
Experience Report on an
Inquiry-Based Course on Model

Checking
Sebastian Krings

Universität Düsseldorf, Hochschule Niederrhein

krings@cs.uni-duesseldorf.de

Philipp Körner, Joshua Schmidt

Universität Düsseldorf

{koerner,schmidt}@cs.uni-duesseldorf.de

Abstract
The development and improvement of model checkers
for the validation of hard- and software is an ongoing
research topic in computer science. Model checking re-
search connects theoretical and practical aspects; new
algorithms are often implemented inside well-known
model checkers which have been in development for
many years. This is seldom taken into account by
university courses on the topic, which often remain
on the theoretical level. Hence, they do not provide
practical access to the topic for reasons such as lack of
time or inaccessibility of tools and their source code.

In this article, we present a recent revision of our
course on model checking, shifting from a classical
lecture-based format to inquiry and research-based
teaching. We document course development, present
some didactic methods used and evaluate the course
based on peer review and student feedback. Further-
more, we try to assert student engagement empiri-
cally.

Introduction and Motivation
The development and improvement of model check-
ers (Clarke u. a., 1999) for the validation of hard- and
software is an ongoing research topic in computer sci-
ence (Grumberg u. Veith, 2008). Model checking re-
search connects theoretical and practical aspects; new
algorithms are often implemented inside well-known
model checkers which have been in development for
many years. This is seldom taken into account by
university courses on the topic, which often remain
on the theoretical level, not providing practical access
for various reasons.

In particular, both complexity and code volume of
commonly used model checkers prevent students from

coming to grips with internal workings. In conse-
quence, typical courses on model checking stay on a
theoretical level. Students often have no way of expe-
riencing the practical aspects of developing a model
checker. This leads to shortcomings in different areas:

• Learning results might be reduced due to missing
hands-on experience.

• Regarding bachelor’s and master’s theses the
scope of topics is limited, as students have not
learned how to appropriately address practical
problems in model checker development.

• Missing experience in project work, tool usage
and working collaboratively have been identified
as major areas in which students do not meet
expectations from industry (Radermacher u. a.,
2014; Radermacher u. Walia, 2013; Tafliovich
u. a., 2015). Those skills could be acquired en
passant in a programming project.

To improve, we decided to remodel our course on
model checking. The overall goal was to move from
classic lectures to active learning techniques for an im-
proved hands on experience. Furthermore, we noticed
that students writing theses at our chair sometimes
lack the required knowledge about how research is
performed and thus need close supervision and initial
training. In order to motivate individual research and
to enable students to train their skills, we decided to
move from a classic lecture setting to inquiry-based
learning. In particular, we intended for the course
to follow the typical pattern of asking appropriate
questions for research, finding evidence or creating it
through experiments, compare and discuss results as
well as explain and publish differences discovered.

During the course, participants should:

• Acquire the theoretical foundations of model
checking by identifying and analyzing common
software errors.

• Align these foundations with the body of knowl-
edge.

• Design and implement a novel model checker as
independently as possible.

Barron et al. (Barron u. a., 1998) identified four im-
portant aspects contributing to the success of inquiry-
based courses:

• Selecting appropriate learning goals,

• Begin with problem-based learning before gradu-
ally switching to project work,

• Enable self-assessment and revision,

• Develop an atmosphere and social structures that
support participation.

Following, we discuss how we realized these aspects
in our course.

Increasing practical relevance and self-responsibility
aside, the course redesign serves another purpose. By
implementing a novel model checker together with the
students we rely less on locally developed tools and
avoid tailoring towards in-house techniques. Instead,
a course like the one outlined can help evaluating
alternative technologies together with our students.

Additionally, the course provides other more long
term benefits to the chair. First, we can use the result-
ing software in bachelor’s and master’s theses, given
that it is more easily accessible than PROB (Leuschel
u. Butler, 2008, 2003), the model checker developed
at our chair at the University of Düsseldorf. In partic-
ular, it is written in Java, which most students know
from their undergraduate studies, whereas PROB is
written in Prolog, a language not as common. Sec-
ond, it can serve as a playground for trying out more
experimental algorithms or backends.

Following, we start with introducing setting and
context of the course. Afterwards, we discuss goals
and challenges of remodelling the course using an
inquiry-based format. In particular, we document
preparation and execution phases. An evaluation of
student motivation and engagement will be performed
as well. Evaluation and our conclusions lead to an-
other iteration of the course which we describe later
on, followed by overall conclusions about both itera-
tions.

Course Setting and Context
Our lecture on model checking is aimed at master
students of computer science. In particular, the lec-
ture is part of a major in software engineering and
programming languages. In consequence, it should

enable participants to immediately continue with a
masters thesis in model checking.

There is a corresponding lecture on Safety Critical
Systems, focussing on how to write software specifi-
cations and use model checkers and provers rather
than implement them. The two lectures are often at-
tended one after the other. However, since we do not
enforce a particular order, Safety Critical Systems can
not be considered a precondition for the course docu-
mented in this paper. For both courses, attendance is
not compulsory.

Learning Objectives
The learning objectives were already predefined and
aligned with the overall curriculum. In consequence,
we did not intend to change the high-level goals of
the course. After attending, students should be able
to

• present and compare different techniques for pro-
gram verification,

• be able to summarize selected scientific literature
on program verification and be able to criticize
where appropriate,

• write their own specifications and evaluate them,

• decide on appropriate formalisms, algorithms and
tools for given verification tasks.

