal and real time properties. The formalism may also in�uence the

boundary of the system, and may even be adjusted, as more and more

artefacts of the model are formalised.

Event-B supports re�nement, which is used to gradually formalise

more and more artefacts of the system description. This also serves as

a structuring mechanism for the formal model.

Event-B uses the proof obligations for demonstrating consistency of

the formal model, and these are used for tracing artefacts into and within

the formal model (Section 3.3.2).

This ideas presented in this section have been presented in large parts

in [Hallerstede et al., 2012].

3.3.1 Overview of Event-B

There are many good description of Event-B models, including [Abrial,

2010]. The following is only a brief introduction.

Event-B consists of contexts and machines. A context contains static

properties in the form of carrier sets, constants and axioms. Axioms must

60 CHAPTER 3. THE PROR APPROACH

not be violated, which has to be proven by discharging proof obligations

(Section 3.3.2). A Context can be extended by another context, providing

a simple structuring mechanism.

Machines contain the dynamic properties in the form of variables,

events and invariants. State is represented by the variables, and events

allow state transitions between states. Invariants must always hold, which

also has to be proven. Machines can be re�ned, which allows the addition

of more variables and invariants, as well as re�nement of events. The

parent of a re�ned machine is called abstract machine. The process of

re�nement results in additional proof obligations that ensure that neither

the abstract machine's invariants are violated nor that the state space is

increased by the re�ned events.

In addition to correctness, proof obligations for convergence and

deadlock freedom can be generated.

3.3.2 Proof Obligations and Traceability

Proof Obligations are a means for identifying problems with the system

description. In this section, a number of small examples demonstrate this.

Consistency Proof Obligations

Event-B generates a number of proof obligations for consistency. This

includes transition proof obligations that validate that an invariant still

holds after a state transition, of feasibility with respect to modelled domain

properties, i.e. constants.

Consider the following domain properties that describe a list of num-

bers � this could be part of the domain for a sorting algorithm, for

instance:

W-1 The [list] consists of [N] numbers.

W-2 The [list] contains the numbers [0]..[N].

This can be modelled in an Event-B context as follows:

axm1 : card(list) = N

thm2 : list = 0 .. N

The corresponding traceability is:

W-1↔ axm1

W-2↔ thm2

3.3. FORMAL MODELLING AND REFINEMENT 61

The proof corresponding obligations cannot be discharged, as there

is a contradiction between axm1 and thm2, which can be traced to a

contradition in W-1 and W-2. This contradiction can be resolved in

various ways, for instance by modifying W-2:

W-2 The [list] contains the numbers [0]..[N-1].

With proper tool support, this change would immediately mark the

trace to the thm2 as suspect (W-2 X↔ thm2). After adjusting thm2 to

list = 0 .. N − 1, the trace can be marked as validated.

Temporal Properties

Consistency proofs can also be used to demonstrate simple temporal

properties. Speci�cally, Event-B generates proof obligations to validate

invariants, including their initialisation. Therefore, a requirement that

expresses �always RI � can be modelled in Event-B as an invariant AF with

the traceability RF → always RI (or its stronger form, RF ↔ always RI).

A violation of the invariant would manifest itself in an undischarged proof

obligation.

More complex temporal properties could be expressed in a di�erent

formalism. For instance, LTL [Plagge and Leuschel, 2010] can represent

temporal properties of an Event-B model. While Event-B does not include

a theory for creating proof obligations for LTL expressions, it is still

possible to verify the properties by other means, for instance by model

checking.

Re�nement Proof Obligations

In Event-B, it is guaranteed that invariants from an abstract machine

are preserved in their re�nements (assuming that all proof obligations

are discharged). Therefore, artefacts that are modelled as invariants

will likewise hold in subsequent re�nements. This allows the gradual

enrichment of the formal system description via re�nement.

Re�ning an event allows for guard strengthening, which guarantees

that the concrete event cannot occur more often than the abstract event.

Further, the action of the concrete event must have a corresponding

e�ect as the action of the abstract event (action simulation). Last, the

association of abstract and concrete event is realised by means of a witness.

Basically, a witness associates abstract event parameters and variables

to the event parameters and variables of the concrete machine. Their

feasibility has to be shown as well (corresponding proof obligations are

generated).

62 CHAPTER 3. THE PROR APPROACH

Re�nement allows for data re�nement, where an abstract state is

re�ned in a more concrete one. This can be useful for expressing artefacts

in a general way, while using re�nement later to document how things

work in detail. This concept is used in the case study to talk about the

state of tra�c lights. In the abstract machine, the tra�c light state is

modelled as �stop� and �go�, and fundamental properties are modelled as

invariants using these states. Later, data re�nement is used to model these

states with the actual colours of the tra�c light, while a witness associates

the states. The witness itself has a trace to an informal representation.

Therefore, witnesses also help to make requirements traceability easier,

as the proof obligations for the witness record which premises have been

used.

Tracing and Correctness

It would be desirable if all traces between formal and informal artefacts

were equivalences. But in practice, this is not realistic. If equivalence is

not achieved, it is relevant which artefact is stronger. This in turn depends

on the type of artefact, as the traceability re�ects the relationship in (3.4)

� (3.7). Speci�cally, whether the artefact in question appears on the left

or the right of the implication in those formulae.

Domain properties, for instance, only appear on the left side of

the implications. Therefore, the formal model must not strengthen

assumptions about the domain properties, but may weaken them: Domain

properties W I must realise formal model elements AF :

W I → AF (3.8)

For artefacts that are on the other side of the implication, it is the other

way around. This is in particular true about requirements. Therefore, the

formal model elements BF must realise the informal requirements RI :

BF → RI (3.9)

The disadvantage of realise traces, compared to equivalence traces (↔),

is the fact that the system may be �better than it needs to be�. The

system overachieves, because the assumptions have been weakened or the

requirements strengthened. Fortunately, this does not a�ect correctness

[Apt et al., 2009].

3.3. FORMAL MODELLING AND REFINEMENT 63

Adequacy of the Formal Model

A central idea of this work is to show that the system description is

adequate with respect to the requirements, as expressed in (3.4). For

informal artefacts, this can be written as

∀e, s ·W I ∧ SI ⇒RI ∧DI . (3.10)

To show adequacy of the formal model AF , both sides of implication

can be dealt with separately, using the realisation relationships, as de-

scribed in Section 3.3.2 above. Not all artefacts have to be formalised, the

following demonstrates the relationship only for those informal artefacts

that are realised in the formal model:

W I ∧ SI →AF (3.11)

AF → RI ∧DI (3.12)

Event-B allows the identi�cation of formal model elements used in

proof obligations. Once these are found, the traceability can be used to

�nd the corresponding informal artefacts. If a proof obligation fails, this

narrows down the set of artefacts that need to be consulted to �nd and

correct the problem.

Tracing and Formal Re�nements

As mentioned before, invariants are preserved across the re�nement hier-

archy. Therefore, artefacts that are realised in the form of invariants in

an abstract machine will also be realised in the re�ning concrete machine.

This allows the gradual addition of more and more artefacts through sub-

sequent re�nements. During re�nement, invariants may be strengthened,

however. This is �ne for requirements and design decisions, but not for

domain properties and speci�cation elements (as argued in Section 3.3.2).

This has to be demonstrated somehow, for instance by validating the real-

isation relationship against the concrete (instead the abstract) invariant.

While the same problem exists for speci�cation elements in principle,

they can, in fact, be strengthened in the formal model. But doing so would

require to strengthen the corresponding informal speci�cation element as

well. This is possible, as the speci�cation elements are being developed,

and not given (in contrast to the domain properties).

Last, re�nement can go beyond specifying the system, resulting in

implementation detail P . Implementation artefacts may use phenomena

that are invisible to the environment (sh). While implementation is not in

64 CHAPTER 3. THE PROR APPROACH

the scope of this work, neither the ProR approach, nor Event-B re�nement

makes a particular distinction. Sometimes it can be practical to include

some implementation detail in the system description, as demonstrated

by the case study.

Informal Proofs about Formal Models

Artefacts that are formalised as invariants or theorems are easy to verify

with Event-B, as has been shown. This can also be achieved for artefacts

that are realised as event guards or actions, as described further in

[Hallerstede et al., 2012]. But there are cases where additional constructs

have to be used, which allows formal modelling of an artefact, but not

its formal validation. This is demonstrated in the case study, where a

state machine is modelled formally. In that example, there are no proof

obligations that verify that the correct state machine has been realised.

But the ProR approach permits and encourages informal proof as well.

The informal proof can be managed in the form of annotations to the traces

(something that the tool supports). In its easiest form, an informal proof

is just an argument. A more sophisticated approach is the formulation of

properties (e.g. temporal), as shown in Section 3.3.2. Informal reasoning

can also be supported by tools that allow model checking or animation,

for example.

Informal Proofs about Informal Models

Not all artefacts need to be modelled formally, which is an important

feature of the ProR approach. Nevertheless, such artefacts still need justi-

�cations, and therefore justi�cation traces (or correspondingly, realisation

traces). This traceability has to be managed without the support of the

formal model. It may take some more discipline to manage such artefacts,

but the process does not fundamentally di�er from dealing with formal

artefacts � except that the proofs are informal.

There are aids for dealing with such informal artefacts. The Problem

Frames approach, for instance (Section 2.5), has a way of dealing with the

satisfaction of requirements (frame concerns).

3.4 A Process for Systems Development

The requirements engineering process can be broken down into require-

ments speci�cation, system modelling, requirements validation and re-

quirements management [Wiegers, 2003]. The primary activities are mod-

3.4. A PROCESS FOR SYSTEMS DEVELOPMENT 65

elling and validation, with other activities playing a supporting role. Elic-

itation of requirements is also typically part of this process, but is outside

the scope of this work, as it has little in�uence on modelling and val-

idation. The high-level process for incrementally building up a system

description is shown in Figure 3.3. The four activities are described in the

following:

Figure 3.3: The Incremental Development Process

Requirements Speci�cation. During this phase, artefacts and phe-

nomena are identi�ed and classi�ed, as described in Section 3.2.2.

Not covered by the ProR approach is the macroscopic structuring of

the artefacts, which would take place during this phase as well. In

the example in Chapter 5, the Problem Frames approach is used.

System Modelling. The objective of this phase is the creation of formal

model elements representing a subset of the system description, as

well as their elaboration. By using re�nement, artefacts can be

incorporated gradually into the formal model. This was described

in Section 3.3. Not all elements need to be modelled formally, which

is one distinguishing feature of the ProR approach. Further, any

formalism can be used (see Section 3.1.4). The nature of the problem

to be solved may suggest one formalism over another. It is also

possible to user more than one formalism.

Modelling is an iterative process that goes hand in hand with

validation, as described next.

Requirements Validation. The purpose of this activity is validating

the adequacy of the speci�cation, and the relationship between for-

mal and informal artefacts. The validation process for informal arte-

facts depends on justi�cation and realisation traces, which were cre-

ated during the system modelling step. Tool support can support

66 CHAPTER 3. THE PROR APPROACH

this step and make the validation of large system descriptions man-

ageable. Formal model elements can be validated by mathematical

proof or model checking.

Requirements Management. In practice, a speci�cation is never

�done�. The ongoing work includes change management and require-

ment evolution. These tasks are supported by the ProR approach.

Changing artefacts will result in �suspect� traces, which must sub-

sequently be validated again. For formal artefacts, some of the vali-

dation can be performed by theorem provers and/or model checkers.

The amount of formality in the system description determines how

e�ective this is. At one end of the spectrum, all elements are mod-

elled formally. On the other end of the spectrum is a completely

informal system description, which still bene�ts from the ProR ap-

proach.

3.4.1 Incrementally Building the System Description

These tasks, including elicitation, analysis and negotiation, are performed

in parallel. This is not a sequential process. During this process,

the system description evolves: artefacts are modi�ed, new ones are

added, and traces are created. The traces employed were described in

Section 3.2, and the relationship between informal and formalised artefacts

in Section 3.6.

The work �ow for structuring requirements is shown in Figure 3.4. The

small notes indicate the kind of traces that are created in the various steps

of the process.

The process starts with a set of unclassi�ed artefacts, provided by the

stakeholders. These are processed iteratively, as described in the following

and depicted in Figure 3.4.

Choose Artefact

The user starts the process by selecting an arbitrary artefact. Depending

on its quality, it may have to be rewritten or split, typically by checking

it against a number of quality criteria (see below). If this is the case, it

will result in evolution traces, and the process starts over. There is no

distinction in choosing an artefact provided by a stakeholder and a new

artefact, e.g. a design decision. The evolution traces should be validated

by the stakeholders.

3.4. A PROCESS FOR SYSTEMS DEVELOPMENT 67

Start

Take an Artifact A
Or create a new one

Rewrite Required? Rewrite / Split
(creates evolution traces)

All Phenomena
declared?

Declare missing
phenomena

Define missing
phenomena

Classify A
(as R, W, S or D)

Trace Phenomena

Justify or
Realize? Create Traces

→
Validate Traces
(can be postponed)

→

Done?

yes

no

yes

no

yes

no

yes

no

End

Identify
phenomena

∈ ∈

⇝

Figure 3.4: Overall work �ow for building a system description, based

on [Jastram et al., 2010,Hallerstede et al., 2012]. This work �ow does not

yet contain the process of formalisation, which is described in Section 3.4.3.

Rewriting Artefact

An artefact may be rewritten to improve its quality [Hood and Wiebel,

2005], which results in an evolution trace (). The evolution trace must

be validated. This is typically done by the stakeholders who con�rm that

the rewritten artefact still captures the original idea behind it.

68 CHAPTER 3. THE PROR APPROACH

Classify Artefact

The artefact is classi�ed as R, N , W , S or D. This in turn will determine

the types of phenomena that are allowed to be used. Classifying artefacts

will also �x the boundary between the system and its environment.

Therefore it is important to agree on that boundary. If the boundary

moves during the development, it may result in the need to reclassify

artefacts.

Identify Phenomena

All phenomena in the artefact must be identi�ed. Phenomena may or may

not already declared (e.g. if the are already used by a di�erent artefact).

By identifying and classifying phenomena, a glossary is build that ensures

a consistent terminology within the system description.

Declare Phenomena

Missing phenomena are declared by introducing a designation [Gunter

et al., 2000]. This can be as simple as adding the designation to a glossary

and classifying it as belonging to one of eh, ev or sv. It may be described

further by artefacts. Such artefacts must either be created from scratch,

but may also be found in the pool of the unclassi�ed artefacts. If such an

artefact is found, it must also pass the process described here.

Trace Phenomena

The association between artefact and used phenomena must be recorded

by uses traces (∈). In the tool described in Chapter 4, this is done by

simply surrounding the designation by squared brackets in the informal

text representing the artefact. At this point, it should be validated that

the phenomena used are allowed for the type of artefact. In Section 3.6,

the properties to be validated are formalised.

Trace Artefact

Each artefact may have justify traces (←) (and correspondingly realise

traces (→), which are the inverse relationship). Equivalence traces (↔)

are a stronger form of justi�cation. These traces must be validated upon

creation, and every time artefacts that are attached to the trace change.

To postpone this validation, the traces can be marked as suspect (9).

The traces must adhere to the constrains given by (3.4) � (3.7).

3.4. A PROCESS FOR SYSTEMS DEVELOPMENT 69

Validate Traces

All traces must be validated eventually. This is done by reviewing the

relationships of all artefacts and to judge whether the construct really

re�ects the given justi�cation, realisation or equivalence relationship. It

is crucial that all relevant traces are included, in other words, that a

correct satisfaction base has been identi�ed. On the other hand, it is

not problematic if too many traces exist, as this simply means that the

satisfaction base is larger than it needs to be. If all traces have been

validated, the system description is considered consistent.

Complete Iteration

This concludes the iteration cycle. At this point, the work �ow either

starts over, or the user considers the system description done. If declared

done, at the minimum, the properties from Section 3.6 should hold.

Not mentioned in the work �ow is the fact that at any point, artefacts

that have already been structured may be modi�ed again. If that happens,

all justi�cation traces connected to that artefact are marked as suspect

and must be validated again. In practice, the validation of the justi�cation

traces may be postponed until the model stabilises.

3.4.2 Adequacy for Formal and Informal Require-

ments

System modelling as described here results in partly formalised artefacts.

It is not necessarily that everything is formalised. The ProR approach

proposed here allows for a mixture of formal and informal proof as a

means of validation.

The ProR approach does not dictate the formalism to be used. Rather,

the chosen formalism determines the amount of rigorous reasoning that

is possible. The case study in this work uses the Event-B formalism

(Chapter 5). The implications of choosing Event-B were described in

Section 3.3.

As a consequence of frequent incremental changes, e�ective support

for tracing artefacts is necessary: the speci�cation changes, as it incorpo-

rates increasing detail, requirements and domain properties change as a

consequence of the validation itself. The transition to requirements man-

agement is considered �uent and the same techniques of traceability are

applied.

Demonstrating (3.2) now involves dealing with formal and informal

elements.

70 CHAPTER 3. THE PROR APPROACH

In the following, RF designates the formal requirements, WF the

formal domain properties and SF the formal speci�cation elements. The

di�erence R \ RF of all requirements and formal requirements gives the

informal requirements RI , similarly for informal domain properties W I

and informal speci�cation elements SI .

Design decisions D are typically informal (D = DI). From a theoreti-

cal point of view, formal design decisions are possible. The same holds true

for non-functional requirements: in practice, these are also kept informal,

as they are typically very hard to formalise (N = N I).

For the formal elements, corresponding to (3.2) it can formally be

veri�ed that

∀e s ·WF ∧ SF ⇒RF , (3.13)

assuming that all W and S that are relevant with respect to RF have

been formalised, and assuming that the chosen formalism supports the

rigorous veri�cation of (3.13).

For informal elements, the corresponding relationship has to be shown:

∀e s ·W ∧ S⇒RI (3.14)

∀e s ·W ∧ S⇒DI . (3.15)

The relationship exists both for requirement R and design decisions

D. Like requirements, design decisions must be realised.

Formal and informal artefacts are allowed in the antecedent of (3.14)

and (3.15) but only formal elements in the antecedent of (3.13). As

many critical requirements as possible should be validated formally, giving

high assurance of their satisfaction. Relying on formally veri�ed facts in

informal justi�cation will also improve their quality.

Considering that a rigorous proof of (3.14) and (3.15) cannot be

provided, the relationship can only be justi�ed.

Once a requirement is realised, this is documented with realisation

traces. Typically, not all W and S are required for the realisation. The

subset of W and S will be called satisfaction base SB. Each requirement

and domain property has its own satisfaction base:

SB(RI
i) ⊆ (W ∪ S)

SB(DI
i) ⊆ (W ∪ S) .

There are many valid satisfaction bases, and W ∪ S is always one of

them. However, the smaller SB is, the easier it is to manually validate

3.4. A PROCESS FOR SYSTEMS DEVELOPMENT 71

the realisation traces. There is not always a smallest satisfaction base,

nor is it feasible in practice to identify it if it exists. The concept of the

satisfaction base is related to the concept of trusted bases, which has been

introduced for formal models in [Kang and Jackson, 2010].

Once a requirement RI
i or design decision DI

i is realised, for each

artefact from SB(RI
i) and SB(DI

i), realisation traces are set to document

the realisation:

∀A ·A ∈ SB(RI
i)⇔ RI

i → A

∀A ·A ∈ SB(DI
i)⇔ DI

i → A

How the justi�cation is performed is in the discretion of the user. The

user must demonstrate that the artefacts of SB(RI
i) are su�cient to realise

the requirement RI
i , for all phenomena e and s (or more speci�c, only those

phenomena that are used by SB(RI
i) and RI

i). The same applies to DI .

Under the assumption that the satisfaction base is correct (i.e. no

relevant artefacts are missing) and that the justi�cation traces are correct,

adequacy of informal requirements (3.14) and design decisions (3.15) is

∀e s i · SB(RI
i)⇒RI

i

∀e s i · SB(DI
i)⇒DI

i .

A justi�cation relationship becomes suspect, if either the source of the

target of the relationship changes. Suspect justi�cation relationships are

crossed out (9). Adequacy only holds if none of the justi�cations are

suspect.

The suspect justi�cation link is introduced for convenience. it can also

be de�ned as the relationship between all artefacts that are in SB(RI
i),

but that do not have a justi�cation trace to RI
i .

3.4.3 Formalising Phenomena and Artefacts in

Event-B

In order to formalise artefacts, their phenomena must be formalised �rst.

WRSPM identi�es states, events, and individuals as classes of phenomena

[Gunter et al., 2000]. These correspond in Event-B to variables, events

and constants. The formalisation process consists of the creation of those

Event-B elements and their classi�cation as eh, ev, sh or sv.

Variables and constants must be typed by invariants or axioms, re-

spectively. Those are artefacts and must be classi�ed as W , R, S or D.

72 CHAPTER 3. THE PROR APPROACH

Creating constants may require the creation of sets as well. Such sets

should receive a meaningful designation. Creating variables requires the

creation of events for changing their state.

Once all phenomena for a given artefact are formalised, the artefact

itself can be formalised as invariants or events. As such, traces between

the artefact and the invariants and events must be created, and the

Event-B elements must be classi�ed as W , R, S or D. Central to

the formalisation in the form of events is the before-after predicate, as

mentioned in Section 3.3, as it allow the Event-B formalisation to �t into

the the shape of adequacy (3.2).

The trace may either be an equivalence trace or justi�cation traces. If

it is an equivalence trace, then both elements must be of the same artefact

type (e.g. RI ↔ RF , W I ↔ WF and so on). As detailed in Section 3.6,

justi�cation traces exist between R ∪D and W ∪ S.

The formal model must not strengthen domain properties. If an

equivalence cannot be established, then the formal artefacts AF must

justify the informal domain properties W I :

AF ←W I . (3.16)

For requirements, it is the other way around: If equivalence cannot be

established, then the informal requirements RI must justify the the formal

artefacts BF , resulting in

RI ← BF . (3.17)

In other words, the formal model must not weaken the requirements.

Equivalences are preferable, as they ensure that not more then neces-

sary is implemented. The risk with (3.16) and (3.17) is, that either the

assumptions were weakened or the requirements strengthened. Note that

this would not result in a faulty speci�cation, but rather to a system that

is better than it needs to be.

The creation of formal artefacts may require further modi�cations to

the model to keep it sound. Invariants, for instance, may require the

introduction of guards to prevent them from being violated (a theorem

prover or model checker can �nd such violations).

The soundness of invariants can be proven. If all relevant realisation

traces for an artefact A exist and A is realised by invariants only, and

if the realisation traces have been validated, then if the model has been

proven correct, A is validated as well.

The soundness of events cannot be proven, only the soundness with

respect to the before-after predicates. This is not always su�cient. For

3.5. MACROSCOPIC STRUCTURE 73

instance, later re�nements may strengthen the guard, thereby breaking

the realisation relationship. Thus, if an event has realisation relationship

to an artefact A and is modi�ed in a re�nement, the re�ned event must

also be added to the realisation relationship.

Rather than creating a high number of traces from an artefact A to

the corresponding invariants and/or events, the trace can be linked to

a re�nement that encapsulates all formal elements that realise A. This

approach tends to create too many traces, but this is not problematic

in terms of justifying artefacts, as has been described in Section 3.4.2.

However, if the re�nement contains model elements beyond invariants or

before-after predicates, then the tool-supported validation may be limited.

3.4.4 Other Formalisms

The ProR approach is not limited to formalisation in Event-B. The case

study in Chapter 5 demonstrates the formalisation of one artefact in

LTL, for instance. In general, the formalism should be suited to the

problem at hand (and particularly for those artefacts that are targeted

for formalisation).

The ProR approach can also be combined with semi-formal notations,

like UML [Fowler and Scott, 2000], which are widely used in industry. Such

notations allow the modelling of phenomena. However, UML has only a

limited ability to express properties of the model. These are limited to

cardinality of relationships or attribute types when using class diagrams,

or state transitions when using state diagrams. But this in itself can be

useful, especially if tool integration makes it easy to validate the uses (∋)
relationships.

With the availability of UML-B [Snook and Butler, 2006], UML

modelling could be combined with Event-B modelling. This approach

has not be explored further in this work.

3.5 Macroscopic Structure

Both WRSPM, and the modi�ed version used in this work, classify

artefacts and their relationship to each other. But the artefacts are merely

referred to as sets, nothing is said about their presentation to the user. In

practice however, this is highly relevant: A list of requirements is much

easier to understand if some thought went into creating a meaningful order,

as argued by [Kovitz, 1998], for instance. Further, additional structure in

the form of sections, headlines, information text, etc. improves readability

74 CHAPTER 3. THE PROR APPROACH

and scalability.

A lot of practical advice with respect to macroscopic is available

[Rupp, 2007,Pohl, 2007,Hood and Wiebel, 2005]. Some of this advice is

manifested in the form of standards (e.g. [IEEE, 1997]) or part of process

framework templates (e.g. [Kruchten, 2004]). IEEE 830, for instance, is

a document-centred approach that provides standard document outlines

for di�erent types of system descriptions, combined with some quality

criteria and checklists for completeness. It does say little with respect to

the artefacts themselves. But this in turn makes it easy to combine it

with the ProR approach, which is primarily concerned with the artefacts

and their structure and relationships.

There are methods that are concerned both with the macroscopic

structure, and the internal structure of the artefacts. Those methods

tend to be compatible with WRSPM. This is no accident, as WRSPM

is meant as a reference model that is speci�cally meant for discussion of

common aspects of di�erent methods. Examples of such methods include

KAOS [Darimont et al., 1997] or the Problem Frames approach [Jackson,

2001] (see also Chapter 2.5). As the Problem Frames approach is well

suited to be combined with the ProR approach, and as the case study in

Chapter 5 employs the Problem Frames approach for this purpose.

3.5.1 Problem Frames

The Problem Frames approach [Jackson, 2001] is a concrete approach to

software requirements analysis. Problem Frames can be interpreted in the

context of the WRSPM reference model.

Central to the Problem Frames approach is the idea that user require-

ments are located in the real world, which should behave in a certain

way (once the requirements are realised). Therefore, it is crucial to �rst

describe the world and its behaviour. The description of the world corre-

sponds to W in WRSPM and the environmental phenomena e.

The Problem Frames approach uses problem diagrams to visualise this.

An example is shown in Figure 3.5 (which uses dotted borders to visualise

the interpretation in terms of WRSPM-terminology). The domains are

visualised as boxes (Pedestrians, Cars, Street, etc.) that have certain

shared phenomena, that are expressed as lines between domains. The

behaviour of the world can be further speci�ed by an optional description,

which is visualised as an oval.

In the Problem Frames approach, user requirements are expressed by

their e�ect on the world. This corresponds to R in WRSPM and is

visualised as dotted ovals in problem diagrams. Requirements never relate

3.5. MACROSCOPIC STRUCTURE 75

Figure 3.5: Example of a Problem Frames diagram, including mapping to

WRSPM [Jastram et al., 2011]

to the actual system to be designed, but only to the domains. requirements

describe or constrain the behaviour of the domains.

