
On the Performance of
Bytecode Interpreters in Prolog

Philipp Körner � , David Schneider and Michael Leuschel

Institut für Informatik, Heinrich Heine University Düsseldorf, Germany
{p.koerner, david.schneider, leuschel}@hhu.de,

Abstract. The semantics and the recursive execution model of Prolog
make it very natural to express language interpreters in form of AST
(Abstract Syntax Tree) interpreters where the execution follows the tree
representation of a program. An alternative implementation technique is
that of bytecode interpreters. These interpreters transform the program
into a compact and linear representation before evaluating it and are
generally considered to be faster and to make better use of resources.
In this paper, we discuss different ways to express the control flow of
interpreters in Prolog and present several implementations of AST and
bytecode interpreters. On a simple language designed for this purpose,
we evaluate whether techniques best known from imperative languages
are applicable in Prolog and how well they perform. Our ultimate goal is
to assess which interpreter design in Prolog is the most efficient as we
intend to apply these results to a more complex language. However, we
believe the analysis in this paper to be of more general interest.

1 Introduction

Writing simple language interpreters in Prolog is pretty straightforward. Definite
clause grammars (DCGs) enable parsing of the program, and interpretation
of the resulting abstract syntax tree (AST) can be expressed in an idiomatic,
recursive way: Selecting which predicate to execute in order to evaluate a part
of a program is done by unifying the part of the program to be executed next
with the set of rules in Prolog’s database that implement the language semantics.
Subsequent execution steps can be chosen by using logic variables that are bound
to substructures of the matched node.

Although this approach to interpreter construction is a natural match to
Prolog, the question remains if it is the most efficient way to implement the
instruction dispatching logic. In particular, we have developed such an interpreter
[7] for the entire B language [1] and want to evaluate the potential for improving
its performance, by using alternate implementation techniques.

Interpreters implemented in imperative languages, especially low-level lan-
guages, often make use of alternative techniques to implement the dispatching
logic, taking advantage of available data structures and programming paradigms.

In this article, we explore if some of these techniques can be implemented
in Prolog or applied in interaction with a Prolog runtime with the goal to

https://orcid.org/0000-0001-7256-9560
https://orcid.org/0000-0002-4595-1518

the initial environment (i.e. input): base = 2, exponent = 5

the program
val = 1;
while exponent > 0 {

val = val * base;
exponent = exponent - 1;

}

Fig. 1: An Acol program implementing a power function

assess whether the instruction dispatching for language interpreters can be made
faster while keeping the language semantics in Prolog. In order to examine the
performance of different dispatching models in Prolog, we have defined a simple
imperative language named Acol, which is briefly described in Section 2. For
Acol, we have created several implementations described in Section 3, that
use different paradigms for the dispatching logic. In Section 4, we evaluate our
approach on a set of benchmarks written in Acol, executing the interpreters
both on SICStus [3] and SWI-Prolog [12]. Finally, we give our conclusions in
Section 5.

2 A Simple Language

As a means to evaluate different interpreter designs, we have defined a very
simple and limited language named Acol1.

Acol is an imperative language consisting of three kinds of statements: while-
loops, if-then-else statements and variable assignments. The only supported value
type is integer. Furthermore, Acol offers a few arithmetic operators (addition,
subtraction, multiplication and modulo), comparisons (less than (or equal to),
greater than (or equal to) and equals), as well as a boolean not operator.

A simple Acol program implementing a power function is shown in Fig. 1.

3 Interpreter Implementations

There are many ways to implement Acol, in C as well as in Prolog. Considering
several interpreter implementation techniques, in this section, we will describe
possible designs of interpreters and the closely related representations of the
Acol programs in Prolog. The interpreters are based on either traversing the
abstract syntax tree representation of a program or on compiling the program to
bytecode first and evaluating this more compact representation instead.

We opted to implement stack-based interpreters as their design tends to be
simpler. The alternative – register-based virtual machines – usually are faster [10]
and allow more advanced techniques such as register allocation optimisation in

1 Acol is not a backronym for Acol is a computable language.

Program

assign

id: val

int: 1

while gt
int: 0

id:
exponent

Statements

Statements assign

id: val

mul

id: val

id: base

assign id:
exponent

sub
id:

exponent

int: 1

Fig. 2: AST

order to reduce the amount of load and store instructions. Yet, this endeavour
would be far more involved and could be considered if this prototype already
shows proper speed-ups.