In order to realise the requirements, a system is designed. This is

called machine domain and visualised by a box with two vertical bars.

A problem diagram contains exactly one machine domain. The machine

domain communicates with the world through phenomena, represented

as connecting lines. In terms of WRSPM, these phenomena must be in

ev or sv � environmental phenomena visible to the system, or system

phenomena visible to the environment. Correspondingly, phenomena that

are not connected to the machine domain belong to eh: environmental

phenomena hidden from the system.

The description of the machine domain corresponds to S in WRSPM:

It describes how the machine must behave to realise the requirements,

assuming that the world behaves as expected.

The Problem Frames approach recognises the importance of decom-

position. A hierarchical decomposition of the problem is considered bad,

as it takes no explicit account of the problem to be decomposed [Jack-

son, 2001]. Instead, it proposes the decomposition into sub-problems of

recognisable and familiar classes, which are called Problem Frames. This

approach leads to known problems, allowing to take advantage of prior

knowledge. For this to work, sub-problems must be complete, so that su-

perimposing the sub-problems won't invalidate them. At the same times,

76 CHAPTER 3. THE PROR APPROACH

this leads to a parallel (rather than hierarchical) structure. Concurrency

and possible interactions of sub-problems have to be taken into account.

Ultimately this leads to a collection of interacting sub-problems, each

of which is smaller and simpler than the original, with clear and under-

standable interactions [Hall et al., 2002].

3.6 A Formal Meta-Model of the System De-

scription

Both, the modi�ed WRSPM model (Section 3.2.2) and the relationships

described in Section 3.2 can be modelled formally. In this section, such

a model is established. This also leads to some properties of correctly

modelled system descriptions. These properties could be validated.

A system speci�cation that is structured according to the ProR ap-

proach should, at a minimum, have the properties described here. While

this does not guarantee a complete system description, their absence in-

dicates incompleteness.

3.6.1 Formalising the Modi�ed WRSPM

The system description consists of artefacts and phenomena. The four

artefacts are R, W , S and D, while the phenomena are eh, ev, sh and sv
(see Section 3.2.1).

partition(Artefacts,R,N,W, S,D)

partition(Phenomena, eh, ev, sv, sh)

partition(e, eh, ev)

partition(s, sv, sh)

Artefacts are expressed in terms of phenomena, they use them. Each

artefact uses at least one phenomenon:

uses ∈ Artefacts←↔ Phenomena

But there are further constraints: domain properties may only use envi-

ronmental phenomena, requirements may use visible system phenomena in

addition, and speci�cation elements may not use hidden environmental or

system phenomena. Design decisions were introduced in see Section 3.2.2

and may use all except hidden system phenomena. Implementation detail

3.6. A FORMAL META-MODEL OF THE SYSTEM DESCRIPTION77

can use hidden system phenomena, but no hidden environmental phenom-

ena:

uses[W] ⊆ e (3.18)

uses[R] ⊆ e ∪ sv (3.19)

uses[N] ⊆ e ∪ sv (3.20)

uses[S] ⊆ ev ∪ sv (3.21)

uses[D] ⊆ e ∪ sv (3.22)

uses[P] ⊆ ev ∪ s (3.23)

Likewise, each phenomenon is used by by at least one artefact. Hidden

environmental phenomena are used by domain properties, requirements or

domain decisions. Visible environmental and system phenomena can be

used by any artifact, and hidden system phenomena only by implementa-

tion detail:

used_by ∈ Phenomena←↔Artefacts (3.24)

used_by[eh] ⊆W ∪ R ∪ N (3.25)

used_by[ev] ⊆W ∪ S ∪ D ∪ R ∪ N (3.26)

used_by[sv] ⊆W ∪ S ∪ D ∪ R ∪ N ∪ P (3.27)

used_by[sh] ⊆ P (3.28)

The last four formulas (3.25) to (3.28) are actually theorems that can

be drived from the former relationships.

This is the formal description of the modi�ed WRSPM used by the

ProR approach. If formal model is built using this structure, then adequacy

with respect to S (3.2) could already be expressed and, if desired relative

consistency for S (3.3).

3.6.2 Formalising Justi�cations and Realisations

Justi�cations and realisations are a new concept in the ProR approach that

does not exist in WRSPM. To be realised, a requirement must justify at

least one speci�cation element.

Likewise, each speci�cation element must have a reason to exist: the

reason may be the realisation of a requirement. However, it may also exist

to add design information to the speci�cation. The realises relationship is

the inverse of the justi�es relationship.

78 CHAPTER 3. THE PROR APPROACH

justifies ∈ (R ∪ D)←↔ (S ∪W) (3.29)

realises ∈ (S ∪W)←↔ (R ∪ D) (3.30)

realises = justifies−1 (3.31)

3.6.3 Formalising the Distinction between Formal and

Non-Formal Artefacts

The artefacts R, W and S may be formal or non-formal:

partition(R,RF , RI)

partition(W,WF ,W I)

partition(S, SF , SI)

The design decisions D and non-functional requirements N are as-

sumed to be non-formal only. While technically not necessary, this limita-

tion re�ects the nature of the artefacts. Likewise, implementation detail

P is assumed to be formal only.

To allow formalisation of R, W and S, a number of additional

properties must hold. For instance, the artefacts that are used by a

formalised artefact must have been formalised. This can be expressed

as follows for formalised requirements R:

∀r·r ∈ RF ⇒ (∀p·p ∈uses[RF]

⇒(used_by[{p}] ∩ (WF ∪ SF ∪ DF)) ̸= ∅ (3.32)

Corresponding properties exist for WF and SF .

If a tool chain is used that supports syntactical validation, like Rodin

(Section 4.3.1), then (3.32) holds if no syntax errors are reported by the

tool.

3.7 Discussion

This chapter described the ProR approach in detail, which consists of a

theory of traceability, and a process to put it to work. It allows the

incremental building of a system description consisting of informal and

formal artefacts.

3.7. DISCUSSION 79

The ProR approach structures the artefacts by classifying them and by

identifying the phenomena used by the artefacts. This means that the

global structure of the artefacts (e.g. the arrangement of artefacts in a

document) is not a�ected. This in turn makes integration with existing

processes relatively easy, as they typically say little about the internal

structure of the artefacts. This has been discussed in Section 3.5.

The formalisation presented allows the use of theorem provers, model

checkers or animators to support the validation of the system description.

Nevertheless, the traceability eventually connects informal artefacts to

other informal artefacts, as expressed in (3.10). This begs the question

where the added value of building a formal model comes from. The value

comes from the placing of the formal model between informal requirements

and informal domain properties, with respect to the traceability. Rather

than identifying the formal model elements with requirements or domain

properties, they are merely traced to. This keeps them accessible to

stakeholders, while using the formal model to make the relationship (3.10)

explicit. The question of the value of formalisation is not limited to this

approach, but to formal modelling in general.

Section 3.1 established a number of criteria for success. In the

following, these criteria are evaluated:

The approach is based on a language that the stakeholders un-

derstand. The approach works with artefacts in natural language. The

classi�cation as W , R, N , S, D or P does not inhibit their understand-

ability. While the phenomena used must be identi�ed somehow, this could

be done with a non-intrusive measure (e.g. by underlining phenomena in

the requirements text). Even if something other than natural language is

used, understandability should be achievable, as the ProR approach does

not change the representation of artefacts, but merely labels them.

The approach allows formal and informal artefacts to co-exists.

By creating realisation traces and satisfaction bases, traceability can be

achieved, independent of whether the traced artefact of formal or informal.

The traceability allows the systematic validation of artefacts. Formal and

informal artefacts share the same phenomena, and therefore the same

vocabulary (designations). If formal and informal artefacts are synonyms,

an equivalence trace can ensure that the relationship is re-validated when

necessary.

80 CHAPTER 3. THE PROR APPROACH

The approach allows the partial formalisation of the system

description. Corresponding to the previous item, the ProR approach

supports partial formalisation.

The approach is not tied to a speci�c formalism. As long as the

formulae from Section 3.2 can be expressed with the chosen formalism,

the formalism is adequate to be used with the ProR approach.

The approach supports traceability. Traceability is clearly de�ned,

its use is described, and its purpose clear. In addition, due to the struc-

turing of the system description, maintenance of the traces is manageable,

and tool support is available.

The approach is suited for industrial use. Unfortunately, applica-

bility for industrial use could not be veri�ed, as the case study in Chapter 5

is not representative for industrial applications. The jury is still out on

this one.

Tool support is central in making an approach, like the ProR approach,

practical. In the next chapter the ProR tool is introduced, which will be

employed in the case study as well.

Chapter 4

ProR Requirements

Platform

A major contribution of this work is the development of a platform

for managing natural language requirements, called ProR. An important

aspect of the approach described in this thesis is the ability to scale beyond

toy examples. This is di�cult to achieve without tool support.

ProR is an Eclipse-based application that has a strong focus on

supporting extensibility and integration. Further, the tool is based on

the emerging Requirements Interchange Format (Section 4.2), which gives

us interoperability with industry-strength requirements tools.

I developed ProR to survive beyond this dissertation and beyond

the life of the Deploy project. I therefore tried to involve other parties

and engaged in community building. I succeeded in attracting plenty of

interest and, even more important, contributors who added code to the

system. In June 2011, ProR was submitted as part of the Requirements

Modeling Framework (RMF) to the Eclipse Foundation. in August 2011,

RMF became an o�cial Eclipse Project with ProR being the o�cial name

of the GUI. Community building is described in detail in Section 4.1.3.

4.1 A History of ProR

Before getting into the technical details of ProR, I will provide a brief

overview of the various development stages that ProR went through, which

were:

81

82 CHAPTER 4. PROR REQUIREMENTS PLATFORM

Initial Development (April � June 2010) In this period, I was

designing and building a minimal working system. At the same time,

I started to establish a community.

Collaboration with Verde (July 2010 � February 2011) I joined

forces with the Verde research project, which provided the ReqIF core,

while I provided the user interface. In both projects, there was a strong

focus on getting ProR su�ciently complete to be used in traceability

research.

Eclipse Foundation Submission (March 2011 � November 2011)

The collaboration with Verde resulted in the successful submission of ProR

and the Verde ReqIF core to the Eclipse Foundation, resulting in the

creation of the Eclipse Requirements Modeling Framework (RMF).

Development as part of Eclipse (December 2011 � today) After

its creation, RMF became an incubation project at the eclipse foundation.

The project will stay in this state until full compliance with the Eclipse

project requirements is achieved. There are currently public integration

builds every two months.

4.1.1 Initial Development

Development on ProR started in April 2010 by myself. Within three

months, I had a rudimentary requirements tool that implemented a subset

of the ReqIF data model. The tool used the native EMF persistence

mechanism, rather than the correct ReqIF format.

Even though EMF supports XML-based persistence and ReqIF is an

XML-based format, it is not easy to tweak EMF to write correct ReqIF.

However, EMF is modular and allows fairly easily to swap one persistence

engine out for another. Therefore, I considered it a low risk to start

development without the ability to read and write correct ReqIF.

This turned out to be a good decision. When I joined forces with the

Verde-project, I did exactly that: I swapped my persistence engine for the

one developed by Verde. It turned out to be a non-trivial task to create

such an engine (see Section 4.4.8), but swapping one engine for another

was easy.

Parallel to development, I engaged in systematic community building,

which is described in Section4.1.3.

At this point, the code repository was not published yet. It was not

clear yet which license would be used.

4.1. A HISTORY OF PROR 83

4.1.2 Collaboration with Verde

The project got a big boost when in July 2010 ProR development got

support from itemis1, an IT services company specialising in Eclipse-based

software. itemis was also developing a RIF/ReqIF tool, also for a research

project (ITEA Verde), and also as an open source e�ort. They already had

a working RIF 1.2 back end. They had a GUI as well, but it was essentially

the unmodi�ed default EMF editor, which is essentially unusable for all

practical purposes.

Switching out the back end of ProR was done swiftly. Thereby ProR

became a RIF 1.2 tool, instead of a ReqIF tool until that point. The EMF-

based �le format was still available, as the Verde back end was not able to

handle all data structures correctly. For instance, SpecRelations were not

restored correctly. Supporting more than one version was easy, however,

and users could switch between versions by simply using the �Save as...�

function of the tool. The Verde core and the technical challenges are

described in Section 4.4.8.

During this time, the two projects merged repositories and grew

closer together. There were several joint work sessions, collaborative

papers [Jastram and Graf, 2011b, Jastram and Graf, 2011d, Jastram and

Graf, 2011c], and an industry presentation [Jastram and Graf, 2011a],

signi�cantly increasing visibility or our work.

Shortly before the submission of our work to the Eclipse Foundation,

the decision was made to switch from RIF 1.2 to ReqIF 1.0.1. This was

shortly after a meeting with representatives of requirements tool vendors.

At that meeting, it was clear that the current RIF 1.2 implementations

have a poor interoperability. There was little interest in �xing this, but

instead most tool vendors committed to supporting ReqIF 1.0.1 within 12

months or less. As our tool chain was several months away from being a

feature-complete tool, it felt that focusing on ReqIF would be the right

strategic decision.

4.1.3 Community Building

It is a tragedy that lots of high-quality research and many promising

software projects never gain traction. This is true for academic work,

as well as hobby projects. This is the more tragic, as there are now

many successful open source projects and ideas that started as grassroots

movements, and where their success has been documented and is well

understood. As one goal of the work presented here is commercialisation,

1http://www.itemis.com

84 CHAPTER 4. PROR REQUIREMENTS PLATFORM

it is imperative that the work does not die a slow death after completion

of this dissertation.

Figure 4.1: The pror.org website, before migration to the Eclipse Founda-

tion

A central pillar of community building was the establishment the

pror.org website (Figure 4.1), containing:

End User Documentation � A Tutorial, description of the user inter-

face, features, limitations, etc.

Screencast � A screencast that shows installation and usage of ProR.

4.2. THE DEVELOPMENT OF REQIF 85

Developer Documentation � Architecture, important technical de-

tails, instructions on how to extend the tool, etc.

Blog � I made sure to post relevant articles 1-2 times a month.

Newsletter � Most blog articles were also mailed to newsletter sub-

scribers, therefore allowing me to reach out to interested parties

when new were available.

Bug Tracker � To allow users and developers to report bugs.

After the migration of ProR to the Eclipse Foundation, as described

below, the content shown in Figure 4.1 was migrated to the foundation

and the URL redirected.

4.1.4 Eclipse Foundation Submission

In March 2011 the project was ready to be taken to the next level and to

apply to become an o�cial Eclipse Foundation project. As there was much

more than just ProR, it was decided to call the new project Requirements

Modeling Framework (RMF), consisting of two major components: The

RIF/ReqIF core and the ProR GUI. In June 2011, the �rst version of the

proposal was submitted. The proposal can be found in Appendix A.

In November 2011, RMF �nally became an o�cial Eclipse Project,

albeit still in the incubator status. During the migration process, it

underwent a rigorous intellectual property review. The trademark right to

ProR and the pror.org domain were also given to the Eclipse Foundation.

At this time of this writing, RMF is an active project. Public

integration builds are released every two months.

4.2 The Development of the Requirements

Interchange Format

RIF/ReqIF [OMG, 2011] is an emerging standard for requirements ex-

change, driven by the German automotive industry. It consists of a data

model and an XML-based format for persistence.

This section provides some background regarding the standard. The

format itself is described in Section 4.4.1.

86 CHAPTER 4. PROR REQUIREMENTS PLATFORM

4.2.1 History of the RIF/ReqIF Standard

RIF was created in 2004 by the �Herstellerinitiative Software� (HIS2),

a body of the German automotive industry that oversees vendor-

independent collaboration. Within a few years, it evolved to the version

1.2. The format gained some traction in the industry, and a number of

commercial tools claims support it. The reality looked slightly di�erent,

unfortunately. Many RIF 1.2 implementation were not complete, sup-

ported only a subset of RIF features, and often worked only when used

in exchange with the same tool, and sometimes not even then. Still, the

marketing departments of tool vendors happily wrote �RIF support� in

their promotional materials, and there was a continuous interest in the

topic.

In order to quantify the interest in RIF/ReqIF, I looked at two

metrics. The �rst was the number of talks at ReConf3, a commercial

requirements engineering trade show (Table 4.1). ReConf has a high

attendance rate amongst representatives of the automotive industry (both

OEMs and suppliers), and the organiser, HOOD Group4, was involved

in the development of the RIF/ReqIF standard. Further, with over 300

attendees, ReConf is one of the biggest commercial requirements events

in Europe.

Year Number of talks (ReConf)

2006 0

2007 1

2008 1

2009 1

2010 0

2011 3

2012 3

Table 4.1: Number of RIF/ReqIF talks at ReConf

The second metric is the number of scienti�c publications on Google

Scholar (Table 4.2). By searching for �Requirements Interchange Format�,

the name change from RIF to ReqIF, as well as the ambiguity with other

acronyms was not an issue.

2http://www.automotive-his.de/
3http://www.reconf.de
4http://hood-group.com
5Estimate. Count as of May 2012 is 6.

4.2. THE DEVELOPMENT OF REQIF 87

Year Number of papers (Google Scholar)

2006 1

2007 5

2008 10

2009 8

2010 11

2011 13

2012 15 5(estimate)

Table 4.2: Hits for �Requirements Interchange Format� on Google Scholar

Both metrics show some interest right after the creation of the stan-

dard, which kind of ebbs down around 2009/2010, just to pick up again.

In 2010, the Object Management Group (OMG6) took over the stan-

dardisation process and released ReqIF 1.0.1 in April 2011. The name

was changed from RIF to ReqIF to prevent confusion with the Rule In-

terchange Format, another OMG standard, while the version number was

reset.

ProR was initially based on RIF 1.2. An attempt to refactor ProR to

support multiple RIF versions was abandoned again. Now ProR supports

ReqIF 1.0.1 (see Section 4.1.2).

4.2.2 The Future of ReqIF

There are a number of activities that indicate that ReqIF is here to stay.

Whether it will become a niche standard in the German automotive in-

dustry or a standard that will leave a huge imprint on system development

is to be seen.

Currently, users and vendors of major requirements tools collaborate

to ensure interoperability of their respective ReqIF implementations. This

collaboration is coordinated by ProSTEP, a non for pro�t organisation7.

All vendors of tools pledge to support ReqIF in their tools by the end of

2012. This includes IBM's tool Rational DOORS, which is widely used in

the German automotive industry.

Strong support for ReqIF originates from the German automotive

industry, which relies heavily on external suppliers. Their concern to be

6http://www.omg.org
7Information regarding the ReqIF implementer forum can be found at

http://www.prostep.org/en/projects/internationalization-of-the-requirements-

interchange-format-intrif.html

88 CHAPTER 4. PROR REQUIREMENTS PLATFORM

cornered by proprietary solutions prompted the development of ReqIF in

the �rst place. Several OEMs are members of the ProeSTEP implementer

forum and actively encourage the development of a ReqIF ecosystem.

Last, Eclipse provides a number of tools for system development, but to

date tool support for requirements engineering has been week. The Eclipse

Foundation provided positive feedback to the RMF project, as it promises

to �ll this niche. Committers of the RMF project, myself included,

are actively participating in two Eclipse Working Groups. The Eclipse

Working Group Automotive is an initiative for developing Automotive

Software Development Tools8, and RMF may become part of their tool

platform. The Polarsys working group9 was initiated by the aviation

industry and also shows strong interest in RMF. In particular, the

Topcased tool for system development is already in use in the aviation

industry, and an integration of RMF and Topcased is being considered

[Jastram and Graf, 2011b].

4.3 Goals for ProR

It would be hypocritical to preach about proper requirements engineering,

but then not to practice it.

Elicitation resulted in a number of high-level goals for ProR. These

include the following:

Rodin Integration As our work was in part sponsored by the Deploy

project, one requirement was support for the Rodin platform. Rodin

is an Eclipse-based application, suggesting to provide requirements

management in the form of an Eclipse plug-in. Other architectures

would be possible (e.g. a web application operating directly on the

Rodin database), but not as straight forward to implement.

RIF/ReqIF support Using RIF instead of a proprietary data model

was one of the core requirements. This gives us both interoperability

with industrial-strength tools, and increases visibility.

Use outside Rodin possible ProR was not supposed to be a Rodin-

speci�c tool, as there is a much wider audience for our tool.

Seamless integration with other tools possible Integration of other

tools with ProR is encouraged � foremost with Rodin. This is

another reason why Eclipse was an attractive foundation for ProR.

8http://wiki.eclipse.org/Auto_IWG
9http://wiki.eclipse.org/Polarsys

4.3. GOALS FOR PROR 89

The plug-in and extension point mechanism of Eclipse is well-

suited for realising tool integrations. There is also interest from

the Topcased-community [Jastram and Graf, 2011b].

Scalability In order to be interesting to industrial users, ProR has

to support large speci�cations. In the automotive industry, for

instance, speci�cations with tens of thousands of requirements, each

with dozens of attributes, are not unusual.

Longevity ProR was designed speci�cally to become a product that

would survive beyond this dissertation, requiring the establishment

of a community.

Industry-Strength ProR is targeted beyond the academic market. In

fact, the author started a business to commercialise ProR.

Each of these goals was spanning a number of requirements. The

requirements were kept as light as possible and as complete as necessary.

The following outlines the requirements that follow from the goals:

4.3.1 Rodin Integration

The work described here is sponsored in part by the EU-project Deploy.

Developing support for requirements management was one of the project's

goals. Therefore, ProR had to support the goals of that project. There

was a keen awareness that traceability between requirements and formal

methods was an important research area. This results in the following

requirements:

1. ProR is an Eclipse application.

2. ProR uses an EMF data model, amongst other things to allow

integration with Rodin by using the Rodin EMF plug-in.

3. ProR will allow extensions that incorporate Event-B model elements

into the requirements.

4. ProR will allow extensions that customise the appearance of at-

tributes (e.g. to properly render Event-B elements).

5. ProR will allow manual incorporation of Event-B model elements

via drag and drop.

6. ProR will allow plug-ins to listen to changes in the RIF/ReqIF

model.

90 CHAPTER 4. PROR REQUIREMENTS PLATFORM

4.3.2 Seamless integration with other tools possible

Even though an integration with Rodin was necessary from the very

beginning, ProR was not supposed to have any dependencies to Rodin,

for multiple reasons: For one, Rodin contains many features that most

users of ProR do not care about. ProR does not need to include those.

It may also have created licensing issues, as is discussed in Section 4.1.4.

Further, with too many dependencies, ProR could become a maintenance

nightmare, where I would have to accept many decisions by the Rodin

team (e.g. regarding Java or Eclipse version).

Even though ProR was explicitly separated from Rodin, an integration

was imperative to support the goals of the Deploy project. The architec-

ture therefore had to allow a tight integration of the tools with additional

plug-ins. This in turn lead to an extensible architecture from the very

beginning. The supporting requirement is:

1. All requirements from Rodin integration will be available in a generic

fashion, thereby allowing integration with any EMF-based tool.

4.3.3 RIF/ReqIF support

Supporting RIF/ReqIF was one of the key decisions for commercial

exploitation and community building. In April 2011, ReqIF became an

o�cial OMG standard and created a lot of buzz in the requirements

engineering industry, especially the car industry. At that point, no open

source implementation of ReqIF existed yet. My goal was to attract

attention by being the �rst serious ReqIF implementation in the open

source.

While ReqIF was designed to be a �le format, it has the potential of

being much more than that. Therefore, I used the ReqIF data model as

the foundation for a tool (see Section4.4.1). This meant that ProR could

read and write ReqIF without having to convert from or to a native data

format. This gives it an advantage over existing tools, as it can handle all

ReqIF features �out of the box�.

I attended a meeting in July 2011 of the major requirements tool

manufacturers that was organised by the vendor-neutral ProSTEP non-

pro�t organisation. The goal of the meeting to ensure interoperability of

the tools regarding the ReqIF standard. At that point, ProR was already

recognised as a competitive tool, otherwise I would not have been invited

to the meeting. It was a clear sign that this strategy paid o�.

Our requirements supporting this goal are:

4.3. GOALS FOR PROR 91

1. ProR supports at least one RIF/ReqIF standard in the sense that

all model elements can be read and written.

2. Eventually, all model elements are shown and editable in the GUI.

4.3.4 Use outside Rodin possible

This goal complements Section 4.3.1: While the Rodin integration must

be taken into consideration, ProR must not be tied to it.

1. ProR will have no dependencies to Rodin (all dependencies for the

Rodin integration will reside in the integration plug-in).

2. ProR will be made available both as an update site as well as a

stand-alone application.

4.3.5 Longevity and Public Support

A non-technical goal was to get public support and endorsements. This

can work on two levels: Endorsement of the software's code and endorse-

ment of the software's functionality. I succeeded on the �rst and are still

working on the second.

OpenSource projects do not need to belong to an organisation. There

are countless open source projects on Sourceforge, GitHub, or privately

hosted repositories. But even privately hosted projects typically have an

association by using a standard open source license. Using a standard li-

cense gives users already some con�dence regarding the legal requirements

on using the code.

Some credibility also comes from using a public repository like Source-

Forge or GitHub. These repositories typically require projects to use of a

public open source license, and due to the public nature of these sites, it

is not possible to retroactively change the license.

But most credibility comes from becoming an o�cial project of a

non-pro�t organisation that takes over the patronage of the project.

Well-known organisations include the Apache Foundation or the Eclipse

Foundation. These organisations make sure that the origin of every line

of code is known; that certain quality standards are applied; that patent

issues are handled correctly; and so forth. They also provide legal advice

and defend the software, if necessary, against lawsuits. In addition, some

of these organisations have a good reputation and increase the visibility

of projects signi�cantly.

I got endorsement of the code by making ProR part of a newly

formed Eclipse Foundation project. As of this writing, The Requirements

92 CHAPTER 4. PROR REQUIREMENTS PLATFORM

Modeling Framework (RMF) is in the incubator stage of the Eclipse

Foundation. Requirements supporting this goal are:

1. ProR is reasonable well documented for developers.

2. ProR has documentation and a tutorial for plug-in developers.

3. Provision and maintenance of an infrastructure for development (bug

tracker, wiki for documentation, developer mailing list, user forum).

4. Become part of a non-pro�t body like the Eclipse Foundation, that

provides visibility, guidance and infrastructure.

4.3.6 Industrial Strength

As one of the goals is the commercialisation of ProR, industrial acceptance

has to be ensured, which means at least the following:

1. The scalability requirements are a prerequisite.

2. RIF/ReqIF support is complete (see RIF/ReqIF support, Sec-

tion 4.3.3).

3. The user interfaces passes acceptance by industrial representatives.

4. ProR is documented for the end users.

4.3.7 Scalability

Scalability is one central requirement for industrial acceptance. During my

work in requirements engineering, I got exposed to real-world requirements

and speci�cations. For instance, I encountered a supplier who got regularly

speci�cations from OEMs for instrument clusters � the integrated element

that contains speedometer, tachometer, and various other indicators. The

typical size was 30,000 � 40,000 requirements, where a requirement could

be a piece of text or an image.

The following requirements capture this in a qualitative manner:

1. ProR will be able to manage tens of thousands requirements with

dozens of attributes in a single RIF/ReqIF �le.

2. ProR will be able manage RIF/ReqIF �les in the double-digit

megabyte size.

4.4. TECHNOLOGIES 93

4.4 Technologies

This Section describes the technologies employed in building ProR. This

includes the RIF/ReqIF standard itself and an introduction of the Eclipse

platform, which is the application framework used for building ProR.

Eclipse programs are always written in Java. ProR uses the Eclipse Model-

ing Framework (EMF) for building the data model and the user interface.

Eclipse applications have their on GUI toolkit called SWT/JFace. This

had to be augmented with a third-party component called AgileGrid to

make all desired features possible.

4.4.1 The Content and Structure of a ReqIF Model

In general terms, a ReqIF model contains attributed requirements that

are connected with attributed links. The requirements can be arbitrarily

grouped into document-like constructs. I'll �rst point out a few key model

features and then provide more speci�cs from the ReqIF speci�cation

[OMG, 2011].

A SpecObject represents a requirement. A SpecObject has a num-

ber of AttributeValues, which hold the actual content of the SpecObject.

SpecObjects are organised in Speci�cations, which are hierarchical struc-

tures holding SpecHierarchy elements. Each SpecHierarchy refers to ex-

actly one SpecObject. This way, the same SpecObject can be referenced

from various SpecHierarchies.

ReqIF contains a sophisticated data model for Datatypes, support for

permission management, facilities for grouping data and hooks for tool

extensions.

The ReqIF Top Level Element

ReqIF is persisted as XML, and therefore represents a tree structure. The

top level element is called ReqIF and shown in Figure 4.2. It is little more

than a container for a header (ReqIFHeader), a placeholder for tool-spe�c

data (ReqIFToolExtension) and the actual content (ReqIFContent). The

content element is shown with all its details in Figure 4.3.

The ReqIF Content

The ReqIFContent has no attribute, but is simply a container for six

elements. These are:

SpecObject A SpecObject represent an actual requirement. The values

(AttributeValue) of the SpecObject depend on its SpecType.

94 CHAPTER 4. PROR REQUIREMENTS PLATFORM

Figure 4.2: The top-level ReqIF element (from [OMG, 2011])

Figure 4.3: The ReqIFContent element (from [OMG, 2011])

SpecType A SpecType is a data structure that serves as the template

for anything that has Attributes (e.g. a SpecObject). It contains a

list of Attributes, which are named entities of a certain datatype and

an optional default value. For example, a SpecObject of a certain

type has a value for each of the SpecType's attributes.

DatatypeDe�nition A DatatypeDe�nition is an instance of one of the

atomic data types that is con�gured to use. For instance, String is

an atomic data type. A DatatypeDe�nition for a String would have

a name and the maximum length of the string. An attribute of a

SpecType is associated with a DatatypeDe�nition.

Speci�cation SpecObjects can be grouped together in a tree structure

4.4. TECHNOLOGIES 95

called Speci�cation. A Speci�cation references SpecObjects. There-

fore it is possible for the same SpecObject to appear in multiple

Speci�cations, or multiple times in the same Speci�cation.

In addition, a Speci�cation itself may have a SpecType and therefore

AttributeValues.

SpecRelation A SpecRelation is a link between SpecObjects, it contains

a source and a target. In addition, a SpecRelation can have a

SpecType and therefore AttributeValues.

RelationGroup SpecRelations can be grouped together in a Relation-

Group, but only if the SpecRelations have the same source and target

Speci�cations.

This sounds strange, and in fact is a crutch brought in by one

vendor of requirements management tools, who was concerned about

compatibility with their products. This construct only makes sense

when considering some of the limitations of existing tools.

SpecElements and their Typing System

The previous section described the four element types that can have

attributes: SpecObjects, Speci�cations, SpecReleastions and Relation-

Groups. These four are all SpecElementsWithAttributes, or SpecElements

for short. This is shown in Figure 4.4. That �gure also shows that each

has its own subclass of SpecType (SpecObjectType, Speci�cationType,

SpecRelationType and RelationGroupType). A SpecType has any num-

ber of AttributeDe�nitions, which ultimately determines the values of a

SpecElement. Correspondingly, a SpecElement can have any number of

AttributeValues. The AttributeValues of a SpecElement depend on the

AttributeDe�nitions of the SpeElement's SpecType. This fact can not be

deducted from the model.

The AttributeDe�nition references a DatatypeDe�nition that ulti-

mately determines the value of the AttributeValue of the corresponding

SpecElement. For each atomic data type of ReqIF, there is a correspond-

ing DatatypeDe�nition, AttributeDe�nition and AttributeValue each. Be-

fore looking at the atomic data types, let's look at a concrete example.

Figure 4.5 shows the three classes for the atomic data type �String�.

The actual AttributeDe�nitionString has a type of DatatypeDe�ni-

tionString. This one happens to have one attribute, �maxLength�. In

other words, one needs a concrete instance of DatatypeDe�nitionString in

order to create an AttributeDe�nitionString. An AttributeDe�nition may

96 CHAPTER 4. PROR REQUIREMENTS PLATFORM

Figure 4.4: Elements with attributes and AttributeDe�nitions (from

[OMG, 2011])

Figure 4.5: Elements with attributes and AttributeDe�nitions (from

[OMG, 2011])

also have a default value, which is of type AttributeValueString and may

be null.

ReqIF supports the following atomic data types:

String A unicode text string. The maximum length can be set on the

Datattype.

Boolean A boolean value. No customization is possible.

Integer An integer value. The maximum and minimum can be set on

the Datattype.

4.4. TECHNOLOGIES 97

Real An real value. The maximum and minimum can be set on the

Datattype, as well as the accuracy.

Date A date- and timestamp value. No customization is possible.

Enumeration An enumeration Datatype consist of a number of enumer-

ation values. The AttributeDe�nition determines whether the values

are single value or multiple value.

XHTML XHTML is used as a container for a number of more speci�c

content types. The AttributeValue has a �ag to indicate whether

the value is simpli�ed, which can be used if the tool used to edit

only supports a simpli�ed version of the content. For instance, if

rich text is not supported, and therefore the new content is stored

as plain text.

Other ReqIF Elements

ReqIF consist of 44 element types. The ones I just described are important

for understanding ReqIF in general and this work in particular. Elements

we omitted concern aspects like access control and identi�er management.

Persistence

ReqIF provides a scheme for XML persistence. The following is an

example of a small ReqIF �le. This �le contains one SpecType with one

Attribute, and one SpecObject that uses it. It contains one Speci�cation

containing that one SpecObject.

1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <REQ -IF xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xmlns ="http :// www.omg.org/

spec/ReqIF /20101201" xsi:schemaLocation ="http

://www.omg.org/spec/ReqIF /20110401/ reqif.xsd

reqif.xsd http :// www.w3.org /1999/ xhtml driver.

xsd">

3 <THE -HEADER >

4 <REQ -IF -HEADER >

5 <CREATION -TIME >2011 -09 -27 T11

:30:35.050+02:00 </ CREATION -TIME >

6 <SOURCE -TOOL -ID >ProR (http :// pror.org)</

SOURCE -TOOL -ID>

7 </REQ -IF -HEADER >

98 CHAPTER 4. PROR REQUIREMENTS PLATFORM

8 </THE -HEADER >

9 <CORE -CONTENT >

10 <REQ -IF -CONTENT >

11 <DATATYPES >

12 <DATATYPE -DEFINITION -STRING IDENTIFIER ="

_WkXXQejrEeC8vsU0vp6aHw" LONG -NAME="

T_String32k" MAX -LENGTH ="32000"/ >

13 </DATATYPES >

14 <SPEC -TYPES >

15 <SPEC -OBJECT -TYPE IDENTIFIER ="

_WkYlYOjrEeC8vsU0vp6aHw" LONG -NAME="

Requirement Type">

16 <SPEC -ATTRIBUTES >

17 <ATTRIBUTE -DEFINITION -STRING

IDENTIFIER =" _WkZzgOjrEeC8vsU0vp6aHw

" LONG -NAME=" Description">

18 <TYPE >

19 <DATATYPE -DEFINITION -STRING -REF >

_WkXXQejrEeC8vsU0vp6aHw </

DATATYPE -DEFINITION -STRING -REF >

20 </TYPE >

21 </ATTRIBUTE -DEFINITION -STRING >

22 </SPEC -ATTRIBUTES >

23 </SPEC -OBJECT -TYPE >

24 </SPEC -TYPES >

25 <SPEC -OBJECTS >

26 <SPEC -OBJECT IDENTIFIER ="

_Wkdd4OjrEeC8vsU0vp6aHw">

27 <VALUES >

28 <ATTRIBUTE -VALUE -STRING THE -VALUE ="

Test Requirement .">

29 <DEFINITION >

30 <ATTRIBUTE -DEFINITION -STRING -REF >

_WkZzgOjrEeC8vsU0vp6aHw </

ATTRIBUTE -DEFINITION -STRING -REF

>

31 </DEFINITION >

32 </ATTRIBUTE -VALUE -STRING >

33 </VALUES >

34 <TYPE >

4.4. TECHNOLOGIES 99

35 <SPEC -OBJECT -TYPE -REF >

_WkYlYOjrEeC8vsU0vp6aHw </SPEC -

OBJECT -TYPE -REF >

36 </TYPE >

37 </SPEC -OBJECT >

38 </SPEC -OBJECTS >

39 <SPECIFICATIONS >

40 <SPECIFICATION IDENTIFIER ="_WkX -

UOjrEeC8vsU0vp6aHw" LONG -NAME="

Specification Document">

41 <CHILDREN >

42 <SPEC -HIERARCHY IDENTIFIER ="

_WkeE8OjrEeC8vsU0vp6aHw">

43 <OBJECT >

44 <SPEC -OBJECT -REF >

_Wkdd4OjrEeC8vsU0vp6aHw </SPEC -

OBJECT -REF >

45 </OBJECT >

46 </SPEC -HIERARCHY >

47 </CHILDREN >

48 </SPECIFICATION >

49 </SPECIFICATIONS >

50 </REQ -IF -CONTENT >

51 </CORE -CONTENT >

52 </REQ -IF >

Getting persistence right was not trivial. EMF supports XML persis-

tence, and EMF allows some tweaking of the XML. But creating the ReqIF

persistence format was beyond of what could be achieved by tweaking.

In the end, the Verde team managed to get persistence to work, and

there e�ort has been documented online10.

Persistence outside the scope of my scienti�c work. Therefore, the

details of the persistence mechanism will not be covered in detail. As

far as ProR is concerned: The tool constructs an EMF-based model in

memory, which is simply persisted by calling the code from the core to

persist it as ReqIF on disk.

10http://nirmalsasidharan.wordpress.com/2011/07/29/dissecting-rifreqif-

metamodel/

100 CHAPTER 4. PROR REQUIREMENTS PLATFORM

4.4.2 Eclipse

Eclipse11 is a platform for general purpose applications with an extensible

plug-in system. It is mainly known as an integrated development envi-

ronment (IDE) for Java development, although the Java IDE is just one

specialised application of the platform. Eclipse employs plug-ins in order

to provide all of its functionality on top of the run-time system which is

based on Equinox, an OSGi standard compliant implementation.

The Eclipse platform provides facilities for workspace management,

GUI building, a help system, team support and more. These components

consist of plug-ins. Plug-ins may provide extension points, to which

other plug-ins may connect via extensions. A typical Eclipse installation

contains hundreds of extensions.

ProR can run as a stand-alone Eclipse application, or it can be installed

into any existing Eclipse installation, including Rodin.

There were at least two good reasons to use Eclipse for ProR. First,

Rodin was an Eclipse application as well, which made integration of Rodin

and ProR easy. This was one of the goals (see Section4.3). Second, I

was deeply familiar with writing Eclipse-based applications, having co-

authored a book on the Eclipse Rich Client Platform [Sippel et al., 2008].

Being familiar with Eclipse, I knew that the platform had the capabilities

to support all the required features. Furthermore, EMF had the potential

to simplify many aspects of the development.

4.4.3 Java

Eclipse is written in Java, and so are Eclipse applications. While Java

is not the most elegant programing language in the world, it has the

advantages of being proven in the �eld, fast and supported on many

operating systems. The fact that I had over �fteen years experience in

writing Java-applications made it attractive as well.

4.4.4 Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework [Budinsky et al., 2009] is a modelling

and code generation facility. EMF provides tools and runtime support to

produce Java code for the model and adaptor classes that enable viewing

and command-based editing of the model.

EMF is attractive for ProR for a number of reasons:

11http://eclipse.org

4.4. TECHNOLOGIES 101

• EMF can work o� models described in XMI, which allows interop-

erability with other modelling tools. For instance, the digital repre-

sentation of RIF could be used as the starting point for ProR, which

sped things up considerably.

• EMF is modular. Halfway through the project, ProR switched to the

EMF-based data model implementation from the ITEA-VERDE-

Project (see Section 4.2). Thanks to the modular structure of EMF,

this was straight forward.

• EMF takes care of many mundane tasks in GUI development.

• Rodin provides an EMF bridge. Even though Rodin is not based on

EMF, there is a plug-in that provides an EMF-based bridge to the

Rodin data model. This plug-in is actively maintained and makes it

easy to integrate the data models from ProR and Rodin.

An EMF-application typically consists of three layers:

Model The model layer consists of the actual data structure and is stored

in the form of the Ecore model. The Ecore Model can be either

generated from scratch or imported (e.g. from an existing UML or

XSD model). Customizations of the Ecore model include namespace,

containment of elements (for persistence) and others. There is a

corresponding Genmodel (Generator Model) that allows �ne-tuning

of the generated code for Model, Edit, Editor and Tests. Applied to

the model layer, it generates the Java code for the data model.

Edit The Edit layer consists of so-called ItemProviders, which represent

the bridge between the data model and a GUI. The ItemProviders

can provide an alternative structure of the data. It is not unusual

that the structure of the data model di�ers from the structure in

the GUI. ItemProviders also provide basic information like labels

and icons. They also collect the properties that are presented in the

property view and collect the Commands that a user can perform on

a data element. Last, they provide facilities to support Undo/Redo,

Copy, Cut and Paste, Drag and Drop, and more. The ItemProvider

code is also customised through an d generated by the Genmodel.

Editor EMF can also generate code for an Eclipse-based editor. Such

an editor is generic, in the sense that it can be driven by any set

of ItemProviders. The editor support many standard features that

one would expect of a modern model editor, including support for

Outline, Drag and Drop, Undo and Redo, etc.

102 CHAPTER 4. PROR REQUIREMENTS PLATFORM

EMF expects generated code to be modi�ed. Annotations in the

comments control which code is overwritten on regeneration.

Not many modi�cations of the model were required (in fact, the only

modi�cation at the time of this writing was the generation of the unique

ID that is required for some model elements). However, it was planned

to eventually extend the model with validators. EMF allows validators to

�hook� directly into the model to validate certain properties of the model.

This is quite useful for ReqIF, as there are a number of properties of valid

ReqIF that cannot be validated on the XML level.

Most of our customisations take place on the ItemProviders. Our

representation of the data in the GUI di�ers radically from the data model

representation.

4.4.5 Modifying Generated EMF-Code

The code that EMF generates can be customised quite a bit by tweaking

the Generator Model. The generator model stores information for the

model generation. This includes mundane things like the directory where

generated code should be stored or pre�xes for the generated class names,

as well as more sophisticated things, like the generation of noti�cations or

whether the ItemProviders should be stateless or stateful.

It is recommended to con�gure as much as possible. But much desired

behaviour can only be achieved by editing the code. As discussed in the

previous section, EMF generates code that is intended to be modi�ed.

As the Verde project was responsible for the core code (including the

data model elements), my preference was to not touch their code or their

generator model. Fortunately, that was not necessary, mainly due to the

clean architecture that EMF provides.

A central element of an EMF-based GUI are the so-called Item-

Providers. They are used to adapt EMF objects, providing all of the

interfaces that they need to be viewed or edited [Budinsky et al., 2009].

They represent the bridge between model and GUI, without any depen-

dency to GUI code. There is an ItemProvider for every model element

class. ItemProviders where fully in the scope of ProR, and I had to mod-

ify them heavily.

ItemProviders work their magic by combining a number of specialised

providers. Code that needs one of those specialised providers uses the

framework to adapt the model element to the required provider type. For

example, a widely used pattern in GUI programming is the concept of a

LabelProvider, which is used to �nd the label and icon to render for an

object. Consider a control representing a tree structure (e.g. the Outline

4.4. TECHNOLOGIES 103

View). To �nd the text strings and icons to render, the control consults

the LabelProvider, requesting the label and icon for a given Object. Of

course, the LabelProvider must be custom-written for the data model at

hand. For a class to act as an EMF LabelProvider, it must implement the

following interface:

1 public interface IItemLabelProvider

2 {

3 public String getText(Object object);

4 public Object getImage(Object object);

5 }

EMF generates the ItemProviders, which implement the IItemLabel-

Provider and a number of additional providers (listed below). Generated

methods can then be edited to change their behaviour (e.g. getText()).

EMF generates default implementation that are typically �good enough�

for testing. For instance, the default getText() implementation inspects

the model element for an attribute called �name�. Failing that, it looks

for an attribute with the string �name� in the name.

An EMF ItemProvider implements the following provider interfaces:

IItemLabelProvider As just described, this provider is responsible for

text label and icon. I modify this in several places to provide

more dynamic behavior. For instance, the user can con�gure which

attributes should be used as the label of SpecObjects.

ITreeItemContentProvider This provider controls how model el-

ements are navigated. It provides a getChildren() and a

getParent() method. This makes it possible to expose a data struc-

ture in the GUI that looks very di�erent from the data structure of

the underlying data model. ProR uses this frequently, as the ReqIF

data model would be very hard to navigate and to read.

IItemPropertySource When an element is selected in the GUI, the

property view typically shows the element's properties and allows

them to be edited. This provider delivers a list of property descrip-

tors, one for each property. The property descriptors contain not

only the name and value of each property, but also type (text, multi-

ple choice, etc.), category, whether it can be edited, and many more.

I modify this heavily for elements that have dynamic properites,

like a SpecObject. Each SpecObject can have a di�erent set of at-

tributes, and ProR shows all attributes in the property view.

104 CHAPTER 4. PROR REQUIREMENTS PLATFORM

IEditingDomainItemProvider The EditingDomain is a construct

that manages the command-based modi�cation of objects. For in-

stance, the context menu of any element in the GUI allows users

to perform certain operations that modify that element (e.g. by

adding a child element). The commands appearing in the GUI are

collected by consulting the EditingDomainItemProvider. I modify

this heavily, for example for typed elements (e.g. SpecObjects). I

add an additional command for each SpecType, allowing the user to

not only an untyped SpecObject, but also a typed SpecObject with

just one click.

Once a method is modi�ed, it must be marked with a special annota-

tion, otherwise it will be

4.4.6 The Standard Widget Toolkit (SWT) and JFace

The selection of Eclipse as the tooling platform suggest SWT/JFace as the

graphics toolkit. SWT is a low-level library of controls like buttons, labels,

and the like, while JFace is a higher-level library that provides components

like forms, tables, trees, including an MVC-based framework. Eclipse itself

is built on SWT and JFace, and EMF can generate an SWT/JFace-based

GUI.

SWT was developed as an alternative to the Swing toolkit, which is

part of the Java core. While Swing draws all components itself, SWT

relies on the operating system to render the controls. Both approaches

have strengths and weaknesses. The Swing-approach has the advantage

of a consistent look and feel across operating systems. It has the

disadvantages of sometimes not looking quite native, and by being slower.

The performance issues, however, have been addressed a long time ago

and are now negligible.

SWT, on the other hand, has a more native feel to it, because the

operating itself renders the controls. But as a result, the application's

behavior may di�er from operating system to operating system, sometimes

signi�cantly. In fact, this created a huge problem at one point in the

development, as described in Section 4.4.7.

Besides the technical di�erences between the two toolkits, there are

also architectural di�erences. While both toolkits discussed employ

the MVC design patterns, Swing arguably does so more elegant than

SWT/JFace. In turn, there are other toolkits for GUI building that

are much better than both, Swing and SWT/JFace, but not for the

Java/Eclipse ecosystem. Speci�cally, a web-based toolkit like GWT was

4.4. TECHNOLOGIES 105

considered as well. This could be used by rendering a browser component

inside an Eclipse Editor. This would have had the additional advantage

that the application could have been extended with a web-based viewer

and/or editor.

In the end, the decision was made to go with SWT/Swing, with the

addition of Agilegrid (Section 4.4.7). While other toolkits could have

potentially paid o� in the long run, none of our requirements justi�ed the

increased initial investment. In addition, picking a conventional approach

avoided the risk of encountering unexpected problems halfway through the

implementation (and as will be described in the next section, even with a

conventional approach and many years of experience, this kind of problem

was encountered).

4.4.7 Agile Grid

Using the SWT/JFace code that EMF generated as the foundation re-

sulted in a working system fairly quickly. I used the SWT/JFace GUI

generated by EMF as the starting point, which not only gave me a work-

ing GUI, but also the initial architecture of the GUI. Speci�cally, features

like property view, outline view, context menus, drag & drop, etc. worked

out of the box. I still had to invest a signi�cant amount of work to adjust

the Editor view. This is the central place where users do their work, and

this has to be done right for any tool to gain acceptance.

Unfortunately, the behaviour of SWT components can di�er from op-

erating system to operating system. The behaviour of the JFace TreeTable

di�ered in such a way to disqualify it for our purpose. A TreeTable is a

tree structure with collapsible elements, and multiple columns for each el-

ement. Figure 4.6 shows the JFace TreeTable, customised for ProR. This

worked quite well to present the Speci�cations to the user.

This approach worked well � at least on Linux. It did not, however,

work correctly on Windows. The JFace TreeTable control had a severe bug

on Windows systems. The Linux-based control could adjust the height of

each row in the table individually. This is important for ProR, as one cell

may contain a long text that breaks over multiple lines, while a cell in the

next row may only have a very short text with fewer lines. Consider the

row height of REQ-1 and REQ-2 in Figure 4.6.

On Windows, all rows must have the same height. Using the same

row height would either mean wasting screen real estate (by using the row

height of the biggest row) or only showing the beginning of a value. This

106 CHAPTER 4. PROR REQUIREMENTS PLATFORM

Figure 4.6: The SWT-based Speci�cation View on Linux renders correctly.

On Windows, however, all rows have the same height.

was a known bug that had been around for many years12 and there was

no reason to expect this to be resolved any time soon.

As I had no experience writing, let alone debugging Windows code, I

looked for alternative controls and eventually decided to use AgileGrid13.

Figure 4.7: A demo that ships with Agile Grid to demonstrate its power

AgileGrid is an open source project that consists of a table control,

12https://bugs.eclipse.org/bugs/show_bug.cgi?id=148039
13http://agilegrid.sourceforge.net/

4.4. TECHNOLOGIES 107

speci�cally for Eclipse. It is based on SWT, but the rendering of the table

is not done by the operating system, but it is drawn directly on a canvas.

Therefore, the appearance on all operating systems is identical.

AgileGrid scales well, which was one important criteria. It also allows

individual row heights, which was � obviously � a core requirement.

AgileGrid does not support tree structures. While ProR has to render

a tree structure, I did not see the need to allow nodes to collapse. I talked

with potential users, and they con�rmed that, while it would be nice to

have, it wasn't a necessity. Thus, ProR now renders the tree structure

fully expanded. The �rst column provides indenting, and hierarchical

numbering in the margin communicates the tree structure to the user

(Figure 4.8). This had an adverse e�ect on the performance, however.

I had to create a content provider that translates the tree-structure

into a �at table structure. The initial implementation was �dumb� in

the sense that it did not do any caching, and required the traversal of

the tree structure to �nd the position of objects. A better performing

ContentProvider can be implemented anytime without an e�ect on the

architecture.

In the end, the result was quite pleasing.

Figure 4.8: Agilegrid, adapted for ProR. Note that the �rst column is

indented, and that the left margin indicates the hierarchy

SWT/JFace have the advantage that Eclipse is built on top of them,

and that EMF can generate JFace Editor code. However,

108 CHAPTER 4. PROR REQUIREMENTS PLATFORM

4.4.8 The ReqIF Core

Initially, I built a partial EMF model based on the ReqIF speci�cation,

which at that time was in beta stage. This was quite useful for a number

of reasons:

• It helped me to get a good understanding of ReqIF, as I had to deal

with every single ReqIF feature that our software would support;

• It helped me to get a good understanding of EMF. EMF has a steep

learning curve;

• It allowed me to focus on the essential GUI elements, as I built up

the model element by element, while adding user interface elements

at the same time.

At the same time, I was looking for other activities regarding RIF/Re-

qIF and encountered the Verde-project, which was driven mainly by the

company itemis. While I was quite ahead with the development of the

user interface, they were ahead regarding the RIF model. They, used the

RIF 1.2 speci�cation.

I brie�y described my collaboration with Verde in Section 4.1.2.

Switching out my half-�nished ReqIF code with the Verde core was done

within a few days. The bulk of the e�ort was due to the di�erences between

RIF 1.2 and ReqIF. From that point of view it is kind of ironic that the

decision was made later to build a ReqIF tool after all, and I had to go

through the process once more in reverse.

For me, working with the Verde core was a good decision. It turned

out that it was quite di�cult to tweak EMF to write correct ReqIF. While

EMF can � in theory � write arbitrary XML, the ReqIF XML is not

very well suited for being generated by EMF. It took the Verde team a

long time until all ReqIF features were persisted correctly, according to

the speci�cation.

Worth mentioning is the fact that RMF includes not only a ReqIF

1.0.1 core, but also a RIF 1.2 core and a RIF 1.1a core. Especially RIF

1.2. is, as of this writing, still in use. This allows, at least in theory, to

create converters, or the ability to edit di�erent formats. Code reuse in the

GUI for this purpose was also explored for a while but turned out to not

be feasible: this would have made the GUI code much more complicated,

and there was no immediate value into doing this, certainly not from a

scienti�c point of view.

4.5. USING PROR 109

4.5 Using ProR

This section will go through the more important features of ProR to pro-

vide an impression of the tool in action. I provided a similar introduction

to the tool in [Jastram and Graf, 2011c]. I also created a screencast14

that demonstrates the basic features of ProR. That screencast could be a

useful complement to this section.

4.5.1 Installing ProR

ProR can be downloaded stand-alone, or installed into an existing ap-

plication via its update site. The download is a convenient option for

non-technical people who just want to get started with ProR. There are

no special restriction for the update site version: ProR can be installed

into any reasonably new Eclipse installation.