All interpreters share the same implementation of the language semantics
exposed by an object-space API [8]. The objects space contains the code that
creates integer objects, performs arithmetic operations, compares values, and
manages the environment. In order to keep the implementations simple and
compatible, all interpreters that we present call into this same object space.
Nonetheless, the interpreters differ very much in the representation of the program
and, hence, in the process of dispatching. The full code of all interpreters,
benchmark scripts and results can be found at:

https://github.com/pkoerner/prolog-interpreters

In order to discuss the differences, we will translate the small example program
shown in Fig. 1 into the different representations and show an excerpt of the
interpretation logic for each paradigm. In Fig. 2, the AST for the example
program is depicted.

3.1 AST Interpreter

The most idiomatic way to implement an interpreter in Prolog is in form of an
AST-interpreter since it synergises very well with its execution model.

The data structure used for this interpreter is the tree representation of the
program as generated by the parser. In Prolog, the AST can be represented as a
single term as shown in Fig. 3. The program itself is a Prolog list of statements.
However, every statement is represented as its own sub-tree. Block statements,
i.e. the body of if and while instructions, will contain a list of statements
themselves.

https://github.com/pkoerner/prolog-interpreters

[assign(id(val), int(1)),
while(gt(id(exponent), int(0)),

[assign(id(val), mul(id(val), id(base))),
assign(id(exponent), sub(id(exponent), int(1)))])]

Fig. 3: Prolog representation of the AST

ast_int([], Env, _Objspace, Env).
ast_int([H|T], EnvIn, Objspace, EnvOut) :-

ast_int(H, EnvIn, Objspace, Env), ast_int(T, Env, Objspace, EnvOut).
ast_int(if(Cond, Then, Else), EnvIn, Objspace, EnvOut) :-

eval(Cond, EnvIn, Objspace, X),
(X == true -> ast_int(Then, EnvIn, Objspace, EnvOut)

; ast_int(Else, EnvIn, Objspace, EnvOut)).
ast_int(assign(id(Var), Expr), EnvIn, Objspace, EnvOut) :-

eval(Expr, EnvIn, Objspace, Res), Objspace:store(EnvIn, Var, Res, EnvOut).
ast_int(while(Cond, Instr, _Invariant, _Variant), EnvIn, Objspace, EnvOut) :-

ast_while(Cond, Instr, EnvIn, Objspace, EnvOut).

Fig. 4: Dispatching in a Prolog AST interpreter

The AST interpreter will examine the first element of the list, execute this
statement and continue with the rest of the list, as can be seen in Fig. 4. Every
sub-tree encountered this way is evaluated recursively.

Choosing the implementation for each node in the tree is done by unifying
the current root node with the set of evaluation rules. This approach benefits
from the first argument indexing [11] optimisation done by most Prolog systems.

3.2 Bytecode Interpreters

We have defined a simple set of bytecodes, described below, as a compilation
target for Acol programs. Based on these instructions we will introduce a series
of bytecode-interpreters that explore different implementation approaches in
Prolog and C.

As many bytecode interpreters for other languages, ours are stack-based. Some
opcodes may create or load objects and store them on the evaluation stack, e.g.
push or load. Yet others may in turn consume objects from the stack and create
a new one in return, e.g. add. Lastly, a single opcode is used to manipulate the
environment, i.e. assign. An exhaustive list is shown in Table 1.

Imperative Bytecode Interpreter Usually, bytecode interpreters are written
in imperative languages, that are rather low-level, e.g. C, that allow more control
about how objects are laid out in memory and provide fine-grained control over
the flow of execution.

To introduce the concept of a bytecode interpreter, we present an implemen-
tation of Acol beyond Prolog, that is purely written in C.

Table 1: A bytecode for the described language

Name Arguments Semantics

10 jump 4 bytes encoded PC jumps to new PC
11 jump-if-false 4 bytes encoded PC jumps to new PC if top element is falsey
12 jump-if-true 4 bytes encoded PC jumps to new PC if top element is truthy
20 push1 1 byte encoded integer push the argument on the stack
21 push4 4 bytes encoded integer push the argument on the stack
40 load 4 bytes encoded variable ID push variable on the stack
45 assign 4 bytes encoded variable ID store top of the stack in variable
197 mod - pop operands, push result of operation
198 mul - pop operands, push result of operation
199 sub - pop operands, push result of operation
200 add - pop operands, push result of operation
240 not - pop operand, push negation
251 eq - pop operands, push result of comparison
252 le - pop operands, push result of comparison
253 lt - pop operands, push result of comparison
254 ge - pop operands, push result of comparison
255 gt - pop operands, push result of comparison

The bytecode is stored as a block of memory, that can be interpreted as an
array of bytes. The index of this array that should be interpreted next is called
the program counter. After that opcode is executed, the program counter is
incremented by one, plus the size of its arguments. However, it may be set to an
arbitrary index by opcodes implementing jumps. Integer arguments are encoded
in reverse byte order.