4.5.2 Creating a ReqIF Model

ReqIF models can be created in any Eclipse project, and manifest them-

selves as a .reqif �le. Eclipse projects an have a Nature, which tailors the

project towards a special purpose. ProR does not require a nature, which

makes it easy to integrate ProR with other tools (while a project can have

more than one nature, it can be cumbersome to make sure that all natures

are properly set and con�gured).

A new ReqIF model can be created via the File | New... menu, where

there is a wizard for a new �Reqif10 Model�. The wizard will create a new

ReqIF model with a very rudimentary structure, as shown in Figure 4.9.

The model has one Datatype, one SpecType with one Attribute, using the

Datatype, one Speci�cation with one SpecObject that uses the SpecType.

ProR shows information in the outline and properties views. ProR

provides a Perspective, which ensures that all relevant views are shown.

As most Eclipse applications use these views, this is typically not an issue.

The editor in Figure 4.9 (the window in the middle) provides an

overview of the model. The most important section is the one labelled

�Speci�cations�. Upon double clicking on one, it is opened in its own

editor, as shown in Figure 4.10.

Each row represents a requirement (SpecObject), and each requirement

can have an arbitrary number of attributes. Which speci�c attributes a

requirement has depends on its type. We can see in the property view

14http://www.youtube.com/watch?v=sdfTNZduvZ4

110 CHAPTER 4. PROR REQUIREMENTS PLATFORM

Figure 4.9: ProR with a newly created ReqIF model, as produced by the

wizard

that the selected requirement is of type �Requirements Type�, which has

exactly one attribute called �description�.

The editor can be con�gured to show an arbitrary number of columns.

Each column has a name. If a requirement has an attribute of that name,

then the value of that attribute is shown in the corresponding column.

To make the example more interesting, the following steps will be

performed:

• Adding more attributes to the type �Requirements Type�

• Adding an additional column

• Enabling the ID-Presentation, a mechanism for automatically cre-

ating human-readable identi�ers

• Adding of additional requirements

• Adding links between requirements

4.5. USING PROR 111

Figure 4.10: The Speci�cation of the newly created ReqIF model

The result of these actions will resemble Figure 4.11.

4.5.3 New Attributes

The special dialogue for the datatypes is opened via ProR | Datatype

Configuration... or the corresponding icon in the toolbar (Figure 4.12).

The upper part of the dialogue shows the data structures, while the lower

part contains a property view that allows editing the properties of the

element that is selected in the upper part. New child or sibling elements

can be added via context menus.

Now two attributes to the type �Requirements Type� will be added:

an ID for a human readable identi�er, and a status �eld, which is an

enumeration. The result is shown in Figure 4.12.

A new datatype for the ID called �T_ID� has been created. For the

status �eld, a new enumeration of type �T_Status� was created. In the

�gure, one can see the properties of the selected element in the lower pane,

where they can be edited.

112 CHAPTER 4. PROR REQUIREMENTS PLATFORM

Figure 4.11: The Speci�cation after adding some data

4.5.4 Con�guration of the Editor

When closing the dialogue and select a requirement, the three properties

will be visible in the properties view, where they can be edited. But the

main pane of the editor still only shows one column. One can add new

columns via ProR | Column Configuration... (or the corresponding

tool bar icon), which opens a dialogue for this purpose. The dialogue

looks and works similar to the one for the data types. One more column

called �ID� can then be added. The dialogue also allows the reordering of

columns via drag and drop, and this mechanism is used to make the ID

column the �rst one.

4.5.5 Generating IDs

The ID column in now visible in the speci�cation editor, but it is empty.

While IDs could simply be added by hand, this is error prone, and one

would expect the tool to be able to handle this. ProR does not have the

4.5. USING PROR 113

Figure 4.12: The datatype dialogue after adding some data

ability to generate IDs, but a �Presentation� can. Presentations are ProR-

speci�c plug-ins that can modify the presentation of data and inspect and

modify the data. Presentations will be described from a technical point

of view in Section 4.6.

To add a presentation, the presentation dialogue is opened via ProR

| Presentation Configuration... (or the tool bar). The �Select

Action...� dropdown lists all installed presentations, and selecting �ID

Presentation� creates a new element. In the properties the pre�x and

counter of the presentation can be modi�ed. But more important is the

data type that is associated with the presentation. In this example �T_ID�

shall be selected � and this is the reason why a new data type for the

IDs was created earlier. The dialogue should now look like Figure 4.13.

After closing the dialogue, all requirements that did not have an ID

yet will have received one by the presentation.

114 CHAPTER 4. PROR REQUIREMENTS PLATFORM

Figure 4.13: The presentation dialogue after creating the ID presentation

4.5.6 Adding Requirements

Finally everything is ready to add some data. This is mainly done via the

context menus, but in several places, keyboard shortcuts are available.

Upon opening the context menu for a requirement, new elements can be

added via the �New Sibling� and �New Child� submenus. A speci�cation

is a tree structure of arbitrary depth, and the left margin indicates via

a corresponding numbering scheme the position in the hierarchy. In

addition, the left margin of the �rst column is indented (see Figure 4.8).

The context menu allows the creation of typed requirements � there is

one entry for each user-de�ned type � which can save a lot of clicking. But

it is also possible to add untyped requirements or even empty placeholders

(SpecHierarchies). Adding a placeholder can be useful for referencing an

existing requirement. Requirements may appear multiple times, both in

the same speci�cation and in other speci�cations of the same ReqIF model.

To allow the rapid addition of requirements, ProR provides the Ctrl-

Enter keyboard shortcut. the new requirement is inserted below the one

that is currently selected and has the same type.

Last, requirements can be rearranged. This can be done via drag &

drop or copy & paste.

4.6. EXTENDING PROR 115

4.5.7 Linking Requirements

Requirements can be linked via drag & drop. As drag & drop is also

used for rearranging requirements, it has to be combined with a keyboard

modi�er. The key that needs to be pressed is dependent of the operating

system and is the same that is used for creating �le links and the like.

Once a link has been created, the last column of the speci�cation editor

shows the number of incoming and outgoing links. It is possible to show

the actual link objects (SpecRelations) via ProR | SpecRelations...,

which are then shown below the originating requirement. The last column

of link objects shows the destination object (selecting that column will

show the target requirement's properties in the property view).

Link objects can also by typed, resulting in them having attribute

values as well. The values will be shown in the speci�cation editor, if the

columns are con�gured correspondingly.

This concludes the brief overview of the usage of ProR.

4.6 Extending ProR

While it is useful to have a tool for capturing structured requirements, the

real value of ProR lies in its extendability and the integration with existing

tool chains. To a degree, this is already achieved by supporting the ReqIF

standard, which will provide an interface to commercial requirements

engineering tools, once they support it15. But thanks to Eclipse, quite

a bit more is available.

ProR exposes an extension point, which is a hook for other Eclipse

plug-ins. Presentations can integrate themselves into the GUI and the

model. A presentation consists of a service class and a data element that

are connected through the extension point.

The service class o�ers many options for customising the GUI and to

provide an integration with other Eclipse-based tools. The service class

must implement the interface PresentationService. Rather than imple-

menting the interface from scratch, one can override the class AbstractPre-

sentationService which contains default implementations for all methods.

The data element allows the presentation to store data inside the

ReqIF model. ReqIF uses the parent element ReqIfToolExtension for that

purpose, which presentations can use as they see �t.

15Several commercial tools already support RIF 1.1a and RIF 1.2. As RMF contains

cores for these standards, it would be fairly easy to build an interface using these

standards.

116 CHAPTER 4. PROR REQUIREMENTS PLATFORM

A presentation is always associated with a DatatypeDe�nition. The

underlying reason will be clear shortly.

What exactly can a presentation do? Let's look at three simple

presentations that exploit the extension point in various ways, and will

then explore who they are implemented.

Headline Presentation ProR does not support formatted text yet. The

headline presentation is a quick and dirty approach to provide some

formatting in the meantime. This presentation allows the association

of a data type with a bigger, boldface font. All attributes using that

data type are rendered in that font.

ID Presentation The ID presentation was already presented in Sec-

tion 4.5.5. While ReqIf requires IDs that ProR already generates,

they are not particularly readable. This presentation generates hu-

man readable IDs with a con�gurable pre�x.

RodinPresentation Rodin is a tool for formal modelling that was in-

troduced in Section 4.3.1. This presentation allows the association

model elements with requirements (e.g. a variable with a corre-

sponding de�nition in the requirements document). The association

can be established manually via drag & drop, and the model ele-

ments are subsequently visible in the requirements document.

Presentations are realised as Eclipse plug-in projects. This

plug-in must provide an extension for the extension point

org.eclipse.rmf.pror.reqif10.presentation.service.presentation, and it must

extend the EMF model element ProrPresentationCon�guration. Every-

thing else is implemented in the service class that implements Presenta-

tionService. In the following, a few selected methods of that interface will

be presented.

IProrCellRenderer getCellRenderer(AttributeValue av);

This method allows us to provide an alternative CellRenderer (in

order to use the default cell renderer, simply return null). The headline

presentation overrides this method to provide a renderer that uses a

di�erent font. ProR ensures that the AttributeValue that is handed to this

method is using the DatatypeDe�nition that the headline con�guration is

associated with.

Next, let's have a closer look at the HeadlineCon�guration. Figure 4.14

shows the relevant elements from the model.

4.6. EXTENDING PROR 117

Figure 4.14: The extension of the ProR model to accommodate data for

the headline presentation

One can see that the model element HeadlineCon�guration has a

new attribute called �size�. As HeadlineCon�guration is derived from

ProRPresentationCon�guration (also shown), it also has the attribute

�datatype�, which is used to identify the AttributeValues to which the

presentation shall be applied.

Let's look at some more methods:

CellEditor getCellEditor(AgileGrid agileGrid,

EditingDomain editingDomain, AttributeValue av);

Similar to the CellRenderer, the default CellEditor can also be re-

placed. For instance, the Verde-team hooked an XText-based editor into

ProR, which provided syntax highlighting, auto-completion and similar

features while editing [Jastram and Graf, 2011d]. As with the renderer,

returning null will trigger the default editor.

public void openReqIf(ReqIf reqif)

This method allows a presentation to hook itself into the ReqIF model

itself upon opening. It can then use all EMF mechanisms to do its magic.

The ID presentation uses this feature to listen for newly inserted element,

in order to set IDs if appropriate.

public Command handleDragAndDrop(Collection<?> source,

Object target, EditingDomain editingDomain,

int operation);

For a truly intuitive integration with other tools in an Eclipse envi-

ronment, presentations can opt to serve drag & drop operations. If a

presentation opts to do so, it must return an EMF command which will

118 CHAPTER 4. PROR REQUIREMENTS PLATFORM

then be executed by ProR. The use of commands results in a seamless

integration that supports undo, redo and similar behaviour.

This mechanism is used for the integration with Rodin. Rodin presents

its model elements in a tree structure (for instance in the project view),

from where they can simply be dragged into the ReqIF editor. Depending

on the keyboard modi�er, ProR links or integrates those elements into

the speci�cation. ProR only stores the internal ID of the referenced

model element and retrieves the values from Rodin when they have to

be rendered. This way, the content is never outdated.

4.7 Integration with Rodin

A key objective in the development of ProR was the ability to support the

approach described in this work. The result is an integration plug-in that

allows to add ProR functionality to Rodin16. Starting with Rodin 2.5, the

update site for the integration is pre-installed, allowing the installation

with a few clicks.

The integration allows the identi�cation of phenomena within natural

language requirements (Rodin already allows the identi�cation of phenom-

ena in formal model artefacts); It supports the creation of traces between

arbitrary artefacts; and it tracks changes, marking traces as �suspect�

if source or target of the artefact changes (allowing the re-validation of

traces).

ProR supports the classi�cation of artefacts as R, W , S and D �out of

the box� by con�guring an enumeration attribute for this purpose. Further

integration is achieved by three features, provided by the integration plug-

in.

Tracing phenomena Tracing of phenomena is supported by colour-

highlighting those words that correspond to phenomena in the require-

ments text. The user has to mark phenomena with square brackets. If

a phenomena has been formally declared in the corresponding model, the

phenomenon is rendered in blue, otherwise in red, reminding the user

that an undeclared phenomenon is used. Further, if a word is encountered

that is the designation of a phenomenon, but not marked as such (with

square brackets), it is underlined red to remind the user that this word

may represent an untraced phenomenon.

16The integration is documented at http://wiki.event-b.org/index.php/ProR

4.8. CONCLUSION 119

Creating Justi�cation Traces Traces between artefacts can be cre-

ated via drag and drop. This includes traces between informal artefacts,

as well as informal and formal ones. Traces are established via drag and

drop. The resulting traces and corresponding model elements can then be

visualised inside the requirements speci�cation. The model elements are

referenced and are therefore always up to date. Traces can be annotated

with arbitrary information.

Tracking Changes If the source or target of a trace changes, then

the trace is marked as suspect by showing a small icon in a dedicated

column. Two columns exist for source and target of the trace, respectively.

By double-clicking on a cell, the user can reset the suspect �ag after re-

validating the trace.

There are still some limitations, however. While all required data

structures exist, the tool would bene�t from more sophisticated reporting,

in particular with respect to the properties listed in Section 3.6.

The integration plug-in already added value during the creation of

the case study (Chapter 5). The ability to trace phenomena and the

immediate feedback from the colour highlighting helped to keep the

terminology across artefacts consistent.

The ability to quickly identify suspect traces was also very useful. After

an iteration of development, it allowed to systematically inspect the traces

and to perform a manual validation where needed.

The creation of traces between formal and informal artefacts was not

as seamless as hoped. The drag operation had to start in the outline of

the formal model. It would have been nicer if it could have been initiated

directly from the Rodin editor, but this would have required a change to

the editor code. By using the project outline to initiate the drag operation,

no Rodin code had to be modi�ed to support the integration.

Further, currently it is only possible to create traces to events, but not

to model elements within events (guards, actions, witnesses, parameters).

This can be compensated by tracing to the event and adding relevant

information to an annotation of the trace. With respect to the ProR

approach, this is not problematic, as tracing to the complete event just

in�ates the satisfaction base slightly (see Section 3.2.3).

4.8 Conclusion

With ProR, academic research could be combined with the development of

a tool that has industrial relevance. Arguable, the scienti�c value of ProR

120 CHAPTER 4. PROR REQUIREMENTS PLATFORM

in itself is not particularly high: The tool provides a user interface for a

data model that was provided by an international standard. Implementing

such a tool is straight forward, in principle.

Nevertheless, the development of ProR represents a signi�cant contri-

bution in more than one way. First, the scienti�c value got established

by the development of the Rodin integration and the support of the ProR

approach. Second, the �rst Open Source implementation of the ReqIF

data model, ProR provides a solid platform for other researchers in the

�eld of requirements engineering. For instance, ProR has been used for

the ITEA-project Verde17 (Validation-driven design for component-based

architectures) [Jastram and Graf, 2011d]. Third, by becoming an Eclipse

Foundation project, the survival chances of ProR beyond this academic

work were signi�cantly improved. Not only increased this the visibility of

ProR, but also helped building a community of ProR users and develop-

ers. And last, the signi�cance of ProR in industry has been recognised as

well. The Eclipse proposal attracted support from 13 �interested parties�,

which include Airbus as a supporter. While at the time of writing ProR is

not yet used in production, there is signi�cant commercial interest, which

the �rm Formal Mind (Section 1.8) is trying to serve.

At this time, ProR development continues with �ve Eclipse commit-

ters. Further, it is planned to continue academic work on the Rodin

integration during the lifetime of the FP7 ITC project Advance18.

17http://www.itea-verde.org/
18http://www.advance-ict.eu/

Chapter 5

A Case Study

Chapter 3 presented an approach and Chapter 4 described the tool ProR.

In this chapter, a formal speci�cation of a simple tra�c light controller

will be developed. This example uses Problem Frames to structure

the problem, and the model will be built using the Event-B formalism.

Customised tool support in the form of an integration of ProR and Rodin,

described in Section 4.7 is used to support this approach.

This example has been used before [Jastram et al., 2010,Jastram et al.,

2011]. This example is simple enough to understand, but complex enough

to be interesting. Further, the example concerns state (which is modelled

formally) as well as real-time (which is speci�ed informally, as well as

using temporal logic), demonstrating the mixing of formal and informal

modelling elements.

A case study of a lift controller, using the ProR approach, is available

in [Hallerstede et al., 2012].

5.1 The Goal: Crossing the Street

The goal of the system can be expressed in one sentence:

�A system that allows pedestrians to cross a road safely.�

Note that this goal leaves a lot of questions open, and does not make

any assumption regarding the solution. Open questions include:

• What kind of street is it? One lane or six lanes?

• Is there already some kind of infrastructure in place, like electricity,

existing tra�c lights, etc.

121

122 CHAPTER 5. A CASE STUDY

• Is it okay to stop tra�c? For instance, this is not the case on a

highway.

• In which country does this take place? What kind of regulations

must be observed?

• How much space is available for providing a solution to the crossing-

problem?

Many people will already have an idea on how to solve the problem.

However, it is not wise to decide on a solution until the problem is fully

understood. Here are some examples of quite diverse possible solutions:

• Build a bridge for the pedestrians

• Put the road underground

• Build a zebra crossing

5.2 Iteration 0: Elicitation of Requirements

The �rst step in describing the problem is the elicitation of requirements

and the assumptions about the domain. Elicitation is outside the scope

of this work. Methods for elicitation include introspection, interviews and

analysis [Goguen and Linde, 1993]. For the street crossing problem, the

starting point is the list of (simulated) requirements below, which is the

result of the requirements elicitation phase. This information has been

captured with ProR. This list is accompanied by a sketch that depicts the

physical environment (Figure 5.1).

Figure 5.1: A sketch of the actual road and tra�c lights

5.2. ITERATION 0: ELICITATION OF REQUIREMENTS 123

A0.1 The system allows pedestrians to cross the street safely

A0.2 The road is equipped with two tra�c lights for the cars (colors

red, yellow and green), one in each direction.

A0.3 The road is equipped with two tra�c lights for the pedestrians

(colors red and green), one on each side of the street.

A0.4 The tra�c lights for the pedestrians are equipped with push

buttons.

A0.5 The tra�c for cars is usually green.

A0.6 Pedestrians can request permission to cross the street by

pushing the push button.

A0.7 Pedestrians will get permission to cross the street t1 seconds

after the push button got pressed.

A0.8 The duration of the green light for pedestrians is t2 seconds.

A0.9 The tra�c light system follows the regulations for tra�c lights

of Germany (Richtlinien für Signalanlagen, RiLSA).

Closer inspection of these artefacts reveals that the list not only

contains requirements, but also domain properties. It is also implied

that the system will be used to control a tra�c light system (and not,

say, a pedestrian bridge), as some artefacts speci�cally refer to tra�c

lights and colours (e.g. A0.2 and A0.3, etc.). It is not clear, however,

on whether the tra�c lights are given, and therefore part of the domain

W , or whether somebody already proposed a solution, implying that these

artefacts belong to S. In other words, the system boundaries are not clear,

the description is vague about what is to be constructed (�the system�).

In this example, the objective to construct a controller, and the

hardware is considered part of the domain. This is clari�ed in the next

section, using the Problem Frames approach, which was introduced in

Section 3.5.1.

These requirements have a number of additional weaknesses. For in-

stance, the regulation cited in A0.9 requires a delay between the pedes-

trian light turning red and the light for the cars turning green. This delay

depends on the width of the street, and this domain property is missing.

There are more issues, and some of them will become apparent only

after modelling the system.

In the following, the ProR approach is used to identify and address

these and other weaknesses, while building up the speci�cation, consisting

of formal and non-formal artefacts.

124 CHAPTER 5. A CASE STUDY

5.3 Iteration 1: The Problem Diagram

A problem diagram is an extension of a context diagram by adding

requirements. It serves as a starting point for problem analysis. Realistic

problems must be decomposed in a set of subproblems.

To construct the initial problem diagram, the domains and their shared

phenomena must be identi�ed. This is typically done by analysing the

exiting requirements and is described in [Jackson, 2001]. A good starting

point are the nouns found in the requirements text. The following list

shows the identi�ed domains and introduces designations:

System. The system has to be constructed, and it controls the tra�c

lights [tl_cars] and [tl_peds] via control signals.

Street. The [street] itself does not control any phenomena. The use of

the synonym [road] will be discontinued.

Pedestrians. The [pedestrians] control their movement across the

[street], which is modelled as [crossing], [stopping] and [waiting].

They also control the phenomenon [push].

Cars. Corresponding to [pedestrians], [cars] control the movement vehi-

cles across the street, which is modelled as [crossing], [stopping] and

[waiting].

Tra�c light car. The [tl_cars] controls its lights, which are [red], [yel-

low] and [green].

Tra�c light pedestrians. The [tl_peds] controls its lights, which are

[red] and [green].

Push buttons. The [buttons] control their state

Just by creating this list (which is similar in nature to a glossary),

a synonym was identi�ed. The quality of the system description will be

improved by removing it.

The corresponding problem diagram is shown in Figure 5.2. A problem

diagram consists of exactly one machine domain (the controller) and an

arbitrary number of domains (there are designed and given domains), as

well as phenomena being shared between domains.

The problem diagram shows the domains and whether they share

phenomena. The phenomena are labelled with the entity controlling it

and the possible states (e.g. red, green), as described in the list above.

5.3. ITERATION 1: THE PROBLEM DIAGRAM 125

Problem Frames are only used to support this approach, and the

problem diagram is merely used as an aid to structure our requirements.

In particular, the problem diagrams shown here are not integrated into

ProR.

Figure 5.2: The initial problem diagram

The problem diagram represents the foundation for classifying the arte-

facts. In particular, it helps to clarify the system boundaries. The ma-

chine domain �Tra�clight Controller� in the problem diagram represents

the system to be constructed. Therefore, all other domains are part of the

environment.

From the problem diagram, it is immediately clear which phenomena

belong to the environment (e) and which ones to the system (s): All

phenomena that are not connected to the controller belong to eh. Of the

remaining phenomena, those that are controlled by the system belong to

sv, and those that are controlled by the environment (but visible to the

controller) belong to ev.

The problem diagram uses a simpli�cation, where the phenomena

[tl_peds] and tl_cars are used twice (once representing the control signals,

and once representing the light visible to cars and pedestrians). This

simpli�cation is allowed [Jackson, 2001], and the phenomena are modelled

as sv.

Both states and values, are modelled as phenomena. For example,

[tl_peds] is the phenomenon representing the tra�c light state, while

[red], [yellow] and [green] are phenomena representing possible values for

[tl_peds].

126 CHAPTER 5. A CASE STUDY

With this knowledge, artefacts can be rephrased, using the new

designations, and they can be classi�ed as R, W or N .

With the aid of the problem diagram, one can restructure and im-

prove the requirements, according to the ProR approach. In addition to

evolution, this means classifying and marking artefacts and phenomena.

Figure 5.3 shows the restructured artefacts, as presented in ProR. All arte-

facts are classi�ed as R, W or N , all phenomena are listed in a glossary,

and the phenomena are marked by square brackets in the artefacts.

Figure 5.3: The classi�ed and restructured artefacts after iteration 1. This

is a screenshot taken from ProR.

The marking of phenomena immediately creates a number of use-

traces. This could be written as follows (e.g. for W1.4):

[tl_peds], [red], [green] ∈ W1.4
∈

5.4. ITERATION 2: A FIRST STEP TO FORMALISATION 127

Figure 5.3 visualises these relationship as well, by highlighting the used

phenomena directly in the natural language text.

The evolution of artefacts can be inferred by comparing the initial

artefacts with the revised artefacts (Figure 5.3. With such a small number,

it is easy to recognise the evolution, e.g.

A0.2 W1.1, W1.2

A more practical and scalable approach would be the creation of

revisions. While ProR itself does not support this, it could be realised

by using existing Eclipse plug-ins, for instance by integrating ProR with

a version control system like Subversion or git. Users could then access

the history of a ReqIF �le and use the version control to create di�-views,

showing the changes between revisions.

The evolution shown here should be validated by a domain expert.

At this point, all artefacts are still informal. Designations for the phe-

nomena were already introduced, but this should not inhibit a stakeholder

from understanding the artefacts. In fact, introducing designations and

structuring the system description as shown in Figure 5.3.

Nevertheless, the restructuring already allows to check some properties

of the system description that were described in Section 3.6. For instance,

(3.24) is violated, as [reset] is not used by any artefacts. This can be

remedied by introducing a new requirement:

R1.4 The [button] is [reset], once the [pedestrians] have crossed the

[street].

At what point the properties are validated is a matter of taste. It is also

clear that adequacy (3.4) is not realised yet, as nothing has been speci�ed

yet � so far, only the problem, not the solution, has been described.

5.4 Iteration 2: A First Step to Formalisation

In this section, the �rst formalisation is created, following the outline

depicted in Figure 3.4. Modelling the �rst requirement typically involves

a lot of work, as a good part of the domain model must be built before

the actual requirement can be modelled.

Before starting with the modelling process, it is worth contemplating

what the purpose of the model is, and which elements �conceptually�

shall be modelled and which not. The main purpose of creating the model

128 CHAPTER 5. A CASE STUDY

is to eventually implement a high-quality implementation. Further, the

model is a means of communication and used for managing change. It

may be employed in project management or testing as well.

Figure 5.4: A modi�ed subset of the initial problem diagram, re�ecting

elements in the initial formal model

5.4.1 Architectural considerations

The decision was made to build a model in Event-B. It is used to model

the safety-critical aspects of the system, which is something that Event-B

is well-suited for, as long as those aspects can be expressed as invariants,

as was argued in Section 3.3.

The structure of the model has an impact on readability and exten-

sibility. The main structuring feature of Event-B is re�nement � how

should it be employed? This case study employs Problem Frames for

structuring the problem, and the problem frames structure can help plan-

ning the re�nement. Speci�cally, Problem Frames work by superimposing

sub-problems onto each other (see Section 3.5.1). Event-B re�nement can

be used to introduce new domains from the problem diagram in subse-

quent re�nements. This technique is used in this example to introduce

the `[button]s in Section 5.6.

To start the formal modelling of the system, a subset of the initial

Problem Frames diagram (Figure 5.2) has been selected to be modelled

initially, shown in Figure 5.4. The domain �Push Buttons� has been left

out and will be superimposed later. Also, the phenomena for [tl_cars] and

[tl_peds] were simpli�ed into [cars_signal] and [peds_signal] to express

5.4. ITERATION 2: A FIRST STEP TO FORMALISATION 129

the essential information that these signals represent in terms of [stop] and

[go]. In Section 5.5, data re�nement is used to create a mapping between

the phenomena.

Working with time can be problematic in Event-B (see Section 3.3.2).

There is no notion of real-time. Time can sometimes be modelled

using counters, where each �tick� represents a �xed time length, as

demonstrated in Section 5.7. Doing so allows the modelling of certain

temporal properties, at the expense of complexity in the model. Whether

this added complexity is justi�ed depends on the project's requirements.

With the ProR approach, it is always an option to keep artefacts informal.

Another consideration is whether the model should be used to generate

actual code, eventually. An Event-B model used for code generation must

exhibit certain properties (all non-determinism has to be removed from

the model, for instance) [Edmunds and Butler, 2010]. This is not a

consideration for this case study.

5.4.2 The First Requirement

Figure 3.4 depicts the work �ow for building the formal model iteratively.

Let's follow that process and select the �rst requirement:

R1.1 The system allows [peds] [moving] across the [street] safely

This requirement is central to the system, it is safety-critical and

therefore should be modelled formally. At the same time, it is missing

some properties that a �good� requirement should have [Hood and Wiebel,

2005]. Speci�cally, there is no clear criteria telling whether �safety� has

been achieved, which has some non-functional aspects to it. In fact, R1.1

would be better classi�ed as goal (Section 2.6) than a requirement. Tech-

niques for developing requirements from goals exist (e.g. [Van Lamsweerde

et al., 2001]) and are outside the scope of this work. In the following, R1.1

will be evolved in a functional and a non-functional component.

The functional aspect of �safety� concerns crossing the street, without

being run over by a car. This can be expressed simply by stating the

desired behaviour of cars and pedestrians, with respect to the street, as

follows:

R2.1 When [peds] are [moving] or [stopping] on the [street], [cars]

must be [waiting].

This requirement still re�ects the relationships shown in Figure 5.4

130 CHAPTER 5. A CASE STUDY

(i.e., the tra�c lights are not mentioned in the requirement). Unfortu-

nately, R2.1 is weaker than R1.1. The other safety-related requirements

will be captured with the following non-functional requirement:

N2.1 The system has additional safety properties.

As the focus of this work is the formal modelling of the functional

aspects of the system, N2.1 is merely there to capture the non-functional

aspects of R1.1. In practice, it would be much more elaborate. Neverthe-

less, N2.1 is now part of the system description, has its own traceability

and has to be realised, if the system description is to be considered con-

sistent.

The evolution of R1.1 can now be documented as:

R1.1 R2.1, N2.1

5.4.3 Formalisation

The new requirement R2.1 is now �t to be formalised. The ProR approach

requires the identi�cation and modelling of phenomena. There is no �right�

or �wrong� here � there are many ways for building a model. Consider the

street: Should it be part of the model, and if so, which phenomena does it

share? While the diagram in Figure 3.5 shows the street as a domain, this

does not meant that it has to be modelled formally. For this case study

the decision has been made to exclude the street from the formal model.

The formal model will re�ect the car's and pedestrian's movement, but

the fact that this movement happens across the street. This is captured

in Figure 5.1, which should be considered part of the system description

as a domain property.

In the following, only relevant elements of the model are shown. The

complete model is included in Appendix B.

The phenomena used by R2.1 are [peds] and [cars], which will be

modelled in an Event-B context. Both can have the states [moving],

[stopping] and [waiting]. The states will be modelled as constants in the

Context ctx2. Event-B requires constants to be typed. Therefore, a carrier

set [moving] is introduced. For brevity, only the declarations are omitted,

leaving the following axiom:

axm1 : partition(MOV ING, {moving}, {stopping}, {waiting})

5.4. ITERATION 2: A FIRST STEP TO FORMALISATION 131

Next, the phenomena [peds] and [cars] can be introduced as Event-

B variables in the machine mac02a. Corresponding to the context,

declarations are omitted.

w2.1 : peds ∈MOV ING

w2.2 : cars ∈MOV ING

These two invariants correspond to the descriptions of [peds] and [cars]

in Figure 5.3. Those descriptions are domain properties that should be

made explicit:

W2.1 Movement of [peds] is one of [moving], [stopping] or [waiting].

W2.2 Movement of [cars] is one of [moving], [stopping] or [waiting].

This, in turn, results in two equivalence traces:

W2.1 ↔ w2.1 ↔

W2.2 ↔ w2.2 ↔

This is su�cient to formalise R2.1:

r2.1 : (peds = moving ∨ peds = stopping) ⇒ cars =

waiting

This is an equivalence:

R2.1 ↔ r2.1 ↔

5.4.4 Completing the Machine

The model described so far has no ability to change state, and no initial

state. Both are achieved by events.

The initialisation is performed by a special event �Initialisation�, which

must not result in an invariant violation. For this example, it is assumed

that neither cars nor pedestrians are on the road, meaning that both

phenomena are set to [waiting]. This is a domain property that must be

documented. The initialisation can have multiple actions, therefore the

action is traced, not the event.

EVENTS

132 CHAPTER 5. A CASE STUDY

Initialisation

begin

w2.3 : peds := waiting

w2.4 : cars := waiting
end

W2.3 Upon activating the system, [peds] are [waiting].

W2.4 Upon activating the system, [cars] are [waiting].

W2.3, W2.4 ↔ w2.3, w2.4 ↔

Before events for state transitions of [peds] and [cars] can be provided,

their behaviour must be speci�ed as well. As already hinted at with

W2.1 and W2.2, the real-world behaviour was reduced to three conceptual

states. The model will provide events to cycle through these states in the

order [waiting], [moving], [stopping]. The following shows the model for

[peds], [cars] are modelled correspondingly:

EVENTS

Event peds_waiting_to_moving =
when

W2.1a : peds = waiting
then

W2.1b : peds := moving
end

Event peds_moving_to_stopping =
when

W2.1c : peds = moving
then

W2.1d : peds := stopping
end

Event peds_stopping_to_waiting =
when

W2.1e : peds = stopping
then

W2.1f : peds := waiting
end

5.4. ITERATION 2: A FIRST STEP TO FORMALISATION 133

END

Introducing these events makes the trace between W2.1 and w2.1

suspect. In fact, this model represents a strengthening of W2.1. However,

in Section 3.3.2 it was argued that the formal domain properties may only

be weaker, not stronger than the informal ones. Thus, there is either a

problem in the model or in the domain properties. A domain property

corresponding to what has been modelled here would be:

W2.1' [peds] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

This domain property is written to already anticipate the reaction of

pedestrians to tra�c lights, even though the tra�c lights have not yet

been modelled.

This is less than optimal, and whether it is acceptable is up to the

domain experts. While there may be a better way to model the behaviour

of pedestrians, this behaviour is now adapted for this case study (and

W2.2' correspondingly).

5.4.5 Proof Obligations

In its current form, the Event-B creates seven proof obligations, but only

�ve are discharged. This is shown in Figure 5.5. This makes sense: So far,

a part of the world has been modelled, as well as one requirement that

describes how the world should behave, once the system is speci�ed. But

nothing has been speci�ed yet.

The undischarged proof obligations can be used to identify the prob-

lematic artefacts by using traceability. This is trivial in this case. The

undischarged proof obligations are peds_waiting_to_moving/r2.1/INV

and cars_waiting_to_moving/r2.1/INV. These can be traced to R2.1

which may be violated, if [peds] start [moving], while [cars] are not [wait-

ing] (or the other way around, respectively).

The system does not control pedestrians nor cars � it controls tra�c

lights. Therefore, �rst the behaviour of pedestrians and cars with respect

to a tra�c light must be modelled (domain property), which in turn allows

the formal speci�cation to be written such that R2.1 is realised and all

proof obligations regarding r2.1 are discharged.

It is a matter of taste whether re�nement shall be used or not.

Speci�cally, r2.1 could be removed from the initial machine. A �rst

134 CHAPTER 5. A CASE STUDY

re�nement could then add the behaviour of the pedestrians and cars with

respect to the tra�c lights, while a second re�nement could add r2.1 and

the speci�cation elements that realise it. On the other hand, all three

machines could be rolled into one.

For this case study, the initial machine will be modi�ed to introduce

the tra�c lights and the behaviour of cars and pedestrians with respect

to the tra�c lights. A �rst re�nement will then add r2.1 and the corre-

sponding speci�cation elements. With this structure, the initial machine

only contains domain properties, while the �rst re�nement contains a re-

quirement and its corresponding speci�cation elements.

5.4.6 Modelling Tra�c Lights

First, the phenomena representing the possible states of the tra�c lights

have to be added to the context. As explained earlier, initially the states

are modelled as [stop] and [go]. Only later will this be changed to the

actual tra�c light colours using data re�nement.

w2.5 : partition(SIGNAL, {stop}, {go})

This must be documented:

W2.5 Conceptually, the tra�c lights [peds_signal] and [cars_signal]

can indicate a [stop] or [go] signal, which is represented in the

form of colours.

W2.6 The initial state for [peds_signal] and [cars_signal] is [stop]

Second, the machine will be modi�ed by adding variables for the

tra�c lights, as well as events that modify it. The following shows the

model elements for [peds_signal], the tra�c light for cars is modelled

correspondingly. Not shown is the initialisation, which sets both tra�c

lights to [stop]:

VARIABLES

peds_signal
INVARIANTS

w2.5a : peds_signal ∈ SIGNAL
EVENTS

Event set_peds_signal =
any

5.4. ITERATION 2: A FIRST STEP TO FORMALISATION 135

signal
where

w2.5c : signal ∈ SIGNAL
then

w2.4d : peds_signal := signal
end

END

Using the model yields the following traceability:

W2.5 ↔ set_peds_signal, set_cars_signal ↔

W2.6 ↔ w2.6a, w2.6b1 ↔

Last, the behaviour of pedestrians and cars with respect to the signals

must be modelled. This is undocumented domain knowledge that is so

common that it is unlikely that a more traditional development approach

would document it:

W2.7 [peds] start [moving] only if [peds_signal] is [go]. If

[peds_signal] turns to [stop], [peds] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.8 [cars] start [moving] only if [cars_signal] is [go]. If

[cars_signal] turns to [stop], [cars] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

These domain properties can be partially realised adding guards to

the events peds_waiting_to_moving and cars_waiting_to_moving. The

guard would only the execution of the action if the corresponding tra�c

light indicates [go].

W2.7 → w2.72, peds_waiting_to_moving,

peds_moving_to_stopping,

peds_stopping_to_waiting →

W2.8 → w2.83, cars_waiting_to_moving,

cars_moving_to_stopping,

cars_stopping_to_waiting

1Actions in event Initialisation
2Additional guard for event peds_waiting_to_moving

136 CHAPTER 5. A CASE STUDY

→

The trace includes the transition events as well, as the property relies

on those events to realise the desired behaviour. This time, the trace is

not an equivalence, as the formal domain property is weaker than the

informal one, because it does not enforce the transition from [moving] to

[stopping] upon the change of the signal. This is permissible, as described

in Section 3.3.2.

This completes the modelling of the domain properties that are neces-

sary for modelling and realising R2.1.

Figure 5.5: Proof obligations for mac02b

5.4.7 Realising Requirement R2.1

The requirement R2.1 has already been formalised and will be added to the

machine mac02b, which is a re�nement of mac02a. Doing so will, again,

result in seven proof obligations, out of which two are not dischargeable

(Figure 5.5), as discussed in Section 5.4.5.

The issue is that the system currently allows the pedestrians to start

moving while the cars are still moving. This in turn is possible, because

both signals can be set to �go� at the same time. The objective is

to modify the behaviour of the system in a way to ensure that the

invariant r2.1 is never violated. The naive approach (adding a guard

to peds_waiting_to_moving) is not allowed, as the controller cannot

directly constrain the pedestrians, as can be seen from Figure 5.2. This

is also clear from the classi�cation of [peds] as eh. Assuming that the

corresponding artefact is a speci�cation element (S), this would also

violate (3.25).

3Additional guard for event cars_waiting_to_moving

5.4. ITERATION 2: A FIRST STEP TO FORMALISATION 137

The system can only constrain the behaviour of the tra�c lights, which

means adding guards to set_peds_signal and set_cars_signal. One can

add a guard that allows the pedestrian light only to change to �go� if the

cars are waiting:

This can be prevented by adding guards grd1 and grd2 to the two

events in question, as shown in the model further below.

But again, as is shown in Figure 5.2, the controller has no concept of

the movement of pedestrians. And correspondingly, the proof obligations

cannot be discharged: The system need to know how the tra�c lights and

pedestrians interact. This is an assumption that has to be made and can

be stated as follows:

W2.9 When [peds_signal] indicates [go], the [cars] are [waiting].

W2.10 When [cars_signal] indicates [go], the [peds] are [waiting].

These properties can be modelled as invariants:

w2.9 : peds_signal = go⇒ cars = waiting

w2.10 : cars_signal = go⇒ peds = waiting

This is not enough, however, and undischarged proof obligations

con�rm this. Traceability indicates that this time the problem lies with

the new domain properties, w2.9 and w2.10 with respect to the events

peds_waiting_to_moving and cars_waiting_to_moving. Intuitively the

problem is that both tra�c lights can still switch to [go] while cars

and pedestrians are waiting. A speci�cation element can be added that

prevents this:

S2.1 [tl_peds] and [tl_cars] must never be [go] at the same time.

S2.1 can be expressed as an invariant, as shown below. To prevent the

invariant from being violated two more guards have to be added, resulting

the the following additions to the model:

INVARIANTS

s2.1 : ¬(peds_signal = go ∧ cars_signal = go)

EVENTS

extends set_peds_signal

where

grd1 : cars = waiting

138 CHAPTER 5. A CASE STUDY

s2.1a : ¬(signal = go ∧ cars_signal = go)
end

Event set_cars_signal =
extends set_cars_signal

where

grd2 : peds = waiting

s2.1b : ¬(peds_signal = go ∧ signal = go)
end

Section B.3 shows the complete machine model, as well as the updated

list of requirements.

5.5 Iteration 3: Data Re�nement

Before addressing the remaining requirements, the simpli�cation regarding

the tra�c light colours must be taken care of. In Figure 5.2, the

phenomena [tl_cars] and [tl_peds] were introduced, representing the

colours of the tra�c light. But in Figure 5.4, the signals were modelled

as �stop� and �go�. This will now be recti�ed by making the connection

between the two. Section 3.3.2, described how consistency is maintained

across re�nement levels. This approach will now be applied here.

Figure 5.6: Data Re�nement of the tra�c light states for cars

Data re�nement allows to state abstract properties in a concise way,

while the implementation details are addressed later. This allows rea-

soning about some fundamental properties, as done here. Arguably, S2.1

would be more complicated if colours had been employed from the begin-

ning.

There are other situations where this approach can be exploited: For

product lines, some abstract properties could be realised in di�erent

5.5. ITERATION 3: DATA REFINEMENT 139

concrete implementations. In this example, �stop� and �go� could be

signaled with a barrier, as found in railroad crossings. A carefully crafted

abstraction would therefore support the automated veri�cation of di�erent

concrete implementations.

The relationship between �stop� and �go� and the colours, respectively,

is a design decision. The informal notation does not have to be expressed

in natural language � in this case it is more adequate to use a diagram,

as shown in Figure 5.6. The notation does not follow a standard. Another

option would have been to use something more precise like a UML state

diagram. This is supported by UML-B [Snook and Butler, 2006], for

instance. The validation of the diagram with a domain expert, however,

is indispensable. This design decision can be recorded as follows:

D3.1 The relationship between [tl_peds] and [peds_signal] is a

mapping of [red] to [stop] and [green] to [go], respectively.

D3.2 The relationship between [tl_cars] and [cars_signal] shall

adhere to Figure 5.6.

Using colours requires the introduction of new constants (for the

colours) and new variables for the tra�c light states. Here is the de�nition

of the colours, which are introduced in a context ctx03 that extends ctx02

from the previous iteration:

colours : partition(COLOURS, {red}, {yellow}, {green})

And below is the de�nition of the variables [tl_peds] and [tl_cars],

which are added to the machine mac03a that re�nes mac02b. The

connection between the colours and [stop] and [go] can be established

with invariants that trace to D3.1 and D3.2.:

VARIABLES

tl_peds

tl_cars
INVARIANTS

d3.1a : tl_peds ∈ {{red}, {green}}
d3.2a : tl_cars ∈ {{red}, {yellow}, {green}, {red, yellow}}
d3.1b : peds_signal = go⇔ green ∈ tl_peds

d3.2b : cars_signal = go⇔ green ∈ tl_cars

This results in the following traceability:

140 CHAPTER 5. A CASE STUDY

D3.1 ↔ d3.1a, d3.1b ↔

D3.2 X→ d3.2a, d3.2b X→

The formal model elements d3.1a and d3.1b are equivalent to D3.1, be-

cause only two states (and two state transitions) exist. In contrast, d3.2a

and d3.2b are weaker than the design decision D3.2, as state transitions

other then those shown in Figure 5.6 are permitted, in principle. For a

design decisions. But as design decisions are on the right side of (3.4), they

may not be weaker in the formal model (as discussed in Section 3.3.2).

To remedy this, the formal model re�nes the event set_cars_signal

into four events, representing the state transitions:

• set_tl_cars_red_to_redyellow

• set_tl_cars_redyellow_to_green

• set_tl_cars_green_to_yellow

• set_tl_cars_yellow_to_red

The guards and actions of these events ensure that the state transitions

speci�ed by the events correspond to the state transitions in Figure 5.6.

The updated traceability is:

D3.2 ↔ d3.2a, d3.2b, set_tl_cars_red_to_redyellow,

set_tl_cars_redyellow_to_green,

set_tl_cars_green_to_yellow,

set_tl_cars_yellow_to_red ↔

Once modelled, a number of additional adjustments to the model are

necessary: Introducing the gluing invariants requires introducing witnesses

in the corresponding events. All the additional model elements represent

speci�cation elements S that realise the design decisions D3.1 and D3.2.

As the design decisions have been modelled formally, the theorem prover

can guide the creation of of those speci�cation elements. The resulting

model can be found in Appendix B.4.

5.5.1 Temporal Logic

In its current form, Event-B does not generate proof obligations to

validate that the state transitions are realised as shown in Figure 5.6.

5.5. ITERATION 3: DATA REFINEMENT 141

Like with all other traces so far that bridge the formal and informal

realm, the validation is done by reasoning. In this case, however, it is

possible to articulate the state transitions in another formalism. This

is demonstrated here by using linear temporal logic (LTL) [Plagge and

Leuschel, 2010]. LTL can actually be understood as an extension to Event-

B, complementing its standard proof obligations. LTL consist of path

formulae with the temporal operators X (next), F (future), G (global), U

(until) and R (release). Expressions between curly braces are B predicates

which can refer to the variables of the Event-B model. The following LTL

formulae express the the state transitions and can be validated using the

ProB model checker for ProB (also described in [Plagge and Leuschel,

2010]):

G({tl_cars = {green}} =⇒
({tl_cars ={green}} U{tl_cars = {yellow}})) ∧

G({tl_cars = {yellow}} =⇒
({tl_cars ={yellow}} U{tl_cars = {red}})) ∧

G({tl_cars = {red}} =⇒
({tl_cars ={red}} U{tl_cars = {red, yellow}})) ∧

G({tl_cars = {red, yellow}} =⇒
({tl_cars ={red, yellow}} U{tl_cars = {green}}))

This formula is an equivalence to D3.2 and can be validated against

the model using ProB.

The usefulness of this, particularly in this example, is questionable: A

one-to-one equivalence has been established at the expense of a formula

that is hard to read, and probably incomprehensible to the stakeholders.

Still it demonstrates how other formalisms can be employed, as has been

argued in Section 3.1.4.

An approach to validation that may be more accommodating to

stakeholders is animation, as described in the next section.

5.5.2 Validation with Animation

As mentioned in Section 5.4.1, a weakness of Event-B is the representation

of time and sequences. One could prove that none of the invariants of the

model were violated � but this does not mean that the system behaves

as expected. An extreme scenario would be a system that does not allow

any state transitions. In such a system, none of the invariants could

142 CHAPTER 5. A CASE STUDY

be violated at all (assuming a valid initialisation), but that is rarely the

expected behaviour.

Figure 5.7: A valid but incorrect state in iteration 3. This is a screenshot

of ProB.

To validate a model with a domain expert, an animator could be

used. In this example, ProB has been used [Leuschel and Butler, 2003].

As Event-B relies on proofs, the model checking capabilities of ProB

are not needed here � although the model checker is a useful tool for

�nding out why a proof cannot be discharged, for instance. As all proofs

were discharged in this model, the domain expert will not �nd invariant

violations. Instead, the objective would be to �nd incorrect behaviour.

And indeed, the model does not behave exactly as one would expect.

Figure 5.7 shows the model in ProB after a number of state transitions.

The pedestrians are waiting, but their light is green. Still, the model

allowed tl_cars to be set to { red, yellow}, because this still means �stop�

according to Figure 5.6.

This can be �xed by adding another requirement:

R3.1 If [tl_peds] is [green], then [tl_cars] must be [red].

This requirement in turn can be translated into an invariant, which in

turn requires a guard to be added, as otherwise one proof obligation could

not be discharged:

INVARIANTS

5.5. ITERATION 3: DATA REFINEMENT 143

r3.1 : tl_peds = {green}⇒ tl_cars = {red}
EVENTS

Event set_tl_cars_red_to_redyellow =
re�nes set_cars_signal

...

when

s3.3 : tl_peds ̸= {green}
...

5.5.3 Adding Implementation Detail

A domain expert may object the fact that the green cycles of the tra�c

lights for cars and pedestrians do not have to alternate in this model:

[tl_peds] could cycle endlessly between [red] and [green], without [tl_cars]

turning green at all. This is not surprising, as this requirement is not

captured anywhere. In fact, it takes a domain expert to decide whether

this is even true (there may be special situations like maintenance where

such a requirement does not hold).

For this case study, this requirement is now recorded explicitly:

R3.2 [green] cycles for [tl_cars] and [tl_peds] must alternate.

It is tricky to capture this requirement as an invariant because of its

temporal nature. The ProR approach provides several ways of dealing with

this. One option is to simply not model it formally. To still demonstrate

consistency of the model, the corresponding speci�cation element could

be state informally, thereby satisfying (3.4). Another option would by

using a formalism that allows expressing R3.2, like LTL, as demonstrated

in Section 5.5.1.

Instead, this requirement could be implemented using an auxiliary

variable. But such a variable is hidden from the environment, an would

therefore be part of sh, which, according to Section 3.2.1, makes it imple-

mentation P . In Section 3.2.2 it was argued that, while implementation

is not the focus of the ProR approach, it can still be employed if deemed

useful. Further, there is no di�erence in principal on whether re�nement is

employed for speci�cation or implementation, as discussed in Section 3.3.2.

To demonstrate this, the realisation of R3.2 with implementation is

demonstrated in the following. For clarity, this is realised in a separate re-

�nement mac03b. The following machine has been shortened to only show

the relevant model elements, the full machine is Available in Appendix B.4:

144 CHAPTER 5. A CASE STUDY

MACHINE mac03b

REFINES mac03a

SEES ctx03

VARIABLES

peds_was_green

EVENTS

Event set_tl_peds_red_to_green =
extends set_tl_peds_red_to_green

when

p3.1a : peds_was_green = FALSE
end

Event set_tl_peds_green_to_red =
extends set_tl_peds_green_to_red

then

p3.1b : peds_was_green := TRUE
end

Event set_tl_cars_red_to_redyellow =
extends set_tl_cars_red_to_redyellow

when

p3.1c : peds_was_green = TRUE
end

Event set_tl_cars_yellow_to_red =
extends set_tl_cars_yellow_to_red

then

p3.1d : peds_was_green := FALSE
end

END

This implementation results in the following traceability:

R3.2 ↔ p3.1a, p3.1b, p3.1c, p3.1d ↔

It may be useful to annotate this trace, which is supported by the tool

ProR.

5.6. ITERATION 4: MODELLING THE BUTTONS 145

5.6 Iteration 4: Modelling the Buttons

Let's continue with the process shown in Figure 3.4 and formalise the next

requirement R1.2:

146 CHAPTER 5. A CASE STUDY

R1.2 [peds] signal their wish to cross the [street] by [push]ing one of

the [button]s.

Re�nement is applied here to gradually include formal requirements

into subsequent re�nements, as described in Section 3.3. This can be

demonstrated by adding a variable [request] for the managing the push

button state, as visualised in Figure 5.2 by the phenomenon PB!{pushed,

not pushed}, as well as the TC!{reset}.

The state of the variable is controlled by both the environment (ev, a

pedestrian triggering the request to cross) and the system (by resetting

the request to cross). The distinction between the two is not made with

respect to the variable itself, but with respect to the events modifying the

[request] state.

Pedestrians can push the button anytime, as often as they want.

However, the request can only be set if it is not set yet. This distinction

is re�ected by Figure 5.2. In the formal model, the pedestrian and the

pushing of the button is not modelled, only the setting of the request �ag.

This results in additional requirements:

R4.1 [push]ing a [button] results in [request] to be set, it not yet set.

R4.2 If [request] is set and [tl_peds] is not [green], it will eventually

turn [green].

R4.3 After [tl_peds] turns [red], [request] is reset.

Further, R1.2 contains some non-functional aspects and will therefore

evolve in a non-functional requirement. Doing so will ensure that it still

has to be justi�ed, but also that R4.1, R4.2 and R4.3 can participate in

the justi�cation, as expressed by (3.7):

N4.4 [peds] signal their wish to cross the [street] by [push]ing one of

the [button]s.

R1.2 N4.4

This is now su�cient information for modelling the new requirements

in re�nement mac04. To model the setting of [request] by the environment,

a new event set_request is introduced. The resetting is realised by

adding actions to the existing events set_tl_peds_green_to_red and

set_tl_cars_green_to_yellow, which are controlled by the system.

MACHINE mac04

5.6. ITERATION 4: MODELLING THE BUTTONS 147

REFINES mac03

SEES ctx03

VARIABLES

request
INVARIANTS

type_request : request ∈ BOOL
EVENTS

Event set_request =
when

s4.1a : request = FALSE
begin

s4.1b : request := TRUE
end

Event set_tl_cars_green_to_yellow =
extends set_tl_cars_green_to_yellow

when

s4.2 : request = TRUE
end

Event set_tl_peds_green_to_red =
extends set_tl_peds_green_to_red

then

s4.3 : request := FALSE
end

END

R4.1 and R4.3 can be traced directly into the model:

R4.1 ↔ set_request ↔

R4.3 ↔ s4.3 ↔

This is not the case for R4.2, however. In fact, closer inspection of

R4.2 and r4.2 reveals that r4.2 has a stronger meaning than what R4.2

expresses: It states that the tra�c light for cars may only turn red, if, and

only if, the signal has been requested. This may be stronger than what

is needed. For instance, there may be a maintenance mode that allows

turning the signal to red. For simplicity in this case study, this meaning

is retained, but made explicit.

148 CHAPTER 5. A CASE STUDY

Further, R4.2 contains a temporal statement that is not part of the

formal model. Therefore, R4.2 is rephrased, and split into two:

5.7. ITERATION 5: INTRODUCING TIME 149

R4.2′ [tl_cars] may only turn not [green], it a [request] is pending.

R4.2′′ If a [request] is pending, [tl_peds] must eventually turn [green].

The second requirement R4.2′′ contains a temporal property. A

simple option is the conversion into a non-functional property. Another

alternative would be the creation of a temporal property, corresponding

to Section 5.5.1.