The dispatching logic is implemented as a switch-statement that is contained
in a loop. An excerpt of the implementation of our bytecode-interpreter in C is
shown in Fig. 5. Every case block contains an implementation of that specific
opcode. After the opcode is executed, the program counter is advanced or reset
and the next iteration of the main loop is commenced.

C-Interfaces We made the digression into an interpreter written in C not only
to present the concept of bytecode interpreters. Instead, we can utilise the same
dispatching logic, but instead of calling an object space that is implemented
in C, we can use the C interfaces provided by the Prolog runtimes we consider
(SICStus and SWI-Prolog) to call arbitrary Prolog predicates. This way, we can
query the aforementioned object space that contains the semantics of Acol, but
is implemented in Prolog. An excerpt when using the C interface of SWI-Prolog
is shown in Fig. 6.

For the C-interface, we re-use the linear bytecode from the Prolog interpreter
above. The list of bytecodes is passed to C, which allocates a C array, iterates
over the list and copies the instructions into the array. Then, the main loop
dispatches in C, but the objects on the evaluation stack are created and the
operations are executed by Prolog predicates.

while (pc < bc_len) {
unsigned char *arg = bc + pc + 1;
switch (bc[pc]) {

case JUMP:
pc = decode_arg4(arg); break;

case LOAD:
index = decode_arg4(arg);
push(stack, env[index]);
pc += 5; break;

case ASSIGN:
env[arg] = pop(stack);
pc += 5; break;

case ADD:
b = pop(stack);
a = pop(stack);
push(stack, add(a, b));
pc++; break;

// ... many further cases
}

}

Fig. 5: Dispatching logic in C

while (pc < bc_len) {
unsigned char *arg = bc + pc + 1;
switch (bc[pc]) {

case JUMP:
pc = decode_arg4(arg); break;

case LOAD:
index = decode_arg4(arg)
push(stack, env[index]);
pc += 5; break;

case ASSIGN:
index = decode_arg4(arg);
PL_put_term(env[index], pop(s));
pc += 5; break;

case ADD:
arg1 = PL_new_term_refs(3);
arg2 = arg1 + 1;
var = arg1 + 2;
PL_put_term(arg2, pop(s));
PL_put_term(arg1, pop(s));
PL_call_predicate(NULL,

PL_Q_NORMAL,
predicate_add,
arg1);

push(s, var);
pc++; break;

// ... many further cases
}

}

Fig. 6: Dispatching logic using SWI-
Prolog’s C-Interface

Prolog Facts The main issue with bytecode interpreters in Prolog is the efficient
implementation of jumps to other parts of the bytecode. With an interpreter in
C, all we have to do is to re-assign the program counter variable. Prolog, however,
does not offer arrays with constant-time indexing2.

The idiomatic way to simulate an array would be to use a Prolog list, but on
this data structure we can perform lookups only in O(n). Yet, there are other
representations of the program that allow jumping to another position faster.

One way to express such a lookup in O(1) is to transform the bytecode into
Prolog terms bytecode(ProgramCounter, Instruction, Arguments). Those
terms are written into a seperate Prolog module that is loaded afterwards. The
first argument indexing optimisation then allows lookups in constant time.

In contrast to an interpreter written in C, it does not perform well to encode
integer arguments into reverse byte-order arguments. Instead, we use the Prolog
primitives, i.e. integers for values and atoms for variable identifiers.

Figure 7 shows a module that is generated from the bytecode. The interpreter
fetches the instruction located at the current program counter, executes it and

2 While, again, interoperability with C allows embedding of such data structures,
standard library predicates usually only offer logarithmic access.

bytecode(0, 20, 1). % push integer 1 on the stack
bytecode(2, 45, val). % pop value from stack, store in val
bytecode(7, 40, exponent). % push value of exponent
bytecode(12, 20, 0). % push constant 0
bytecode(14, 255, []). % greater-than comparison
bytecode(15, 11, 54). % jump-if-false to location 55 (exit loop)
bytecode(20, 40, val). % push value of val
bytecode(25, 40, base). % push value of base
bytecode(30, 198, []). % multiplication of arguments on the stack
bytecode(31, 45, val). % store result in val
bytecode(36, 40, exponent). % load exponent
bytecode(41, 20, 1). % push constant 1
bytecode(43, 199, []). % subtract arguments on stack
bytecode(44, 45, exponent). % store result in exponent
bytecode(49, 10, 7). % jump to beginning of loop
bytecode(54, 0, []). % terminate instruction