5.7 Iteration 5: Introducing Time

As discussed in Section 5.4.1, time can be tricky with a formalism

like Event-B. The requirements contain two requirements that introduce

timing constrains, which are N1.2 and N1.3. These were modelled as

non-functional requirements.

It is possible to evolve these requirements in a functional and non-

functional component. Speci�cally, it is possible to model an abstract

clock in Event-B that counts �ticks�, where each tick represents a certain

amount of time (the length of a tick is speci�ed as an informal artefact).

Such ticks are introduced for t1 (N1.2) and t2 (N1.3).

While designing in Event-B, the question of the duration of each

state transition (event) arises. This can be recorded as a non-functional

requirement. and has to be validated outside the formal model, according

to (3.7). With this idea, N1.2 and N1.3 evolve as follows:

N5.1 Each event that modi�es tra�c light transitions is [1] [tick]

long.

N5.2 The length of a [tick] is [1 second] with a tolerance of 5%.

R5.1 Between a [request] and [tl_peds] turing [green], at most [t_1]

ticks must pass.

R5.2 Upon turning [green], [tl_peds] must stay green for [t_2] ticks.

Note that in practice, there would be several other timing constants,

i.e. the minimum amount of time [tl_cars] needs to stay [red], after

[tl_peds] turned red. To keep this example reasonably short, only the

two timing properties above will be modelled.

Now the constants t_1 and t_2 can be introduced in a new context

ctx05. It can be useful to temporarily assign concrete numbers to such

constants to ease model checking.

150 CHAPTER 5. A CASE STUDY

Reasoning over the model and these artefacts unveils that R5.1 may

allow values for [t_1] that are not feasible. Speci�cally, there is a lower

limit. By reasoning over the model, this value can be found: A pedestrian

can request crossing as soon as [tl_peds] turns red. For [tl_cars] to turn

[green] and then [red] again, and then [tl_peds] to turn [green], at least 5

[tick]s will pass. While this has just been demonstrated with reasoning, a

model check should be able to con�rm this on the completed model.

But from that point of view, R5.1 makes only sense if there is a reason

to not react to a crossing request right away. And there is, to give the cars

a chance to cross the intersection as well. Thus, a missing requirement

has been identi�ed:

R5.3 Upon turning [green], [tl_cars] must stay green for [t_3] ticks.

Also, the state that tracks the ticks is, once again, implementation

detail. Taken all these things into consideration, the machine can be

constructed. A new re�nement mac05 is created that introduces two

variables for counting the ticks for the green phases. Upon turning green,

the counters are set to the corresponding value. New �tick� events count

backwards to ensure that the tra�c lights stay [green] for the minimum

required time. The resulting machine can be found in Appendix B.6.

5.7.1 Hidden Domain Properties

The model so far still contains state and events that model hidden domain

properties, [peds] and [cars]. These can be useful, as they help to

understand the model. At the same time, it should be possible to remove

them form the model without a�ecting the desired functionality. Event-

B does not allow this. It can be simulated, however, by simply adding

guards that evaluate to false (⊥) to those events. Doing so is particularly
helpful when inspecting the state space manually, as it is desirable to keep

the state space as small as possible. This is shown in Figure 5.8, where a

state diagram has been generated by ProB. As an additional measure to

keep the state space small, the constants [t_1] and [t_2] have been set

to 1.

As the state space of this model is rather small, it is well-suited for

inspection and can be used to validate the model against the requirements.

Alternatively, some of the requirements could have been stated using

LTL, as described in Section 5.5.1. Whether this would make things easier,

depends on the needs of the project.

5.8. ANALYSIS AND CONCLUSION 151

t_1 = 1 , t_3 = 1

SETUP_CONSTANTS(1,1)

t icks_cars_green = 0, t icks_peds_green = 0,request = FALSE,

peds_was_green = FALSE,t l_cars = {red},t l_peds = {red},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = s top

INITIALISATION(0,0,FALSE,FALSE,{red},{red},waiting

,stop,waiting,stop)

t icks_cars_green = 0, t icks_peds_green = 1,request = FALSE,

peds_was_green = FALSE,t l_cars = {red},t l_peds = {green},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = go

set_tl_peds_red_to_green

ticks_cars_green = 0, t icks_peds_green = 0,request = TRUE,

peds_was_green = FALSE,t l_cars = {red},t l_peds = {red},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = s top

se t_ reques t

t icks_cars_green = 0, t icks_peds_green = 1,request = TRUE,

peds_was_green = FALSE,t l_cars = {red},t l_peds = {green},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = go

se t_ reques t

t icks_cars_green = 0, t icks_peds_green = 0,request = FALSE,

peds_was_green = FALSE,t l_cars = {red},t l_peds = {green},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = go

tick_peds_green

set_tl_peds_red_to_green

ticks_cars_green = 0, t icks_peds_green = 0,request = TRUE,

peds_was_green = FALSE,t l_cars = {red},t l_peds = {green},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = go

tick_peds_greense t_ reques t

t icks_cars_green = 0, t icks_peds_green = 0,request = FALSE,

peds_was_green = TRUE,t l_cars = {red}, t l_peds = {red},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = s top

set_tl_peds_green_to_red

set_tl_peds_green_to_red

ticks_cars_green = 0, t icks_peds_green = 0,request = FALSE,

peds_was_green = TRUE,tl_cars = {red,yellow},tl_peds = {red},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = s top

set_tl_cars_red_to_redyellow

ticks_cars_green = 0, t icks_peds_green = 0,request = TRUE,

peds_was_green = TRUE,t l_cars = {red}, t l_peds = {red},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = s top

se t_ reques t

t icks_cars_green = 1, t icks_peds_green = 0,request = FALSE,

peds_was_green = TRUE,t l_cars = {green}, t l_peds = {red},

cars = waiting,cars_signal = go,peds = waiting,

peds_signal = s top

set_tl_cars_redyellow_to_green

ticks_cars_green = 0, t icks_peds_green = 0,request = TRUE,

peds_was_green = TRUE,tl_cars = {red,yellow},tl_peds = {red},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = s top

se t_ reques tset_tl_cars_red_to_redyellow

ticks_cars_green = 1, t icks_peds_green = 0,request = TRUE,

peds_was_green = TRUE,t l_cars = {green}, t l_peds = {red},

cars = waiting,cars_signal = go,peds = waiting,

peds_signal = s top

se t_ reques t

t icks_cars_green = 0, t icks_peds_green = 0,request = FALSE,

peds_was_green = TRUE,t l_cars = {green}, t l_peds = {red},

cars = waiting,cars_signal = go,peds = waiting,

peds_signal = s top

tick_cars_greenset_tl_cars_redyellow_to_green

ticks_cars_green = 0, t icks_peds_green = 0,request = TRUE,

peds_was_green = TRUE,t l_cars = {green}, t l_peds = {red},

cars = waiting,cars_signal = go,peds = waiting,

peds_signal = s top

tick_cars_green se t_ reques t

t icks_cars_green = 0, t icks_peds_green = 0,request = TRUE,

peds_was_green = TRUE,tl_cars = {yellow},tl_peds = {red},

cars = wait ing,cars_signal = stop,peds = wait ing,

peds_signal = s top

set_tl_cars_green_to_yellow

set_tl_cars_yellow_to_red

Figure 5.8: The state space created by ProB (all ticks reduced to 1, to

keep the state space small)

5.8 Analysis and Conclusion

One of the reasons for building the model and creating the traces was to

validate the model's consistency. For a consistent model, the properties

presented in Section 3.6 must hold. The system description and formal

model so far can be found in Appendix B.6. The informal system descrip-

tion consists of 11 functional requirements, 5 non-functional requirements,

152 CHAPTER 5. A CASE STUDY

2 design decisions, 1 speci�cation artefact and 16 domain properties.

The fact that only one speci�cation artefact exists is misleading,

as many more exist, but in the formal model, without an informal

representation. Whether an informal element needs to exist is up to the

modeller, and not only for speci�cation elements.

The model shown so far is not consistent, because R1.3 has not been

realised yet (compliance with regulations, RiLSA). As RiLSA contains

many requirements concerning the domain (i.e. arrangement of hardware),

its realisation is not possible. Therefore, it has to be validated outside the

model. In practice, R1.3 would be realised by passing certi�cation. This

could be documented as follows:

S6.1 The system passes the certi�cation process

With this, the traceability for R1.3 could be completed:

R1.3 X← S6.1 X←

Unfortunately, this trace stays suspect until the system is built and

certi�ed. But this is now documented. Other artefacts, in particular the

non-functional requirements, must be handled correspondingly.

A subset of the requirements contains a traceability into the formal

model. If the modelling process followed the ProR approach, and all traces

have been created correctly, then adequacy can be veri�ed by testing the

properties in Section 3.6. In practice, this step is likely to bring up more

issues that need to be resolved. Crucial here is the completeness of the

traceability with respect to (3.4). In particular, (3.4) involves all artefacts.

But in practice, only a subset of artefacts called satisfaction base is used

for reasoning, as discussed in Section 3.2.3. If the chosen satisfaction base

is too small (meaning that there are traces missing), then the argument

may be �awed. This is not a problem for the formal model, as by proving,

a correct satisfaction base is selected (otherwise, the proof obligation could

not be discharged).

The uses trace can be veri�ed as well with respect to the categorisation

of phenomena and their association with artefacts, as captured in (3.18)

� (3.28).

The uses relationship could be used even further, in principle. For

instance, in equivalence relationships it could be demanded that both

the formal and informal artefacts use the same phenomena, i.e. AI ↔
AF ⇒ uses[AI] = uses[AF]. But this does not work, because the ProR

approach does not distinguish between state (e.g. variables) and values

5.8. ANALYSIS AND CONCLUSION 153

(e.g. constants). Using a more sophisticated model for phenomena could

remedy this and is a topic for future work.

The model was realised in Rodin, using the ProR plug-in, which was

described in Section 4.7. Using the plug-in helped keeping the model

consistent (with respect to the relations de�ned in Section 3.3. The

colour highlighting of phenomena helped to quickly and reliably identify

all phenomena. Once justi�cation traces were established, the tool helped

to systematically re-validate the traces that were pointing to artefacts that

had changed (suspect links).

Working through the case study also helped identify weaknesses of the

tool and sparked ideas on how to improve it. This has been discussed in

Section 4.8.

154 CHAPTER 5. A CASE STUDY

Chapter 6

Conclusions and Future

Work

This work is concerned with the ProR approach, an approach for incremen-

tally building �high quality� system descriptions. The resulting system de-

scription consists of formal and informal artefacts, and is complemented

by a traceability that is also built during the incremental development pro-

cess. The resulting traceability supports systematic validation and change

management.

This work is also concerned with the development of the ProR tool,

an Open Source, Eclipse-based platform for working with requirements.

ProR is based on an open standard and can be integrated with formal

modelling tools to support the ProR approach.

6.1 Contributions

These are the two principal contributions of this work, the ProR approach

and the ProR tool. This work is further complemented by a case study

that demonstrates how the ProR approach is applied in practice, using

ProR.

6.1.1 The ProR Approach

A central contribution of the ProR approach is the validation of the

informal system description, by means of a formal model. While there

has been signi�cant progress in the �eld of formal model, a lot of research

is concerned with the consistency of the formal model itself, leaving out its

155

156 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

original purpose. This can result in formal speci�cations that are proven

correct, but still don't achieve what the stakeholder intend.

A consequence of the ProR approach is the fact that, even though

a formal model exists, the conclusions drawn are informal. This is

due to (3.10), where premise W I ∧ SI and conclusion RI ∧ DI are

both informal. Both are connected by the formal model by means

of traceability, according to (3.11) and (3.12). Considering that the

association is realised by informal means, the question arises what the

actual value of the formal model (and formal proof is). But this question is

not limited to the ProR approach, but applies to all methods that attempt

to solve real-world problems with formal modelling. The temptation exists

to identify the formal artefacts as requirements or domain properties. And

this is indeed desirable (equivalence), but not always achievable.

From that point of few, the real value of the ProR approach stems

from the traceability. The traceability supports informal reasoning, and

acknowledges both that some traces are not equivalences (but justi�cations

and realisations), and that some artefacts simply cannot be modelled

formally at all. Further, the traceability provides robustness that provides

con�dence when changes are necessary. At the same time, it allows (but

does not demand) to give formal modelling a central role in the system

description.

6.1.2 The ProR Platform

With ProR, this work makes a practical contribution to the tool landscape

in requirements engineering. Open source tools for managing requirements

existed before, but due to a missing common standard, those tools

were con�ned to niches and did not provide much interoperability. The

emerging ReqIF standard provided such a missing standard, and ProR is

the �rst Open Source implementation supporting this standard. By using

Eclipse as the tool platform, integration with other tools is facilitated

and encouraged. That an integration is possible and can be seamless has

been demonstrated by integrating ProR with Rodin, a tool for Event-B

modelling.

ProR has already been deployed in other academic projects, as dis-

cussed in Section 4.8. ProR also gained some visibility in industry, as

was described in Section 4.2.2. As an Eclipse Foundation project, there

is a good chance that ProR will survive this work and �ourish both in

academic and industrial use.

6.2. FUTURE WORK 157

6.1.3 Case Study

To demonstrate the feasibility of the ProR approach and the usability of

ProR in principle, a system description for a tra�c light controller has

been created. It showed that the approach works in principle. While

the case study was not a real-world example, it was still large enough

to demonstrate the various aspects of the ProR approach. It showed

how artefacts were structured and how a formal model would be build

iteratively, improving and extending the informal artefacts at the same

time.

6.2 Future Work

This work represents a self-contained approach with tool support. While

its feasibility has been demonstrated with a small example, a major goal

is the application on a real-world project.

This work sparked a number of ideas on how the ProR approach

could be extended. Particularly interesting is the further structuring

of phenomena. The ProR approach takes a rather broad approach to

classifying phenomena, by not distinguishing state, constants or events.

Other approaches and notations, like Problem Frames, KAOS or UML, use

more elaborate models for structuring phenomena. Using such approaches

would result in additional properties for a consistent system description.

Another area of research concerns domain-speci�c languages (DSLs),

which could make the tracing between informal and formal artefacts easier.

In fact, depending on the DSL, the formal artefact could be generated

automatically, although potentially at the expense of readability to the

stakeholders. Some work on this has already been published in [Jastram

and Graf, 2011d].

The use of animation has been discussed in Section 5.5.2. This could

be taken one step further, by extracting more information from the system

description to aid in the animation process. For instance, it should

be possible to automatically generate Problem Frames diagrams and to

animate them.

The work on the integration of ProR and Rodin will be continued.

Speci�cally, the tool currently only supports the establishing of the

traceability, but support for analysis is limited. It is desirable that the

tool reports all violations of known consistency properties, as described in

Section 3.1.3.

As discussed in Section 4.8, work on ProR as a generic tool for

requirements engineering will continue as well.

158 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.3 Conclusions

The aim of this research was to �develop a practical approach for specifying

systems that combines formal and informal speci�cation methods to take

advantage of their respective advantages and minimises their respective

disadvantages� (Section 3.1). I believe that this research brings this goal

signi�cantly closer: The combination of formal and informal speci�cation

methods has been achieved by building a traceability theory and an

approach for incrementally applying it to build a system description.

The practical aspect has been realised by building the ProR tool, and

by building a community and infrastructure that will ensure the survival

of ProR beyond this work.

Appendix A

Eclipse Proposal for RMF

This is the latest version of the proposal of RMF to the Eclipse Foundation,

before it became an o�cial project in November 2011. The proposal can

be found online at http://www.eclipse.org/proposals/modeling.mdt.rmf/.

The list of �interested parties� includes well-known companies like

Airbus, Atos and itemis.

The Proposal

The �Requirements Modeling Framework� (RMF) project is a proposed

open source project under the Model Development Tools Project.

This proposal is in the Project Proposal Phase (as de�ned in the

Eclipse Development Process) and is written to declare its intent and

scope. We solicit additional participation and input from the Eclipse

community. Please send all feedback to the Eclipse Proposals Forum.

The vision is to have at least one clean-room implementation of the

OMG ReqIF standard in form of an EMF model and some rudimentary

tooling to edit these models. The idea is to implement the standard so

that it is compatible with Eclipse technologies like GMF, Xpand, Acceleo,

Sphinx, etc. and other key technologies like CDO.

Background

The Eclipse ecosystem provides a number of projects to support software

development and systems engineering. However, in the open source com-

munity, one important aspect of the engineering process is very much

neglected: requirements management, consisting of a number of sub-

159

http://www.eclipse.org/modeling/mdt/
http://www.eclipse.org/forums/eclipse.proposals
http://www.omg.org/spec/ReqIF/

160 APPENDIX A. ECLIPSE PROPOSAL FOR RMF

disciplines including requirements capturing, requirements engineering, re-

quirements traceability, change management and product line engineering,

to name just a few.

The goal of RMF is to provide the technical basis for open source

projects that implement tools for requirements management. The condi-

tions for the inception of such a project are perfect: Until now, all tools for

requirements engineering su�ered from the lack of a standard for the ex-

change and storage of requirements. Each tool provider invented his own

method and meta-model for requirements, thereby limiting the common

user base and the possibility for exchange between tools.

The OMG just released the Requirements Interchange Format (ReqIF),

an XML-based data structure for exchanging requirements. The �rst draft

of this standard with the name RIF was created in 2004, and various

requirements tools (commercial and otherwise) already support it to some

degree. Currently there are three actively used versions of the standard:

RIF 1.1a, RIF 1.2 and ReqIF 1.0.1.

This open standard could have as much impact on requirements

structuring as the UML had on modeling. The implementation of the

ReqIF standard as an Eclipse project could similarly be as important for

the requirements community as was the implementation of UML2 in Ecore

for the modeling community by paving the way for such tools as Topcased

and Papyrus MDT.

Providing such a project under the Eclipse umbrella would o�er a

possibility for many projects that are involved in requirements manage-

ment to �nd a common implementation of the standard. It would push

Eclipse in to phases of the development process where it is currently under-

represented.

Scope

The RMF project's focus is the creation of libraries and tools for working

with ReqIF-based requirements. The objective is to provide the commu-

nity with a solid implementation of the standard upon which various tools

can be built. RMF will provide a means for data exchange between tools,

an EMF-based data model, infrastructure tooling and a user interface.

RMF will not provide support for Requirements Management. Instead,

it is expected that users will use specialized tools or work with the available

Eclipse tooling (EMF Compare, version control integration, etc.). Generic

or speci�c parts of the tooling can be hosted as part of the RMF project.

161

Description

The following diagram depicts the architecture of the current development

and indicates which elements will be part of the initial contribution:

We created an EMF-based implementation of the ReqIF core that

supports persistence using the RIF XML schema. Further, we created

a GUI for capturing requirements.

These contributions have their origins in research projects, where they

are actively used. In particular, these research projects already produced

extensions, demonstrating the value of the platform.

Why Eclipse?

The Eclipse ecosystem will bene�t from an implementation of a require-

ments standard to cover more aspects of system development. Currently,

modelling is covered well on the low level (EMF, TMF, CDT, etc.) and

high level (UML, SysML, etc.). Adding the domain of requirements cap-

turing would extend the coverage. To promote it, we need not only a

standard, but also a common implementation that tools build upon.

Being an Eclipse project will draw the interest of more parties to

the project. The implementation of a standard bene�ts greatly from the

participation of many parties (improvement of quality, reduction of cost).

In addition, long-term support through the participation of many parties

is essential for many domains.

Initial Contribution

The initial contribution will consist of an EMF-based ReqIF Core that

supports persistence, and a tool front-end for working with ReqIF-data.

162 APPENDIX A. ECLIPSE PROPOSAL FOR RMF

ReqIF Core

The �rst initial contribution will come from itemis and will include our

implementation of the ReqIF and RIF metamodels as .ecore models,

including special (de)serializers that map the EMF-models to a ReqIF

conforming standard. The model and (de)serializers are already available

at itemis and need only be provided.

The initial contribution has been internally tested. A ReqIF export

from production data from the automotive domain from a commercial

tool has been imported into Eclipse and exported again, keeping all the

structural data, with the exception of ReqIFs XHTML extensions (see

table below).

They have been implemented according to the speci�cation, but since

ReqIF is a new standard, no extensive tests with ReqIF �les coming from

other sources / other tools have been made.

GUI (known as ProR)

The second contribution will come from the University of Düsseldorf and

will include a front end that facilitates working with ReqIF data (ProR).

While ReqIF data could also be edited with the default EMF editor, this

is not even remotely practical: a tree view of the requirements, with

the details shown in the property view, doesn't allow users to e�ciently

navigate requirements or get an overview of what's there.

The GUI allows users to arrange only those requirements attributes

that they care about in a grid view and implements a number of short-

cuts for frequent operations that actually consist of a number of model

transformations. Further, it contains an extension mechanism that allows

integration with other EMF-based tools and supports custom rendering.

The GUI currently only support RIF 1.2, and not all RIF features are

implemented yet.

The GUI so far has been developed under the name ProR. This name,

including the pror.org property, will be part of the contribution to the

http://www.itemis.com
http://www.stups.uni-duesseldorf.de
http://pror.org

163

project (see legal issues below).

Legal Issues

All contributions will be distributed under the Eclipse Public License. The

ReqIF metamodel has been fully developed by itemis. The GUI has been

developed by University of Düsseldorf with changes from itemis.

The GUI development to date has been branded as ProR, supported

by the pror.org website. The rights to the brand and the name reside

with Michael Jastram, who is willing to agree to the Eclipse Trademark

Transfer Agreement.

Related Projects

Sphinx: Requirements models tend to grow quite large in commercial

projects. Using Sphinx will improve the performance and scalability. The

current implementation is not yet based on / integrated with Sphinx.

EMF Compare: Since the RMF is based on EMF, EMF Compare could

be a key technology for the comparison of requirements documents.

http://www.eclipse.org/legal/Trademark_Transfer_Agreement.pdf
http://www.eclipse.org/legal/Trademark_Transfer_Agreement.pdf

164 APPENDIX A. ECLIPSE PROPOSAL FOR RMF

M2T/BIRT: With the new Indigo Release, BIRT includes an EMF

adapter. BIRT could be one of the technlogies used to create documents

out of requirement models. The M2T technologies (Xpand, Acceleo) are

possible technologies as well.

Committers

The initial committers will deliver the initial release. Funding can be

provided through the ITEA2 research project until June 2012 and through

the Deploy project until February 2012. Funding may be available

thereafter.

The following individuals are proposed as initial committers to the

project:

Nirmal Sasidharan, itemis � RIF Core (Project Lead) Nirmal

Sasidharan is a developer and software architect at itemis. His

interests are in Model Driven Software Development (MDSD) based

on Eclipse platform. He has over 10 years of software development

experience in di�erent domains such as Automotive, Aerospace and

Telecommunication. Before joining itemis, Nirmal Sasidharan has

worked several years with Robert Bosch architecting tools. He

works and lives in Stuttgart, Germany.

Michael Jastram, Formal Mind GmbH � GUI Michael is coauthor

of the German Book "Eclipse Rich Client Platform" and has been

working with Java technologies as developer and architect since

1996. He is currently pursuing a Ph.D. in Computer Science at

the University of Düsseldorf. He is founder and managing director

of Formal Mind GmbH. He also founded and runs the local Java

User Group (rheinjug). He holds a Master degree from M.I.T.

Lukas Ladenberger, University of Düsseldorf � GUI Lukas is cur-

rently a Ph.D. student in Computer Science at the University of

Düsseldorf and an employee at Formal Mind GmbH. He has been

working with Java and Eclipse as developer since 2004. He is also

an active member of the local Java User Group (rheinjug).

Andreas Graf, itemis Andreas Graf is a Business Development Man-

ager at the automotive division of itemis. He is an expert in MDSD

for automotive software. Apart from his managerial role at itemis,

Andreas is writing tools based on Eclipse platform. Before joining

itemis, he has worked several years with BMW in the areas of process

de�nition, ECU software development and Software logistics.

165

We welcome additional committers and contributions.

Mentors

The following Architecture Council member will mentor this project:

• Ed Merks

• Kenn Hussey

Interested Parties

The following individuals, organisations, companies and projects have

expressed interest in this project:

• Airbus

• Atos

• emergn Ltd

• Formal Mind

• Heinrich-Heine University Düsseldorf

• HOOD GmbH

• itemis AG

• MKS

• ModelAlchemy Consulting

• Obeo

• Prostep

• TCL Software Ltd. (LuisCM)

• University of Applied Sciences Darmstadt (Prof. Fromm)

Project Scheduling

Initial contribution is anticipated in July or August 2011.

Changes to this Document

166 APPENDIX A. ECLIPSE PROPOSAL FOR RMF

Date Change

29-Jun-2011 Document created

25-Jul-2011 Added more interested parties; provided a link to the ProR

website; �xed umlauts.

26-Jul-2011 Added even more interested parties; Updated the feature

table (XHTML Support)

27-Jul-2011 Added one more committer biographies of committers.

Updated the feature table (XHTML and Tool Support)

28-Jul-2011 Added information about the transfer of the ProR trade-

mark to the Eclipse Foundation.

Appendix B

Case Study Model

B.1 Iteration 0

Iteration 0 represents the initial artefacts as produced by the stakeholders.

No formal model exists for this iteration.

B.1.1 Artefacts

A0.1 The system allows pedestrians to cross the street safely

A0.2 The road is equipped with two tra�c lights for the cars (colors

red, yellow and green), one in each direction.

A0.3 The road is equipped with two tra�c lights for the pedestrians

(colors red and green), one on each side of the street.

A0.4 The tra�c lights for the pedestrians are equipped with push

buttons.

A0.5 The tra�c for cars is usually green.

A0.6 Pedestrians can request permission to cross the street by

pushing the push button.

A0.7 Pedestrians will get permission to cross the street t1 seconds

after the push button got pressed.

A0.8 The duration of the green light for pedestrians is t2 seconds.

A0.9 The tra�c light system follows the regulations for tra�c lights

of Germany (Richtlinien für Signalanlagen, RiLSA).

167

168 APPENDIX B. CASE STUDY MODEL

B.2 Iteration 1

Iteration 1 represents the artefacts that were restructured by using Prob-

lem Frames. No formal model exists for this iteration.

B.2.1 Artefacts

R1.1 The system allows [peds] [moving] across the [street] safely

R1.2 [peds] signal their wish to cross the [street] by [push]ing one of

the [button]s.

R1.3 The tra�c light system follows the regulations for tra�c lights

of Germany (Richtlinien für Signalanlagen, RiLSA)

N1.1 The tra�c lights for cars [tl_cars] are usually [green].

N1.2 Between [push]ing the button for the �rst time in a cycle and

[tl_peds] allowing pedestrians to cross, at most [t_1] seconds

must pass.

N1.3 Upon turning [green], [tl_peds] must stay green for [t_2]

seconds, with a tolerance of 5%.

W1.1 Two synchronised tra�c lights for cars [tl_cars] are located

on the [street], according to Figure 5.1

W1.2 The state of the car tra�c lights is represented by [tl_cars],

which represents a subset of [red], [yellow] and [green], mean-

ing that the corresponding light is on.

W1.3 Two synchronised tra�c lights for pedestrians [tl_peds] are

located on the [street], according to Figure 5.1.

W1.4 The state of the pedestrian tra�c lights is represented by

[tl_peds], which represents a subset of [red] and [green], mean-

ing that the corresponding light is on.

W1.5 Two buttons are mounted on the bases of the pedestrian tra�c

lights [tl_peds], according to Figure 5.1, allowing [peds] to

[push] them.

W1.6 [peds] can press any of the push [button]s to trigger a [push]

event.

B.3. ITERATION 2 169

B.3 Iteration 2

The second iteration is the �rst iteration where formal modelling takes

place. The model consists of one context and two machines.

B.3.1 Artefacts

R2.1 When [peds] are [moving] or [stopping] on the [street], [cars]

must be [waiting].

R1.2 [peds] signal their wish to cross the [street] by [push]ing one of

the [button]s.

R1.3 The tra�c light system follows the regulations for tra�c lights

of Germany (Richtlinien für Signalanlagen, RiLSA)

N2.1 The system has additional safety properties.

N1.1 The tra�c lights for cars [tl_cars] are usually [green].

N1.2 Between [push]ing the button for the �rst time in a cycle and

[tl_peds] allowing pedestrians to cross, at most [t_1] seconds

must pass.

N1.3 Upon turning [green], [tl_peds] must stay green for [t_2]

seconds, with a tolerance of 5%.

W1.1 Two synchronised tra�c lights for cars [tl_cars] are located

on the [street], according to Figure 5.1.

W1.2 The state of the car tra�c lights is represented by [tl_cars],

which represents a subset of [red], [yellow] and [green], mean-

ing that the corresponding light is on.

W1.3 Two synchronised tra�c lights for pedestrians [tl_peds] are

located on the [street], according to Figure 5.1.

W1.4 The state of the pedestrian tra�c lights is represented by

[tl_peds], which represents a subset of [red] and [green], mean-

ing that the corresponding light is on.

W1.5 Two buttons are mounted on the bases of the pedestrian tra�c

lights [tl_peds], according to Figure 5.1, allowing [peds] to

[push] them.

W1.6 [peds] can press any of the push [button]s to trigger a [push]

event.

W2.1 [peds] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

W2.2 [cars] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

170 APPENDIX B. CASE STUDY MODEL

W2.3 Upon activating the system, [peds] are [waiting].

W2.4 Upon activating the system, [cars] are [waiting].

W2.5 Conceptually, the tra�c lights [peds_signal] and [cars_signal]

can indicate a [stop] or [go] signal, which is represented in the

form of colours.

W2.6 The initial state for [peds_signal] and [cars_signal] is [stop]

W2.7 [peds] start [moving] only if [peds_signal] is [go]. If

[peds_signal] turns to [stop], [peds] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.8 [cars] start [moving] only if [cars_signal] is [go]. If

[cars_signal] turns to [stop], [cars] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.9 When [peds_signal] indicates [go], the [cars] are [waiting].

W2.10 When [cars_signal] indicates [go], the [peds] are [waiting].

S2.1 [tl_peds] and [tl_cars] must never be [go] at the same time.

B.3.2 Context ctx02

CONTEXT ctx02

SETS

MOV ING

SIGNAL
CONSTANTS

moving

stopping

waiting

stop

go
AXIOMS

axm1 : partition(MOV ING, {moving}, {stopping}, {waiting})
axm2 : partition(SIGNAL, {stop}, {go})

END

B.3.3 Machine mac02a

MACHINE mac02a

SEES ctx02

VARIABLES

B.3. ITERATION 2 171

peds
cars

peds_signal

cars_signal
INVARIANTS

w2.1 : peds ∈MOV ING

w2.2 : cars ∈MOV ING

w2.5a : peds_signal ∈ SIGNAL

w2.5b : cars_signal ∈ SIGNAL
EVENTS

Initialisation

begin

w2.3 : peds := waiting

w2.4 : cars := waiting

w2.6a : peds_signal := stop

w2.6b : cars_signal := stop
end

Event peds_waiting_to_moving =
when

w2.1a : peds = waiting

w2.7 : peds_signal = go
then

w2.1b : peds := moving
end

Event peds_moving_to_stopping =
when

w2.1c : peds = moving
then

w2.1d : peds := stopping
end

Event peds_stopping_to_waiting =
when

w2.1e : peds = stopping
then

w2.1f : peds := waiting
end

172 APPENDIX B. CASE STUDY MODEL

Event cars_waiting_to_moving =
when

w2.2a : cars = waiting

w2.8 : cars_signal = go
then

w2.2b : cars := moving
end

Event cars_moving_to_stopping =
when

w2.2c : cars = moving
then

w2.2d : cars := stopping
end

Event cars_stopping_to_waiting =
when

w2.2e : cars = stopping
then

w2.2f : cars := waiting
end

Event set_peds_signal =
any

signal
where

w2.5c : signal ∈ SIGNAL
then

w2.5d : peds_signal := signal
end

Event set_cars_signal =
any

signal
where

w2.5e : signal ∈ SIGNAL
then

w2.5f : cars_signal := signal
end

END

B.3. ITERATION 2 173

B.3.4 Machine mac02b

MACHINE mac02b

REFINES mac02a

SEES ctx02

VARIABLES

peds
cars

peds_signal

cars_signal
INVARIANTS

r2.1 : (peds = moving ∨ peds = stopping) ⇒ cars =

waiting
w2.9 : peds_signal = go⇒ cars = waiting

w2.10 : cars_signal = go⇒ peds = waiting

s2.1 : ¬(peds_signal = go ∧ cars_signal = go)
EVENTS

Initialisation

extended

begin

w2.3 : peds := waiting

w2.4 : cars := waiting

w2.6a : peds_signal := stop

w2.6b : cars_signal := stop
end

Event peds_waiting_to_moving =
extends peds_waiting_to_moving

when

w2.1a : peds = waiting

w2.7 : peds_signal = go
then

w2.1b : peds := moving
end

Event peds_moving_to_stopping =
extends peds_moving_to_stopping

when

w2.1c : peds = moving

174 APPENDIX B. CASE STUDY MODEL

then

w2.1d : peds := stopping
end

Event peds_stopping_to_waiting =
extends peds_stopping_to_waiting

when

w2.1e : peds = stopping
then

w2.1f : peds := waiting
end

Event cars_waiting_to_moving =
extends cars_waiting_to_moving

when

w2.2a : cars = waiting

w2.8 : cars_signal = go
then

w2.2b : cars := moving
end

Event cars_moving_to_stopping =
extends cars_moving_to_stopping

when

w2.2c : cars = moving
then

w2.2d : cars := stopping
end

Event cars_stopping_to_waiting =
extends cars_stopping_to_waiting

when

w2.2e : cars = stopping
then

w2.2f : cars := waiting
end

Event set_peds_signal =
extends set_peds_signal

any

signal

B.3. ITERATION 2 175

where

w2.5c : signal ∈ SIGNAL

grd1 : cars = waiting

s2.1a : ¬(signal = go ∧ cars_signal = go)
then

w2.5d : peds_signal := signal
end

Event set_cars_signal =
extends set_cars_signal

any

signal
where

w2.5e : signal ∈ SIGNAL

grd2 : peds = waiting

s2.1b : ¬(peds_signal = go ∧ signal = go)
then

w2.5f : cars_signal := signal
end

END

176 APPENDIX B. CASE STUDY MODEL

B.4 Iteration 3

In the third iteration, the tra�c light signals will be mapped from stop

and go to the actual colours, using data re�nement.

B.4.1 Artefacts

R2.1 When [peds] are [moving] or [stopping] on the [street], [cars]

must be [waiting].

R1.2 [peds] signal their wish to cross the [street] by [push]ing one of

the [button]s.

R1.3 The tra�c light system follows the regulations for tra�c lights

of Germany (Richtlinien für Signalanlagen, RiLSA)

R3.1 If [tl_peds] is [green], then [tl_cars] must be [red].

R3.2 [green] cycles for [tl_cars] and [tl_peds] must alternate.

N2.1 The system has additional safety properties.

N1.1 The tra�c lights for cars [tl_cars] are usually [green].

N1.2 Between [push]ing the button for the �rst time in a cycle and

[tl_peds] allowing pedestrians to cross, at most [t_1] seconds

must pass.

N1.3 Upon turning [green], [tl_peds] must stay green for [t_2]

seconds, with a tolerance of 5%.

D3.1 The relationship between [tl_peds] and [peds_signal] is a

mapping of [red] to [stop] and [green] to [go], respectively.

D3.2 The relationship between [tl_cars] and [cars_signal] shall

adhere to Figure 5.6.

W1.1 Two synchronised tra�c lights for cars [tl_cars] are located

on the [street], according to Figure 5.1.

W1.2 The state of the car tra�c lights is represented by [tl_cars],

which represents a subset of [red], [yellow] and [green], mean-

ing that the corresponding light is on.

W1.3 Two synchronised tra�c lights for pedestrians [tl_peds] are

located on the [street], according to Figure 5.1.

W1.4 The state of the pedestrian tra�c lights is represented by

[tl_peds], which represents a subset of [red] and [green], mean-

ing that the corresponding light is on.

W1.5 Two buttons are mounted on the bases of the pedestrian tra�c

lights [tl_peds], according to Figure 5.1, allowing [peds] to

[push] them.

W1.6 [peds] can press any of the push [button]s to trigger a [push]

event.

B.4. ITERATION 3 177

W2.1 [peds] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

W2.2 [cars] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

W2.3 Upon activating the system, [peds] are [waiting].

W2.4 Upon activating the system, [cars] are [waiting].

W2.5 Conceptually, the tra�c lights [peds_signal] and [cars_signal]

can indicate a [stop] or [go] signal, which is represented in the

form of colours.

W2.6 The initial state for [peds_signal] and [cars_signal] is [stop]

W2.7 [peds] start [moving] only if [peds_signal] is [go]. If

[peds_signal] turns to [stop], [peds] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.8 [cars] start [moving] only if [cars_signal] is [go]. If

[cars_signal] turns to [stop], [cars] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.9 When [peds_signal] indicates [go], the [cars] are [waiting].

W2.10 When [cars_signal] indicates [go], the [peds] are [waiting].

S2.1 [tl_peds] and [tl_cars] must never be [go] at the same time.

B.4.2 Context ctx03

CONTEXT ctx03

EXTENDS ctx02

SETS

COLOURS
CONSTANTS

red

yellow

green
AXIOMS

colours : partition(COLOURS, {red}, {yellow}, {green})
END

B.4.3 Machine mac03a

MACHINE mac03a

178 APPENDIX B. CASE STUDY MODEL

REFINES mac02b

SEES ctx03

VARIABLES

peds

cars

tl_peds

tl_cars
INVARIANTS

d3.1a : tl_peds ∈ {{red}, {green}}
d3.2a : tl_cars ∈ {{red}, {yellow}, {green}, {red, yellow}}
d3.1b : peds_signal = go⇔ green ∈ tl_peds

d3.2b : cars_signal = go⇔ green ∈ tl_cars

r3.1 : tl_peds = {green}⇒ tl_cars = {red}
EVENTS

Initialisation

begin

init3.0 : peds := waiting

init3.1 : cars := waiting

init3.2 : tl_peds := {red}
init3.3 : tl_cars := {red}

end

Event peds_waiting_to_moving =
re�nes peds_waiting_to_moving

when

w2.1a : peds = waiting

s3.1c : tl_peds = {green}
then

w2.1b : peds := moving
end

Event peds_moving_to_stopping =
extends peds_moving_to_stopping

when

w2.1c : peds = moving
then

w2.1d : peds := stopping

B.4. ITERATION 3 179

end

Event peds_stopping_to_waiting =
extends peds_stopping_to_waiting

when

w2.1e : peds = stopping
then

w2.1f : peds := waiting
end

Event cars_waiting_to_moving =
re�nes cars_waiting_to_moving

when

w2.2a : cars = waiting

s3.2c : tl_cars = {green}
then

w2.2b : cars := moving
end

Event cars_moving_to_stopping =
extends cars_moving_to_stopping

when

w2.2c : cars = moving
then

w2.2d : cars := stopping
end

Event cars_stopping_to_waiting =
extends cars_stopping_to_waiting

when

w2.2e : cars = stopping
then

w2.2f : cars := waiting
end

Event set_tl_peds_red_to_green =
re�nes set_peds_signal

when

s3.1d : tl_peds = {red}
s3.1e : tl_cars = {red}
grd1 : cars = waiting

180 APPENDIX B. CASE STUDY MODEL

with

signal : signal = go
then

s3.1f : tl_peds := {green}
end

Event set_tl_peds_green_to_red =
re�nes set_peds_signal

when

s3.1g : tl_peds = {green}
grd1 : cars = waiting

with

signal : signal = stop
then

s3.1h : tl_peds := {red}
end

Event set_tl_cars_red_to_redyellow =
re�nes set_cars_signal

when

grd2 : peds = waiting

s3.2d : tl_cars = {red}
s3.3 : tl_peds ̸= {green}

with

signal : signal = stop
then

s3.2f : tl_cars := {red, yellow}
end

Event set_tl_cars_redyellow_to_green =
re�nes set_cars_signal

when

grd2 : peds = waiting

s3.2g : tl_cars = {red, yellow}
s3.2h : tl_peds ̸= {green}

with

signal : signal = go
then

s3.2i : tl_cars := {green}

B.4. ITERATION 3 181

end

Event set_tl_cars_green_to_yellow =
re�nes set_cars_signal

when

grd2 : peds = waiting

s3.2j : tl_cars = {green}
with

signal : signal = stop
then

s3.2k : tl_cars := {yellow}
end

Event set_tl_cars_yellow_to_red =
re�nes set_cars_signal

when

grd2 : peds = waiting

s3.2l : tl_cars = {yellow}
with

signal : signal = stop
then

s3.2m : tl_cars := {red}
end

END

B.4.4 Machine mac03b

MACHINE mac03b

REFINES mac03a

SEES ctx03

VARIABLES

peds
cars

tl_peds

tl_cars

peds_was_green
INVARIANTS

type : peds_was_green ∈ BOOL

182 APPENDIX B. CASE STUDY MODEL

EVENTS

Initialisation

extended

begin

init3.0 : peds := waiting

init3.1 : cars := waiting

init3.2 : tl_peds := {red}
init3.3 : tl_cars := {red}
init : peds_was_green := FALSE

end

Event peds_waiting_to_moving =
extends peds_waiting_to_moving

when

w2.1a : peds = waiting

s3.1c : tl_peds = {green}
then

w2.1b : peds := moving
end

Event peds_moving_to_stopping =
extends peds_moving_to_stopping

when

w2.1c : peds = moving
then

w2.1d : peds := stopping
end

Event peds_stopping_to_waiting =
extends peds_stopping_to_waiting

when

w2.1e : peds = stopping
then

w2.1f : peds := waiting
end

Event cars_waiting_to_moving =
extends cars_waiting_to_moving

when

w2.2a : cars = waiting

B.4. ITERATION 3 183

s3.2c : tl_cars = {green}
then

w2.2b : cars := moving
end

Event cars_moving_to_stopping =
extends cars_moving_to_stopping

when

w2.2c : cars = moving
then

w2.2d : cars := stopping
end

Event cars_stopping_to_waiting =
extends cars_stopping_to_waiting

when

w2.2e : cars = stopping
then

w2.2f : cars := waiting
end

Event set_tl_peds_red_to_green =
extends set_tl_peds_red_to_green

when

s3.1d : tl_peds = {red}
s3.1e : tl_cars = {red}
grd1 : cars = waiting

p3.1a : peds_was_green = FALSE
then

s3.1f : tl_peds := {green}
end

Event set_tl_peds_green_to_red =
extends set_tl_peds_green_to_red

when

s3.1g : tl_peds = {green}
grd1 : cars = waiting

then

s3.1h : tl_peds := {red}
p3.1b : peds_was_green := TRUE

184 APPENDIX B. CASE STUDY MODEL

end

Event set_tl_cars_red_to_redyellow =
extends set_tl_cars_red_to_redyellow

when

grd2 : peds = waiting

s3.2d : tl_cars = {red}
s3.3 : tl_peds ̸= {green}
p3.1c : peds_was_green = TRUE

then

s3.2f : tl_cars := {red, yellow}
end

Event set_tl_cars_redyellow_to_green =
extends set_tl_cars_redyellow_to_green

when

grd2 : peds = waiting

s3.2g : tl_cars = {red, yellow}
s3.2h : tl_peds ̸= {green}

then

s3.2i : tl_cars := {green}
end

Event set_tl_cars_green_to_yellow =
extends set_tl_cars_green_to_yellow

when

grd2 : peds = waiting

s3.2j : tl_cars = {green}
then

s3.2k : tl_cars := {yellow}
end

Event set_tl_cars_yellow_to_red =
extends set_tl_cars_yellow_to_red

when

grd2 : peds = waiting

s3.2l : tl_cars = {yellow}
then

s3.2m : tl_cars := {red}
p3.1d : peds_was_green := FALSE

end

END

B.5. ITERATION 4 185

B.5 Iteration 4

In this iteration, the push button is introduced into the formal model via

re�nement.

B.5.1 Artefacts

R2.1 When [peds] are [moving] or [stopping] on the [street], [cars]

must be [waiting].

R3.1 If [tl_peds] is [green], then [tl_cars] must be [red].

R3.2 [green] cycles for [tl_cars] and [tl_peds] must alternate.

R4.1 [push]ing a [button] results in [request] to be set, it not yet set.

R4.2′ [tl_cars] may only turn not [green], it a [request] is pending.

R4.2′′ If a [request] is pending, [tl_peds] must eventually turn [green].

R4.3 After [tl_peds] turns [red], [request] is reset.

N2.1 The system has additional safety properties.

N1.1 The tra�c lights for cars [tl_cars] are usually [green].

N1.2 Between [push]ing the button for the �rst time in a cycle and

[tl_peds] allowing pedestrians to cross, at most [t_1] seconds

must pass.

N1.3 Upon turning [green], [tl_peds] must stay green for [t_2]

seconds, with a tolerance of 5%.

N4.4 [peds] signal their wish to cross the [street] by [push]ing one of

the [button]s.

D3.1 The relationship between [tl_peds] and [peds_signal] is a

mapping of [red] to [stop] and [green] to [go], respectively.

D3.2 The relationship between [tl_cars] and [cars_signal] shall

adhere to Figure 5.6.

W1.1 Two synchronised tra�c lights for cars [tl_cars] are located

on the [street], according to Figure 5.1.

W1.2 The state of the car tra�c lights is represented by [tl_cars],

which represents a subset of [red], [yellow] and [green], mean-

ing that the corresponding light is on.

W1.3 Two synchronised tra�c lights for pedestrians [tl_peds] are

located on the [street], according to Figure 5.1.

W1.4 The state of the pedestrian tra�c lights is represented by

[tl_peds], which represents a subset of [red] and [green], mean-

ing that the corresponding light is on.

W1.5 Two buttons are mounted on the bases of the pedestrian tra�c

lights [tl_peds], according to Figure 5.1, allowing [peds] to

[push] them.

186 APPENDIX B. CASE STUDY MODEL

W1.6 [peds] can press any of the push [button]s to trigger a [push]

event.

R1.3 The tra�c light system follows the regulations for tra�c lights

of Germany (Richtlinien für Signalanlagen, RiLSA)

W2.1 [peds] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

W2.2 [cars] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

W2.3 Upon activating the system, [peds] are [waiting].

W2.4 Upon activating the system, [cars] are [waiting].

W2.5 Conceptually, the tra�c lights [peds_signal] and [cars_signal]

can indicate a [stop] or [go] signal, which is represented in the

form of colours.

W2.6 The initial state for [peds_signal] and [cars_signal] is [stop]

W2.7 [peds] start [moving] only if [peds_signal] is [go]. If

[peds_signal] turns to [stop], [peds] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.8 [cars] start [moving] only if [cars_signal] is [go]. If

[cars_signal] turns to [stop], [cars] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.9 When [peds_signal] indicates [go], the [cars] are [waiting].

W2.10 When [cars_signal] indicates [go], the [peds] are [waiting].

S2.1 [tl_peds] and [tl_cars] must never be [go] at the same time.

B.5.2 Machine mac04

MACHINE mac04

REFINES mac03b

SEES ctx03

VARIABLES

peds

cars

tl_peds

tl_cars

peds_was_green

request
INVARIANTS

B.5. ITERATION 4 187

type_request : request ∈ BOOL
EVENTS

Initialisation

extended

begin

init3.0 : peds := waiting

init3.1 : cars := waiting

init3.2 : tl_peds := {red}
init3.3 : tl_cars := {red}
init : peds_was_green := FALSE

init_request : request := FALSE
end

Event peds_waiting_to_moving =
extends peds_waiting_to_moving

when

w2.1a : peds = waiting

s3.1c : tl_peds = {green}
then

w2.1b : peds := moving
end

Event peds_moving_to_stopping =
extends peds_moving_to_stopping

when

w2.1c : peds = moving
then

w2.1d : peds := stopping
end

Event peds_stopping_to_waiting =
extends peds_stopping_to_waiting

when

w2.1e : peds = stopping
then

w2.1f : peds := waiting
end

Event cars_waiting_to_moving =
extends cars_waiting_to_moving

188 APPENDIX B. CASE STUDY MODEL

when

w2.2a : cars = waiting

s3.2c : tl_cars = {green}
then

w2.2b : cars := moving
end

Event cars_moving_to_stopping =
extends cars_moving_to_stopping

when

w2.2c : cars = moving
then

w2.2d : cars := stopping
end

Event cars_stopping_to_waiting =
extends cars_stopping_to_waiting

when

w2.2e : cars = stopping
then

w2.2f : cars := waiting
end

Event set_tl_peds_red_to_green =
extends set_tl_peds_red_to_green

when

s3.1d : tl_peds = {red}
s3.1e : tl_cars = {red}
grd1 : cars = waiting

p3.1a : peds_was_green = FALSE
then

s3.1f : tl_peds := {green}
end

Event set_tl_peds_green_to_red =
extends set_tl_peds_green_to_red

when

s3.1g : tl_peds = {green}
grd1 : cars = waiting

then

B.5. ITERATION 4 189

s3.1h : tl_peds := {red}
p3.1b : peds_was_green := TRUE

s4.3 : request := FALSE
end

Event set_tl_cars_red_to_redyellow =
extends set_tl_cars_red_to_redyellow

when

grd2 : peds = waiting

s3.2d : tl_cars = {red}
s3.3 : tl_peds ̸= {green}
p3.1c : peds_was_green = TRUE

then

s3.2f : tl_cars := {red, yellow}
end

Event set_tl_cars_redyellow_to_green =
extends set_tl_cars_redyellow_to_green

when

grd2 : peds = waiting

s3.2g : tl_cars = {red, yellow}
s3.2h : tl_peds ̸= {green}

then

s3.2i : tl_cars := {green}
end

Event set_tl_cars_green_to_yellow =
extends set_tl_cars_green_to_yellow

when

grd2 : peds = waiting

s3.2j : tl_cars = {green}
s4.2 : request = TRUE

then

s3.2k : tl_cars := {yellow}
end

Event set_tl_cars_yellow_to_red =
extends set_tl_cars_yellow_to_red

when

grd2 : peds = waiting

190 APPENDIX B. CASE STUDY MODEL

s3.2l : tl_cars = {yellow}
then

s3.2m : tl_cars := {red}
p3.1d : peds_was_green := FALSE

end

Event set_request =
when

s4.1a : request = FALSE
then

s4.1b : request := TRUE
end

END

B.6. ITERATION 5 191

B.6 Iteration 5

This re�nement introduces time by adding arti�cial �ticks� to the formal

model.

B.6.1 Artefacts

R1.3 The tra�c light system follows the regulations for tra�c lights

of Germany (Richtlinien für Signalanlagen, RiLSA)

R2.1 When [peds] are [moving] or [stopping] on the [street], [cars]

must be [waiting].

R3.1 If [tl_peds] is [green], then [tl_cars] must be [red].

R3.2 [green] cycles for [tl_cars] and [tl_peds] must alternate.

R4.1 [push]ing a [button] results in [request] to be set, it not yet set.

R4.2′ [tl_cars] may only turn not [green], it a [request] is pending.

R4.2′′ If a [request] is pending, [tl_peds] must eventually turn [green].

R4.3 After [tl_peds] turns [red], [request] is reset.

R5.1 Between a [request] and [tl_peds] turing [green], at most [t_1]

ticks must pass.

R5.2 Upon turning [green], [tl_peds] must stay green for [t_2] ticks.

R5.3 Upon turning [green], [tl_cars] must stay green for [t_3] ticks.

N2.1 The system has additional safety properties.

N1.1 The tra�c lights for cars [tl_cars] are usually [green].

N4.4 [peds] signal their wish to cross the [street] by [push]ing one of

the [button]s.

N5.1 Each event that modi�es tra�c light transitions is [1] [tick]

long.

N5.2 The length of a [tick] is [1 second] with a tolerance of 5%.

D3.1 The relationship between [tl_peds] and [peds_signal] is a

mapping of [red] to [stop] and [green] to [go], respectively.

D3.2 The relationship between [tl_cars] and [cars_signal] shall

adhere to Figure 5.6.

W1.1 Two synchronised tra�c lights for cars [tl_cars] are located

on the [street], according to Figure 5.1.

W1.2 The state of the car tra�c lights is represented by [tl_cars],

which represents a subset of [red], [yellow] and [green], mean-

ing that the corresponding light is on.

W1.3 Two synchronised tra�c lights for pedestrians [tl_peds] are

located on the [street], according to Figure 5.1.

192 APPENDIX B. CASE STUDY MODEL

W1.4 The state of the pedestrian tra�c lights is represented by

[tl_peds], which represents a subset of [red] and [green], mean-

ing that the corresponding light is on.

W1.5 Two buttons are mounted on the bases of the pedestrian tra�c

lights [tl_peds], according to Figure 5.1, allowing [peds] to

[push] them.

W1.6 [peds] can press any of the push [button]s to trigger a [push]

event.

W2.1 [peds] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

W2.2 [cars] that are not on the [street] are [waiting]. Upon entering

the [street], they are [moving], followed by [stopping], before

[waiting] again.

W2.3 Upon activating the system, [peds] are [waiting].

W2.4 Upon activating the system, [cars] are [waiting].

W2.5 Conceptually, the tra�c lights [peds_signal] and [cars_signal]

can indicate a [stop] or [go] signal, which is represented in the

form of colours.

W2.6 The initial state for [peds_signal] and [cars_signal] is [stop]

W2.7 [peds] start [moving] only if [peds_signal] is [go]. If

[peds_signal] turns to [stop], [peds] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.8 [cars] start [moving] only if [cars_signal] is [go]. If

[cars_signal] turns to [stop], [cars] that are [moving] are [stop-

ping] and will be [waiting], once they �nished crossing.