Fig. 7: Bytecode as Prolog facts

fact_int(PC, Objspace, Env, Stack, REnv) :-
generated:bc(PC, Instr, Args), % fetch the instruction
fact_int(Instr, Args, PC, Stack, Env, Objspace, REnv).

fact_int(200, _Args, PC, [Y, X|Stack], Env, Objspace, REnv) :-
Objspace:add(X, Y, Res), NewPC is PC + 1,
fact_int(NewPC, Objspace, Env, [Res|Stack], REnv).

% fact_int also has implementations of all the other bytecodes...

Fig. 8: Dispatching in the facts-based interpreter

increments the program counter accordingly. This is repeated until it encounters
a special zero instruction denoting the end of the bytecode – here at location 54.

The dispatching mechanism is shown in Fig. 8. Similar to an interpreter in C,
every opcode has an implementation in Prolog that calls into the object space.
Any rule of fact int is equivalent to a case statement in C.

Sub-Bytecodes Another design is based on the idea that a program is executed
block-wise, i.e. a series of instructions that is guarenteed to be executed in this
specific order. This is very simple since Acol does not include a goto-statement
that allows arbitrary jumps. From a programmer’s point of view, blocks are the
bodies of while-loops or those of if-then-else statements.

Instead of linearising the entire bytecode, only a block is linearised at once.
In order to deal with blocks that are contained by another block (e.g. nested
loops), two special opcodes are added. They are used to suspend the execution
of the current block and look up the sub-bytecodes of the contained blocks that
are referenced via its arguments. After those sub-bytecodes are executed, the
execution of the previous bytecode is resumed.

The special if-opcode references the blocks of the corresponding then- and else-
branches. After the condition is evaluated, only the required block is looked up
and executed. The other special opcode for while-loops references the bytecode

[20, 1, 45, val, % val = 1
2, 0, 1] % while (condition encoded in sub-bytecode 0,

% body encoded in sub-bytecode 1)

% Sub-bytecodes
sbc(0, [40, exponent, 20, 0, 255]).
sbc(1, [40, val, 40, base, 198, 45, val, 40, exponent, 20, 1, 199]).

Fig. 9: Bytecode with sub-bytecodes

bc_int([], Env, Stack, _Objspace, Env, Stack).
bc_int([H|R], Env, Stack, Objspace, REnv, RStack) :-

bc_int2(H,R, Env, Stack, Objspace, REnv, RStack).
% special bytecodes for evaluating blocks of an if-statement
bc_int2(1, [T, E|R], Env, [Cond|Stack], Objspace, REnv, RStack) :-

(Cond == true -> subbytecodes:sbc(T, Then),
h_bc_int(Then, [], Env, Objspace, TEnv)

; subbytecodes:sbc(E, Else),
h_bc_int(Else, [], Env, Objspace, TEnv)),!,

bc_int(R, TEnv, Stack, Objspace, REnv, RStack).
% special bytecodes for evaluating blocks of a while-loop
bc_int2(2, [C, I|R], Env, Stack, Objspace, REnv, RStack) :-

subbytecodes:sbc(C, Cond),
bc_int(Cond, Env, [], Objspace, Env, [Res]),
(Res == true -> subbytecodes:sbc(I, Instr),

h_bc_int(Instr, [], Env, Objspace, T),!,
bc_int2(2, [C, I|R], T, Stack, Objspace, REnv, RStack)

; !, bc_int(R, Env, Stack, Objspace, REnv, RStack)).

bc_int2(200, R, Env, [Y, X|Stack], Objspace, REnv, RStack) :-
Objspace:add(X, Y, Res),!,
bc_int(R, Env, [Res|Stack], Objspace, REnv, RStack).

% bc_int2 also has implementations of all the other bytecodes...

Fig. 10: Dispatching on bytecodes with sub-bytecodes

of the condition that is expected to leave true or false on the stack, as well
as the body of the loop. The blocks corresponding to condition and body are
evaluated in turn until the condition does not hold any more, so the execution of
its parent block can continue. Similar to the facts in the interpreter above, the
sub-bytecodes are asserted into their own module to allow fast lookups.