W2.9 When [peds_signal] indicates [go], the [cars] are [waiting].

W2.10 When [cars_signal] indicates [go], the [peds] are [waiting].

S2.1 [tl_peds] and [tl_cars] must never be [go] at the same time.

B.6.2 Context ctx05

CONTEXT ctx05

EXTENDS ctx03

CONSTANTS

t_1

t_3

AXIOMS

t_1 : t_1 = 1

B.6. ITERATION 5 193

t_3 : t_3 = 1
END

B.6.3 Machine mac05

MACHINE mac05

REFINES mac04

SEES ctx05

VARIABLES

peds
cars

tl_peds

tl_cars

peds_was_green

request

ticks_peds_green

ticks_cars_green
INVARIANTS

ticks1 : ticks_peds_green ∈ N
ticks2 : ticks_cars_green ∈ N

EVENTS

Initialisation

extended

begin

init3.0 : peds := waiting

init3.1 : cars := waiting

init3.2 : tl_peds := {red}
init3.3 : tl_cars := {red}
init : peds_was_green := FALSE

init_request : request := FALSE

init5.1 : ticks_peds_green := 0

init5.2 : ticks_cars_green := 0
end

Event peds_waiting_to_moving =
extends peds_waiting_to_moving

when

w2.1a : peds = waiting

194 APPENDIX B. CASE STUDY MODEL

s3.1c : tl_peds = {green}
hide_domain : ⊥

then

w2.1b : peds := moving
end

Event peds_moving_to_stopping =
extends peds_moving_to_stopping

when

w2.1c : peds = moving

hide_domain : ⊥
then

w2.1d : peds := stopping
end

Event peds_stopping_to_waiting =
extends peds_stopping_to_waiting

when

w2.1e : peds = stopping

hide_domain : ⊥
then

w2.1f : peds := waiting
end

Event cars_waiting_to_moving =
extends cars_waiting_to_moving

when

w2.2a : cars = waiting

s3.2c : tl_cars = {green}
hide_domain : ⊥

then

w2.2b : cars := moving
end

Event cars_moving_to_stopping =
extends cars_moving_to_stopping

when

w2.2c : cars = moving

hide_domain : ⊥
then

w2.2d : cars := stopping

B.6. ITERATION 5 195

end

Event cars_stopping_to_waiting =
extends cars_stopping_to_waiting

when

w2.2e : cars = stopping

hide_domain : ⊥
then

w2.2f : cars := waiting
end

Event set_tl_peds_red_to_green =
extends set_tl_peds_red_to_green

when

s3.1d : tl_peds = {red}
s3.1e : tl_cars = {red}
grd1 : cars = waiting

p3.1a : peds_was_green = FALSE
then

s3.1f : tl_peds := {green}
p6.1a : ticks_peds_green := t_1

end

Event set_tl_peds_green_to_red =
extends set_tl_peds_green_to_red

when

s3.1g : tl_peds = {green}
grd1 : cars = waiting

p6.1b : ticks_peds_green = 0
then

s3.1h : tl_peds := {red}
p3.1b : peds_was_green := TRUE

s4.3 : request := FALSE
end

Event set_tl_cars_red_to_redyellow =
extends set_tl_cars_red_to_redyellow

when

grd2 : peds = waiting

s3.2d : tl_cars = {red}
s3.3 : tl_peds ̸= {green}

196 APPENDIX B. CASE STUDY MODEL

p3.1c : peds_was_green = TRUE
then

s3.2f : tl_cars := {red, yellow}
end

Event set_tl_cars_redyellow_to_green =
extends set_tl_cars_redyellow_to_green

when

grd2 : peds = waiting

s3.2g : tl_cars = {red, yellow}
s3.2h : tl_peds ̸= {green}

then

s3.2i : tl_cars := {green}
p6.2a : ticks_cars_green := t_1

end

Event set_tl_cars_green_to_yellow =
extends set_tl_cars_green_to_yellow

when

grd2 : peds = waiting

s3.2j : tl_cars = {green}
s4.2 : request = TRUE

p6.2b : ticks_cars_green = 0
then

s3.2k : tl_cars := {yellow}
end

Event set_tl_cars_yellow_to_red =
extends set_tl_cars_yellow_to_red

when

grd2 : peds = waiting

s3.2l : tl_cars = {yellow}
then

s3.2m : tl_cars := {red}
p3.1d : peds_was_green := FALSE

end

Event set_request =
extends set_request

when

B.6. ITERATION 5 197

s4.1a : request = FALSE
then

s4.1b : request := TRUE
end

Event tick_peds_green =
when

p6.1c : ticks_peds_green > 0

p6.1d : tl_peds = {green}
then

p6.1e : ticks_peds_green := ticks_peds_green− 1
end

Event tick_cars_green =
when

p6.2c : ticks_cars_green > 0

p6.2d : tl_cars = {green}
then

p6.1e : ticks_cars_green := ticks_cars_green− 1
end

END

198 APPENDIX B. CASE STUDY MODEL

Bibliography

[Abrial, 2006] Abrial, J.-R. (2006). Formal methods in industry: achieve-

ments, problems, future. In Proceedings of the 28th international con-

ference on Software engineering, pages 761�768.

[Abrial, 2010] Abrial, J.-R. (2010). Modeling in Event-B: System and

Software Engineering. Cambridge University Press, 1st edition.

[Abrial et al., 2006] Abrial, J.-R., Butler, M., Hallerstede, S., and Voisin,

L. (2006). An open extensible tool environment for Event-B. In

International Conference on Formal Engineering Methods (ICFEM),

LNCS, New York, NY. Springer-Verlag.

[Abrial et al., 2010] Abrial, J.-R., Butler, M. J., Hallerstede, S., Hoang,

T. S., Mehta, F., and Voisin, L. (2010). Rodin: An open toolset for

modelling and reasoning in event-B. STTT, 12(6):447�466.

[Ambriola and Gervasi, 1997] Ambriola, V. and Gervasi, V. (1997). Pro-

cessing natural language requirements. In Automated Software Engi-

neering, 1997. Proceedings., 12th IEEE International Conference, pages

36�45. IEEE.

[Apt et al., 2009] Apt, K. R., de Boer, F. S., and Olderog, E.-R. (2009).

Veri�cation of Sequential and Concurrent Programs. Springer, 3rd

edition.

[Awad, 2005] Awad, M. (2005). A comparison between agile and tra-

ditional software development methodologies. University of Western

Australia.

[Babar et al., 2007] Babar, A., Tosic, V., and Potter, J. (2007). Aligning

the map requirements modelling with the B-method for formal software

development. In Software Engineering Conference, 2007. APSEC 2007.

14th Asia-Paci�c, page 17�24.

199

200 BIBLIOGRAPHY

[Balduino, 2007] Balduino, R. (2007). Introduction to OpenUP (Open

Uni�ed Process). Eclipse site.

[Ball, 2008] Ball, E. (2008). An Incremental Process for the Develop-

ment of Multi-agent Systems in Event-B. PhD thesis, University of

Southampton.

[Beck, 2001] Beck, K. (2001). Extreme programming explained: embrace

change. Addison-Wesley.

[Berry, 1999] Berry, D. M. (1999). Formal methods: the very idea � some

thoughts about why they work when they work. Science of computer

Programming, 42(1):11�27.

[Bjørner, 2008] Bjørner, D. (2008). From domain to requirements. In

Concurrency, Graphs and Models: Essays dedicated to Ugo Montanari

on the Occasion of his 65th Birthday, pages 278�300. Springer.

[Brinksma et al., 1995] Brinksma, E., Scollo, G., and Steenbergen, C.

(1995). Lotos speci�cations, their implementations and their tests. In

Conformance testing methodologies and architectures for OSI protocols,

pages 468�479. IEEE Computer Society Press.

[Broy and Rausch, 2005] Broy, M. and Rausch, A. (2005). Das neue V-

Modell XT. Informatik-Spektrum, 28(3):220�229.

[Budinsky et al., 2009] Budinsky, F., Steinberg, D., Merks, E., and Pa-

ternostro, M. (2009). Eclipse Modeling Framework. The Eclipse Series.

Addison-Wesley Professional, 2nd edition.

[Chung and do Prado Leite, 2009] Chung, L. and do Prado Leite, J. C. S.

(2009). On non-functional requirements in software engineering. In

Borgida, A., Chaudhri, V. K., Giorgini, P., and Yu, E. S. K., editors,

Conceptual Modeling: Foundations and Applications, volume 5600 of

LNCS, pages 363�379. Springer.

[Clarke, 1997] Clarke, E. (1997). Model checking. In Foundations of soft-

ware technology and theoretical computer science, pages 54�56. Springer.

[Clarke and Wing, 1996] Clarke, E. and Wing, J. (1996). Formal meth-

ods: State of the art and future directions. ACM Computing Surveys

(CSUR), 28(4):626�643.

[Cohn, 2004] Cohn, M. (2004). User stories applied: For agile software

development. Addison-Wesley Professional.

BIBLIOGRAPHY 201

[Coleman and Jones, 2007] Coleman, J. and Jones, C. (2007). A struc-

tural proof of the soundness of rely/guarantee rules. Journal of Logic

and Computation, 17(4):807.

[Coleman et al., 2005] Coleman, J., Jones, C., Oliver, I., Romanovsky,

A., and Troubitsyna, E. (2005). RODIN (rigorous open development

environment for complex systems). EDCC-5, Budapest, Supplementary

Volume, page 23�26.

[Consulting and Ninomiya, 1997] Consulting, M. and Ninomiya, N.

(1997). Ariane 5: Who dunnit? IEEE Software.

[Cook, 1971] Cook, S. (1971). The complexity of theorem-proving proce-

dures. In Proceedings of the third annual ACM symposium on Theory

of computing, pages 151�158. ACM.

[Darimont et al., 1997] Darimont, R., Delor, E., Massonet, P., and Lam-

sweerde, A. v. (1997). GRAIL/KAOS: an environment for goal-driven

requirements engineering. In Proceedings of the 19th international con-

ference on Software engineering, pages 612�613, Boston, Massachusetts,

United States. ACM.

[DeMarco, 1979] DeMarco, T. (1979). Structured analysis and system

speci�cation. Yourdon Press.

[DEPLOY Project, 2009] DEPLOY Project (2009). Advances in meth-

ods (DEPLOY deliverable D15). Technical report, EU-IST �RODIN�

Project.

[Edmunds and Butler, 2010] Edmunds, A. and Butler, M. (2010). Tool

support for event-b code generation. WS-TBFM2010.

[EU FP7 Project, 2012] EU FP7 Project (2008 � 2012). Deploy Project

- Industrial deployment of system engineering methods providing high

dependability and productivity. http://www.deploy-project.eu/.

[Fabbrini et al., 1998] Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., and

Ruggieri, S. (1998). Achieving quality in natural language requirements.

Proceedings of the 11 th International Software Quality Week.

[Fowler and Scott, 2000] Fowler, M. and Scott, K. (2000). UML distilled:

a brief guide to the standard object modeling language. Addison-Wesley

Longman Publishing Co., Inc.

202 BIBLIOGRAPHY

[Goguen and Linde, 1993] Goguen, J. and Linde, C. (1993). Techniques

for requirements elicitation. In Requirements Engineering, 1993., Pro-

ceedings of IEEE International Symposium on, pages 152�164. IEEE.

[Goldin and Berry, 1997] Goldin, L. and Berry, D. (1997). Abst�nder, a

prototype natural language text abstraction �nder for use in require-

ments elicitation. Automated Software Engineering, 4(4):375�412.

[Gotel and Finkelstein, 1994] Gotel, O. and Finkelstein, A. (1994). An

analysis of the requirements traceability problem. In Proceedings of

the First International Conference on Requirements Engineering, page

94�101.

[Gross and Yu, 2001] Gross, D. and Yu, E. (2001). From non-functional

requirements to design through patterns. Requirements Engineering,

6(1):18�36.

[Gunter et al., 2000] Gunter, C. A., Jackson, M., Gunter, E. L., and Zave,

P. (2000). A reference model for requirements and speci�cations. IEEE

Software, 17:37�43.

[Guttag et al., 1993] Guttag, J., Horning, J., Garl, W., Jones, K., Modet,

A., and Wing, J. (1993). Larch: languages and tools for formal

speci�cation. In Texts and Monographs in Computer Science. Citeseer.

[Hall et al., 2002] Hall, J. G., Jackson, M., Laney, R. C., Nuseibeh, B.,

and Rapanotti, L. (2002). Relating software requirements and archi-

tectures using Problem Frames. In Requirements Engineering, 2002.

Proceedings. IEEE Joint International Conference on, page 137�144.

[Hallerstede et al., 2012] Hallerstede, S., Jastram, M., and Ladenberger,

L. (2012). A method and tool for tracing requirements into speci�ca-

tions. To be published in Electronic Communications of the EASST.

[Hammad et al., 2009] Hammad, M., Collard, M. L., and Maletic, J. I.

(2009). Automatically identifying changes that impact Code-to-Design

traceability. ICPC.

[Hansson et al., 2012] Hansson, D. et al. (2012). Ruby on Rails. Website:

http://www.rubyonrails.org.

[Hoare, 1978] Hoare, C. (1978). Communicating sequential processes.

Communications of the ACM, 21(8):666�677.

[Hoare, 2004] Hoare, C. (2004). Communicating Sequential Processes.

Prentice Hall International.

BIBLIOGRAPHY 203

[Hoare and Jifeng, 1998] Hoare, C. A. R. and Jifeng, H. (1998). Unifying

Theories of Programming. Prentice Hall.

[Hood et al., 2007] Hood, C., Mühlbauer, S., Rupp, C., and Versteegen,

G. (2007). IX-Studie Anforderungsmanagement. Heise-Zeitschr.-Verl.

[Hood and Wiebel, 2005] Hood, C. and Wiebel, R. (2005). Optimieren

von Requirements Management & Engineering: mit dem HOOD Capa-

bility Model. Springer.

[IEEE, 1997] IEEE (1997). Recommended practice for software require-

ments speci�cations. Technical Report IEEE Std 830-1998, IEEE.

[IEEE, 2010] IEEE (2010). Systems and software engineering � vocabu-

lary. Technical Report ISO/IEC/IEEE24765, IEEE.

[IIBA, 2009] IIBA (2009). A Guide to the Business Analysis Body of

Knowledge. International Institute of Business Analysis, 2nd edition.

[Jackson, 2001] Jackson, M. (2001). Problem Frames: analysing and

structuring software development problems. Addison-Wesley/ACM

Press, Harlow England New York.

[Jastram, 2010] Jastram, M. (2010). ProR, an open source platform for

requirements engineering based on RIF. SEISCONF.

[Jastram, 2011] Jastram, M. (2011). ProR - Eine Softwareplattform für

Requirements Engineering. Softwaretechnik-Trends, 31(1).

[Jastram, 2012a] Jastram, M. (2012a). Strukturierung von Anforderungen

für eine enge Integration mit Modellen. ReConf.

[Jastram, 2012b] Jastram, M. (2012b). Using the Eclipse Requirements

Modeling Framework. In Maalej, W. and Thurimella, A. K., editors,

Managing Requirements Knowledge, chapter 16. Springer.

[Jastram and Brökens, 2012] Jastram, M. and Brökens, M. (2012). ReqIF

in der Open Source: Das Eclipse Requirements Modeling Framework

(RMF). ReConf.

[Jastram and Ebert, 2012] Jastram, M. and Ebert, C. (2012). ReqIF:

Seamless requirements interchange format between business partners.

To be published in IEEE Software.

[Jastram and Graf, 2011a] Jastram, M. and Graf, A. (2011a). ProR, eine

auf RIF/ReqIF basierende Open Source Plattform zum Anforderungs-

management. ReConf.

204 BIBLIOGRAPHY

[Jastram and Graf, 2011b] Jastram, M. and Graf, A. (2011b). Require-

ment traceability in Topcased with the requirements interchange format

(RIF/ReqIF). First Topcased Days Toulouse.

[Jastram and Graf, 2011c] Jastram, M. and Graf, A. (2011c). Require-

ments Modeling Framework. Eclipse Magazin, 6.11.

[Jastram and Graf, 2011d] Jastram, M. and Graf, A. (2011d). Require-

ments, traceability and DSLs in Eclipse with the requirements inter-

change format (RIF/ReqIF). Technical report, Dagstuhl-Workshop

MBEES 2011: Modellbasierte Entwicklung eingebetteter Systeme.

[Jastram and Graf, 2012] Jastram, M. and Graf, A. (2012). ReqIF � the

new requirements standard and its open source implementation Eclipse

RMF. Technical report, Commercial Vehicle Technology Symposium.

[Jastram et al., 2011] Jastram, M., Hallerstede, S., and Ladenberger, L.

(2011). Mixing formal and informal model elements for tracing require-

ments. In Automated Veri�cation of Critical Systems (AVoCS).

[Jastram et al., 2010] Jastram, M., Hallerstede, S., Leuschel, M., and

Russo Jr, A. (2010). An approach of requirements tracing in formal

re�nement. In VSTTE. Springer.

[Jones, 1990] Jones, C. (1990). Systematic software development using

VDM, volume 103. Prentice-Hall.

[Jones et al., 2007] Jones, C. B., Hayes, I. J., and Jackson, M. A. (2007).

Deriving speci�cations for systems that are connected to the physical

world. Lecture Notes in Computer Science, 4700:364.

[K. Forsberg and Cotterman, 2005] K. Forsberg, H. M. and Cotterman,

H. (2005). Visualizing Project Management. John Wiley and Sons, 3

edition.

[Kaindl, 1997] Kaindl, H. (1997). A practical approach to combining

requirements de�nition and object-oriented analysis. Annals of Software

Engineering, 3(1):319�343.

[Kang and Jackson, 2010] Kang, E. and Jackson, D. (2010). Dependabil-

ity arguments with trusted bases. In Requirements Engineering Con-

ference (RE), 2010 18th IEEE International, page 262�271.

[Kennedy, 1961] Kennedy, J. F. (1961). Special joint session of congress.

BIBLIOGRAPHY 205

[Kovitz, 1998] Kovitz, B. (1998). Practical software requirements: a

manual of content and style. Manning Publications Co.

[Kruchten, 2004] Kruchten, P. (2004). The Rational Uni�ed Process: An

Introduction. Addison-Wesley Professional.

[Leuschel and Butler, 2003] Leuschel, M. and Butler, M. (2003). ProB: A

model checker for B. FME 2003: Formal Methods, pages 855�874.

[Loesch et al., 2010] Loesch, F., Gmehlich, R., Grau, K., Jones, C., and

Mazzara, M. (2010). Report on pilot deployment in automotive sector

(D19). Technical Report D7, EU-IST �RODIN� Project.

[Marincic et al., 2007] Marincic, J., Wupper, H., Mader, A., and

Wieringa, R. (2007). Obtaining formal models through non-monotonic

re�nement. Technical report, Centre for Telematics and Information

Technology University of Twente.

[Matoussi et al., 2008] Matoussi, A., Gervais, F., and Laleau, R. (2008).

A �rst attempt to express KAOS re�nement patterns with Event B.

In Proc. of the Int. Conf. on ASM, B and Z (ABZ). Lecture Notes in

Computer Science, Springer-Verlag, page 12�14.

[McConnell, 2004] McConnell, S. (2004). Code complete: a practical

handbook of software construction. Microsoft press.

[Moller and Tofts, 1990] Moller, F. and Tofts, C. (1990). A temporal cal-

culus of communicating systems. CONCUR'90 Theories of Concur-

rency: Uni�cation and Extension, pages 401�415.

[Nielsen et al., 1989] Nielsen, M., Havelund, K., Wagner, K., and George,

C. (1989). The raise language, method and tools. Formal Aspects of

Computing, 1(1):85�114.

[OMG, 2011] OMG (2011). Requirements interchange format (ReqIF)

1.0.1. http://www.omg.org/spec/ReqIF/.

[Parnas and Madey, 1995] Parnas, D. L. and Madey, J. (1995). Functional

documents for computer systems. Science of Computer programming,

25(1):41�61.

[Plagge and Leuschel, 2010] Plagge, D. and Leuschel, M. (2010). Seven

at one stroke: LTL model checking for high-level speci�cations in B, Z,

CSP, and more. International Journal on Software Tools for Technology

Transfer (STTT), 12(1):9�21.

http://www.omg.org/spec/ReqIF/

206 BIBLIOGRAPHY

[Pohl, 2007] Pohl, K. (2007). Requirements Engineering. Grundlagen,

Prinzipien, Techniken. Dpunkt.Verlag GmbH, 1 edition.

[Praxis, 2003] Praxis (2003). Reveal � a keystone of modern systems

engineering.

[Project Management Institute, 2008] Project Management Institute

(2008). A Guide to the Project Management Body of Knowledge:.

Project Management Institute, 4 original edition.

[Royce, 1970] Royce, W. (1970). Managing the development of large

software systems. In Proceedings of IEEE WESCON, volume 26, page

1�9.

[Rupp, 2007] Rupp, C. (2007). Requirements-Engineering und -

Management: professionelle, iterative Anforderungsanalyse für die

Praxis. Hanser, München [u.a.], 4., aktualisierte und erw. au�. edition.

[Schneider, 2001] Schneider, S. (2001). The B-method: an introduction.

Palgrave Macmillan, Basingstoke.

[Schwaber, 2004] Schwaber, K. (2004). Agile project management with

Scrum, volume 7. Microsoft Press Redmond (Washington).

[Sippel et al., 2008] Sippel, H., Jastram, M., and Bendisposto, J. (2008).

Die Eclipse Rich Client Platform: Entwicklung von erweiterbaren An-

wendungen mit RCP. Software und Support Verlag.

[Snook and Butler, 2006] Snook, C. and Butler, M. (2006). UML-B:

formal modeling and design aided by UML. ACM Trans. Softw. Eng.

Methodol., 15(1):92�122.

[Tennant, 2005] Tennant, N. (2005). Relevance in Reasoning. In Shapiro,

S., editor, The Oxford Handbook of Philosophy of Mathematics and

Logic, chapter 23, pages 696�726. Oxford University Press.

[Van Lamsweerde et al., 2001] Van Lamsweerde, A. et al. (2001). Goal-

oriented requirements engineering: A guided tour. In Proceedings of

the 5th IEEE International Symposium on Requirements Engineering,

volume 249, page 263.

[Wiegers, 2003] Wiegers, K. (2003). Software Requirements: Practical

Techniques for Gathering and Managing Requirements throughout the

Product Development Cycle. Microsoft Press, Redmond Wash., 2nd

edition.

BIBLIOGRAPHY 207

[Wing, 1990] Wing, J. (1990). A speci�er's introduction to formal meth-

ods. Computer, 23(9):8�10.

[Woodcock and Davies, 1996] Woodcock, J. and Davies, J. (1996). Using

Z: speci�cation, re�nement, and proof, volume 39. Prentice Hall.

[Yu, 1997] Yu, E. (1997). Towards modeling and reasoning support for

early-phase requirements engineering. Requirements Engineering, page

226.

[Zave, 1997] Zave, P. (1997). Classi�cation of research e�orts in require-

ments engineering. ACM Computing Surveys (CSUR), 29(4):315�321.

	Introduction
	Specifying Systems
	Iterative Development
	Stale artefacts
	Structuring the System Description

	Traceability
	Modelling
	Semi-Formal Modelling with SysML
	Formal Modelling with Event-B

	Systems Development
	A List of Original Contributions
	The ProR Approach
	Tool Support: ProR and RMF
	Umpublished, Accepted Work

	Summary
	Acknowledgements
	Formal Mind

	Literature and Related Work
	Systems Development
	Requirements and Specifications
	Requirements Traceability
	WRSPM
	Problem Frames
	Goal-Oriented Requirements Engineering
	Formal Modelling and Event-B
	Traceability to Formal Models

	The ProR Approach
	Problem Statement
	Stakeholder Language
	Co-Existence of Formal and Informal Artefacts
	Partial Formalisation
	Support for Multiple Formalisms
	Traceability Support
	Requirements Evolution
	Industrial Applicability

	Traceability
	The WRSPM Reference Model
	Adoptions of WRSPM for the ProR approach
	Justification, Realisation and Satisfaction Base
	Equivalence
	Evolution
	Usage of Phenomena

	Formal Modelling and Refinement
	Overview of Event-B
	Proof Obligations and Traceability

	A Process for Systems Development
	Incrementally Building the System Description
	Adequacy for Formal and Informal Requirements
	Formalising Phenomena and Artefacts in Event-B
	Other Formalisms

	Macroscopic Structure
	Problem Frames

	A Formal Meta-Model of the System Description
	Formalising the Modified WRSPM
	Formalising Justifications and Realisations
	Formalising the Distinction between Formal and Non-Formal Artefacts

	Discussion

	ProR Requirements Platform
	A History of ProR
	Initial Development
	Collaboration with Verde
	Community Building
	Eclipse Foundation Submission

	the Development of ReqIF
	History of the RIF/ReqIF Standard
	The Future of ReqIF

	Goals for ProR
	Rodin Integration
	Seamless integration with other tools possible
	RIF/ReqIF support
	Use outside Rodin possible
	Longevity and Public Support
	Industrial Strength
	Scalability

	Technologies
	The Content and Structure of a ReqIF Model
	Eclipse
	Java
	Eclipse Modeling Framework (EMF)
	Modifying Generated EMF-Code
	The Standard Widget Toolkit (SWT) and JFace
	Agile Grid
	The ReqIF Core

	Using ProR
	Installing ProR
	Creating a ReqIF Model
	New Attributes
	Configuration of the Editor
	Generating IDs
	Adding Requirements
	Linking Requirements

	Extending ProR
	Integration with Rodin
	Conclusion

	A Case Study
	The Goal: Crossing the Street
	Iteration 0: Elicitation of Requirements
	Iteration 1: The Problem Diagram
	Iteration 2: A First Step to Formalisation
	Architectural considerations
	The First Requirement
	Formalisation
	Completing the Machine
	Proof Obligations
	Modelling Traffic Lights
	Realising Requirement R2.1

	Iteration 3: Data Refinement
	Temporal Logic
	Validation with Animation
	Adding Implementation Detail

	Iteration 4: Modelling the Buttons
	Iteration 5: Introducing Time
	Hidden Domain Properties

	Analysis and Conclusion

	Conclusions and Future Work
	Contributions
	The ProR Approach
	The ProR Platform
	Case Study

	Future Work
	Conclusions

	Eclipse Proposal for RMF
	Case Study Model
	Iteration 0
	Artefacts

	Iteration 1
	Artefacts

	Iteration 2
	Artefacts
	Context ctx02
	Machine mac02a
	Machine mac02b

	Iteration 3
	Artefacts
	Context ctx03
	Machine mac03a
	Machine mac03b

	Iteration 4
	Artefacts
	Machine mac04

	Iteration 5
	Artefacts
	Context ctx05
	Machine mac05

	Bibliography