Figure 9 shows an example that includes the special opcode for the while-
statement, and Fig. 10 shows an excerpt of the dispatching logic used for this
interpreter. The recursion in bc int2 will update the bytecode-list with its tail
instead of manipulating a program counter. Hence, in this implementation, the
interpreter can only move forward inside of a block. If it is required to move
backwards in the program, it is only possible to re-start at the beginning of a
block.

assign(id(val), int(1),
while(gt(id(exponent), int(0)),

assign(id(val), mul(id(val), id(base)),
assign(id(exponent), sub(id(exponent), int(1)),

while(gt(id(exponent), int(0)),
...)))

end))

Fig. 11: Rational tree representation

3.3 Rational Trees

Based on [4], we have created implementations of an AST- and a bytecode-
interpreter for Acol that use the idea of rational trees to represent the program
being evaluated. This technique aims to improve the performance of jumps by
using recursive data structures containing references to the following instructions.

AST-Interpreter with Rational Trees Since Acol does not include a con-
cept of arbitrary jumps as used in [4], it is not possible to achieve the speed-up
described in the referenced paper. However, we can make use of the basic idea
for the representation of programs: every statement has a pointer to its successor
statement.

In our naive AST interpreter, a new Prolog stack frame is used for every level
of nested loops and if-statements. Instead of returning from each evaluation to
the predicate that dispatched to the sub-statement, we can make use of Prolog’s
tail-recursion optimisation and continue with the next statements directly.

For our example program, we generate an infinite data structure for the
while-loop depicted in Fig. 11. The concept of rational trees allows us to have
the while-term re-appearing in its own body, so it has not to be saved in a stack
frame.

The last statement end is artificially added to indicate the end of the program
so that the interpreter may halt.

Then, the dispatching logic is still very similar to the naive AST interpreter
as shown in Fig. 12.

Bytecode-Interpreter with Rational Trees In Prolog, rational trees can
also be used for bytecodes. Jumps are removed from that representation entirely.
While-loops are unrolled into an infinite amount of alternated bytecodes of the
condition and if-statements that contain the body of the loop in their then-branch
and the next statement after the loop in their else-branch. An example is shown
in Fig. 13.

At first glance, it looks weird that the opcode integers are replaced by human-
readable descriptions. However, functors are limited to atoms and, then, there is
not much difference between atoms that contain only a number or short readable
names. We chose the latter one because they are by far more comprehensible.

rt_int(end, Env, _, Env) :- !.
rt_int(assign(id(Var), Expr, Next), Env, Objspace, REnv) :-

eval(Expr, Env, Objspace, Res),
Objspace:store(Env, Var, Res, EnvOut), !,
rt_int(Next, EnvOut, Objspace, REnv).

rt_int(if(Cond, Then, Else), Env, Objspace, REnv) :-
eval(Cond, Env, Objspace, V),
(V == true -> !, rt_int(Then, Env, Objspace, REnv)

; !, rt_int(Else, Env, Objspace, REnv)).
rt_int(while(Cond, Instrs, Else), Env, Objspace, REnv) :-

eval(Cond, Env, Objspace, V),
(V == true -> !, rt_int(Instrs, Env, Objspace, REnv)

; !, rt_int(Else, Env, Objspace, REnv)).

Fig. 12: Dispatching in a rational tree interpreter

push(1, assign(val, % code before the loop
load(exponent, push(0, gt(% condition (1)

if(load(val, load(base, mul(store(val, % while-body (1)
load(exponent, push(1, sub(store(exponent, % while-body (1)

load(exponent, push(0, gt(% condition (2)
if(load(val, load(base(,))), % while-body (2)

end)))))))))))) % end of while (2)
end)))))) % end of while (1)

Fig. 13: Bytecode with rational trees

The dispatching is pretty similar to the AST interpreter that utilises rational
trees, as shown in Fig. 14. The main difference between those two interpreters is
that this one uses a simulated stack to evaluate terms instead of Prolog’s call
stack.

4 Evaluation

To compare the performance of the different interpreters for Acol, we selected a
set of different benchmarks. Because the language is very limited, it is hard to
design ”real-world programs”. Yet, execution of any arbitrary program will give
insight of the performance of the dispatching logic.

In this section, we present those benchmarks and compare their results. Each
program was executed with every interpreter ten times. The runtime consists
only of the time spent in the interpreter. Compilation time is excluded, as it is
not implemented efficiently and, ultimately, not relevant.

The benchmarks were run on a machine that runs a linux with a 4.15.0-108-
generic 64-bit kernel on an Intel i7-7700HQ CPU @ 2.80GHz. No benchmarks ran
in parallel. Two Prolog implementations were considered: SICStus Prolog 4.6.0,
a commercial product, and SWI-Prolog 8.2.1, a free open-source implementation.
All C code was compiled by gcc 7.5.0 with the -O3-flag.

Since Acol does not offer complex features, we expect that the dispatching
claims a bigger share of the runtime than the actual operations.

rt_bc_int(end, Env, Stack, _Objspace, Env, Stack).
rt_bc_int(if(Then, Else), Env, [X|Stack], Objspace, REnv, RStack) :-

(X == true -> !, rt_bc_int(Then, Env, Stack, Objspace, REnv, RStack)
; !, rt_bc_int(Else, Env, Stack, Objspace, REnv, RStack)).

rt_bc_int(push(Arg, Next), Env, Stack, Objspace, REnv, RStack) :-
Objspace:create_integer(Arg, Val),!,
rt_bc_int(Next, Env, [Val|Stack], Objspace, REnv, RStack).

rt_bc_int(load(Arg, Next), Env, Stack, Objspace, REnv, RStack) :-
Objspace:lookup(Arg, Env, Val), !,
rt_bc_int(Next, Env, [Val|Stack], Objspace, REnv, RStack).

rt_bc_int(add(Next), Env, [Y, X|Stack], Objspace, REnv, RStack) :-
Objspace:add(X, Y, Res), !,
rt_bc_int(Next, Env, [Res|Stack], Objspace, REnv, RStack).

% rt_bc_int implements all other opcodes as well...

Fig. 14: Dispatching in a bytecode interpreter with rational trees

while (start < V) {
if (V mod start == 0) {

is_prime := 0;
} else {

is_prime := is_prime;
}
start := start + 1;

}

Fig. 15: Prime Tester Program

4.1 Benchmarks

Prime Tester The first benchmark is a naive prime tester. The program is
depicted in Fig. 15. The environment was pre-initialised with is prime := 1,
start := 2, and V := 34 265 341.

Fibonacci Another benchmark is the calculation of the fibonacci sequence. How-
ever, we expect that most of the execution time will consist of the addition and
subtraction of two large numbers and that the interpreter overhead itself is rather
small. Therefore, a second version that calculates the sequence modulo 1 000 000
is included.

Again, the environment is pre-initialised, in this case with a := 0, b := 1 and
n := 400 000. To ensure a significant runtime for the second version, the input is
modified so it calculates a longer sequence, i.e. n := 10 000 000.

Generated ASTs Lastly, some programs were generated pseudo-randomly. Such
a generated AST consists of 20 to 50 statements that are uniformly chosen
from while-loops, if-statements and assignments. The body of a loop and both
branches of if-statements also consist of 20 to 50 statements. However, if the
nesting exceeds a certain depth, only assignments are generated for this block.

In order to guarentee termination, while-loops are always executed 20 times.
An assignment is artifically inserted before the loop that resets a loop counter,

i := 1; i := 1;
while i < n { while i < n {

b := b + a; b := b + a mod 1000000;
a := b - a; a := b - a mod 1000000;
i := i + 1; i := i + 1;

} }

Fig. 16: Fibonacci Programs

 0x

 0.5x

 1x

 1.5x

 2x

 2.5x

PrimeTester Fib FibMaxint Gen Gen2 Gen3

R
el

at
iv

e
R

u
n

ti
m

es

Benchmark

AST
Sub−Bytecode
Facts
C−Interface
AST w/ Rational Trees
Bytecode w/ Rational Trees

Fig. 17: Relative runtimes in SICStus, normalised to the runtime of the AST
interpreter

as well as another assignment that increments this variable at the beginning of
the loop.

For assignments and if-conditions, a small subtree is generated. The generator
chooses uniformly between five predetermined identifiers, constants ranging from
-1 to 3, as well as additions and subtractions. If-conditions have to include exactly
one comparison operator.

The generator does include neither multiplications, because they caused very
large integers that slowed down the Prolog execution time significantly, nor
modulo operations, to avoid division by zero errors.

Three different benchmarks were generated using arbitrary seeds. Their
purpose is to complement the other three handwritten benchmarks, which are
rather small and might benefit from caching of the entire AST.

4.2 Results

The results of the benchmarks are shown in Table 2. The lines labelled “AST” refer
to the implementation of the naive AST interpreter presented in Section 3.1, the
ones with “Sub-Bytecodes”, “Facts” and “C-Interface” refer to the corresponding
bytecode interpreters discussed in Section 3.2. Finally, “AST-” and “BC w/
Rational Trees” are the AST and bytecode interpreters based on rational trees
presented in Section 3.3. The mean value is determined by the geometric mean

Table 2: Mean runtimes in seconds including the 0.95 confidence interval. The
value in parentheses describes the normalised runtime (on the basis of the AST
interpreter). The fastest runtimes per benchmark and interpreter are highlighted.

Benchmark Interpreter SICStus SWI-Prolog

Prime Tester

AST 54.53 ± 0.49 (1.00) 242.84 ± 3.96 (1.00)

Sub-Bytecodes 78.03 ± 0.59 (1.43) 316.44 ± 1.89 (1.30)

Facts 73.50 ± 9.39 (1.35) 330.89 ± 2.51 (1.36)

C-Interface 119.94 ± 5.13 (2.20) 54.83 ± 0.98 (0.23)

AST w/ Rational Trees 54.26 ± 0.57 (1.00) 229.65 ± 2.28 (0.95)

BC w/ Rational Trees 70.65 ± 1.19 (1.30) 261.39 ± 5.58 (1.08)

Fibonacci

AST 9.86 ± 0.05 (1.00) 5.54 ± 0.09 (1.00)

Sub-Bytecodes 10.16 ± 0.13 (1.03) 6.36 ± 0.15 (1.15)

Facts 10.00 ± 0.07 (1.01) 6.49 ± 0.09 (1.17)

C-Interface 10.16 ± 0.09 (1.03) 2.58 ± 0.06 (0.47)

AST w/ Rational Trees 9.84 ± 0.19 (1.00) 5.39 ± 0.09 (0.97)

BC w/ Rational Trees 9.83 ± 0.06 (1.00) 5.63 ± 0.10 (1.02)

Fibonacci (Maxint)

AST 24.03 ± 0.30 (1.00) 96.90 ± 1.72 (1.00)

Sub-Bytecodes 31.03 ± 0.26 (1.29) 122.86 ± 1.54 (1.27)

Facts 30.13 ± 0.48 (1.25) 131.38 ± 3.68 (1.36)

C-Interface 42.23 ± 0.90 (1.76) 22.65 ± 0.48 (0.23)

AST w/ Rational Trees 24.05 ± 0.17 (1.00) 94.36 ± 1.15 (0.97)

BC w/ Rational Trees 28.63 ± 0.25 (1.19) 103.93 ± 0.70 (1.07)

Generated

AST 12.96 ± 0.16 (1.00) 60.64 ± 0.59 (1.00)

Sub-Bytecodes 19.71 ± 0.70 (1.52) 69.26 ± 0.49 (1.14)

Facts 20.76 ± 0.33 (1.60) 73.89 ± 0.45 (1.22)

C-Interface 24.49 ± 0.82 (1.89) 10.30 ± 0.18 (0.17)

AST w/ Rational Trees 12.89 ± 0.14 (0.99) 58.35 ± 1.45 (0.96)

BC w/ Rational Trees 16.90 ± 0.20 (1.30) 61.98 ± 1.16 (1.02)

Generated2

AST 19.01 ± 0.18 (1.00) 83.18 ± 0.80 (1.00)

Sub-Bytecodes 29.11 ± 0.48 (1.53) 102.17 ± 1.48 (1.23)

Facts 30.78 ± 0.55 (1.62) 109.08 ± 2.35 (1.31)

C-Interface 35.89 ± 0.92 (1.89) 15.07 ± 0.24 (0.18)

AST w/ Rational Trees 19.10 ± 0.26 (1.00) 81.05 ± 0.39 (0.97)

BC w/ Rational Trees 25.28 ± 2.96 (1.33) 90.44 ± 1.21 (1.09)

Generated3

AST 12.37 ± 0.22 (1.00) 55.52 ± 1.34 (1.00)

Sub-Bytecodes 18.93 ± 0.20 (1.53) 66.00 ± 0.76 (1.19)

Facts 20.06 ± 0.64 (1.62) 70.49 ± 0.45 (1.27)

C-Interface 23.51 ± 0.71 (1.90) 9.79 ± 0.22 (0.18)

AST w/ Rational Trees 12.38 ± 0.30 (1.00) 52.96 ± 1.12 (0.95)

BC w/ Rational Trees 16.10 ± 0.11 (1.30) 60.07 ± 0.97 (1.08)

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

 1.4x

PrimeTester Fib FibMaxint Gen Gen2 Gen3

R
el

at
iv

e
R

u
n

ti
m

es

Benchmark

AST
Sub−Bytecode
Facts
C−Interface
AST w/ Rational Trees
Bytecode w/ Rational Trees

Fig. 18: Relative runtimes in SWI-Prolog, normalised to the runtime of the AST
interpreter

as proposed by [5]. Though not listed, the interpreter purely written in C is 2-3
orders of magnitudes faster3 and executes each benchmark in less than a second.

Figure 17 shows the results specific for SICStus Prolog. There is no discernible
performance difference between the naive AST interpreter and the ones utilising
rational trees. Independent of the benchmark, the bytecode interpreters based
on sub-bytecodes and on Prolog facts are slow in comparison. One can observe a
performance loss of about 25-35 % for the small handwritten programs, where we
would expect caching effects to be the largest, and around 50-60% for the larger,
generated programs. With our initial version of the interpreter dispatching in C,
we reported an issue that was related with SICStus’ FLI garbage collector. Now,
it usually requires twice as much time to execute the benchmarks compared to
the AST-based interpreters.

The results utilising SWI-Prolog are shown in Fig. 18. Overall, they paint
a similar picture to the results for SICStus. However, the dispatching using
SWI-Prolog’s C-interface is very fast – compared to the AST interpreter, it can
achieve more than a 5× speed-up.

5 Conclusions, Related and Future Work

In this paper, we presented the language Acol and multiple ways to implement
it as AST as well as bytecode interpreters. We designed several benchmarks in
order to evaluate their performance using different implementations of Prolog.

Our results suggest that if an interpreter is to be implemented in Prolog, the
implementation as an AST interpreter already is very performant. It is simply not
worth the hassle of writing and maintaining a bytecode compiler. Furthermore,

3 A fair comparison is not possible since the C interpreter does not support unbounded
integer values.

an AST interpreter does not involve any additional compilation overhead as it
can directly work on the data structure returned by the parser.

However, SWI-Prolog’s C interface performs very well. Surprisinly, even on
the Fibonacci example with unlimited integers, where addition of unlimited
integers is rather time-consuming, it beats the run-time of the AST interpreter by
a factor of two. Additional work is required to determine whether these findings
are applicable for more complex languages, that would also facilitate the creation
of more sensible benchmarks.

Rossi and Sivalingam explored dispatching techniques in C based bytecode
interpreters [9], with the result that a less portable approach of composing the
code in memory before executing it yielded the best results. The techniques
discussed in that article could be used in combination with SWI-Prolog to further
improve the instruction dispatching performance in C.

An alternative for improving the execution time of a program, that was not
discussed here, is partial evaluation [6]. We intend to investigate the impact of
offline partial evaluation when compiling a subset of the described interpreters
for our benchmarks.

In the future, it would also be interesting to evaluate the effects of different
interpreter designs in other Prolog dialects, especially those that are not based
on the WAM [2]. Examples include Ciao (WAM-based with powerful analysis),
BinProlog (specialised version of the WAM) and Mercury (functional influences
with many optimisations).

References

1. Jean-Raymond Abrial. The B-Book. Cambridge University Press, 1996.
2. Hassan Aı̈t-Kaci. Warrens abstract machine - a tutorial reconstruction, 1999.
3. Mats Carlsson and Per Mildner. SICStus Prolog – the first 25 years. Theory and

Practice of Logic Programming, 12(1-2):35–66, 2012.
4. Manuel Carro. An Application of Rational Trees in a Logic Programming Interpreter

for a Procedural Language. CoRR, cs.DS/0403028, March 2004.
5. Philip J. Fleming and John J. Wallace. How not to lie with statistics: The correct

way to summarize benchmark results. Commun. ACM, 29(3):218–221, March 1986.
6. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and

Automatic Program Generation. Prentice Hall, 1993.
7. Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for

the B method. STTT, 10(2):185–203, 2008.
8. The PyPy Project. The Object Space. http://pypy.readthedocs.org/en/latest/

objspace.html, 2015. Accessed: 2020-08-12.
9. M Rossi and K Sivalingam. A survey of instruction dispatch techniques for byte-code

interpreters. Seminar on Mobile Code, 1996.
10. Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual machine show-

down: Stack versus registers. Transactions on Architecture and Code Optimization,
4(4):1–36, 2008.

11. David H D Warren. An Abstract Prolog Instruction Set. Technical report, Artificial
Intelligence Center - SRI International, 1983.

12. Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. Swi-prolog.
Theory and Practice of Logic Programming, 12(1-2):6796, 2012.

http://pypy.readthedocs.org/en/latest/objspace.html
http://pypy.readthedocs.org/en/latest/objspace.html

	On the Performance of Bytecode Interpreters in Prolog