We believe these goals match the requirements stated
by Barron et. al. (Barron u. a., 1998).

Former Course
The former course on model checking before the year
2017 was held in a classical lecture-based format.
The lectures dealt with the theoretical foundations
of model checking. Lectures were accompanied by
weekly exercises used to practice. There were no
mandatory submissions but of course students were
encouraged to work on the exercises independently.

The course heavily relied on theoretical aspects of
model checking, i.e., several theorems and lemmas
were proven in the lectures while others had to be
proven by the students in the exercises.

Students were not supposed to implement any al-
gorithms throughout the course. Instead, the most
important algorithms were discussed in pseudo-code
within the lecture. Moreover, the students were occa-
sionally asked to create pseudo-code algorithms for
simple tasks on their own such as an explicit-state
model checking algorithm for invariant checking.

Students were not introduced in detail to any for-
malism for writing specifications but worked on an
abstract level of formal modeling. However, the stu-
dents have seen some small models in the lecture
without paying any attention to the used formalism
but rather focussing on the overall structure. Apart
from this, the course remained theoretical neither of-
fering any hands-on experience nor addressing issues

that might arise when implementing model checking
algorithms.

In retrospect, we think that the majority of the stu-
dents suffered from this lecture-based format, as it
was not motivating them to work on more advanced
topics of model checking. We think that focussing on
the theoretical aspects of model checking without any
hands-on experience might be daunting for students
to work on that topic at all and hinders them to use
model checking techniques in future projects. These
insights have lead us to remodel the course in the next
semester, introducing more interactive elements and
practical experiences as we will outline below.

Remodeled Course
In the following sections, we will describe the remod-
eled course in detail, starting with the participants, the
goals and milestones of the redesign and the steps per-
formed in preparation, execution and postprocessing.
Additionally, we will discuss two teaching methods
employed during the course.

Participants
The first iteration of our remodeled course took place
in the summer term of 2017. There were 11 students
attending, with 6 of them attending regularly. Three
students were undergraduates pulling up courses.

Goals
First, students should gain more practical access to
model checking and how it connects to software engi-
neering. Furthermore, the course should be connected
to recent research results.

In addition to teaching model checking, we want
to encourage independent research. In particular, this
includes supporting students throughout the common
research phases from finding a suitable hypothesis to
publication.

Target Milestones
The target milestones are divided in three stages:

1. Planing and preparation.

2. Implementation and supervision of the research
project.

3. Publication and presentation of results.

Individual milestones are given in Table 1. The third
phase is not completed as of yet: While we ensure
reproducibility for upcoming terms, research results
have not been published. This is mostly due to dates
and deadlines of appropriate software engineering
conferences. As a successful publication cannot be
guaranteed, it is not an essential part of our lecture
and will not be considered further.

So far, three of the six regularly participating stu-
dents are willing to contribute to a research paper. We
will use this opportunity to explain the rules of good

scientific practice as well as the common parts of the
scientific publication process, e. g., peer-reviewing.

Challenges
Switching from a classic lecture to inquiry-based learn-
ing result in a number of challenges:

• Cognitive requirements are higher, as we switch
from knowledge reproduction to production.

• Course progression is less linear. In particular,
project progress will be fluctuating and has to
be monitored closely to allow for timely inter-
ventions in case goals might become unreachable
otherwise.

• Adding an additional programming task to the
curriculum increases the individual workload stu-
dents are exposed to. In consequence, individual
motivation and commitment has to be increased.

• Research has to be controlled in order to avoid
getting off track. Students should have as much
freedom as possible, while still being guaranteed
to reach the intended learning outcomes.

• Due to the higher amount of group work and
cooperation, exams have to be prepared carefully
to meet both the didactic requirements and the
ones posed by exam regulations.

Documentation Preparation
As stated in Table 1, we began course preparation
by collecting and inspecting existing lecture material
such as slides and exercise sheets. Furthermore, in
order to gain additional material, the latest literature
on model checking was sighted as well.

Reducing existing material to make room for the
programming tasks proved difficult for two reasons:

• It was hard to anticipate the speed with which stu-
dents would progress. As this is our first inquiry-
based attempt at teaching model checking, we
could not rely on previous experiences.

• As stated above, we intended for the module to be
as open as possible. In particular, we wanted to
avoid predetermining techniques and algorithms
to be used. However, this made it impossible to
anticipate what the students would come up with
first. We needed to prepare for several possible
pathways through the course.

To reduce overhead, we decided to reduce content
even more, until we reach the bare minimum of model
checking knowledge. Additionally, we prepared sev-
eral collections of articles, slides and exercises for
different subtopics. As soon as speed and direction
of student research can be asserted, we could add or
remove collections as needed.

Table 1: Phases, Milestones and Time for Completion

Preparation

1. Inspection of existing material 5 h
2. Literature research and selection, collect relevant papers and documentation to be supplied

to students
5 h

3. Didactic reduction: make room for programming tasks by reducing course content without
omitting learning outcomes

5 h

4. Prototypical implementation to assert difficulty level and needed effort, identify obstacles 10 h

Execution

5. Project and time management, task distribution, team building (done in lectures) 13 h
6. Discussion, monitoring of results (outside of lectures) 15 h
7. Further implementation work, bugfixing (outside of lectures) 13 h
8. Peer review by didactics department 6 h

Postprocessing

9. Collecting results, documentation 10 h
10. Benchmarks and performance evaluation 10 h
11. Publication process 10 h
12. Evaluation and preparation for upcoming terms 5 h

Total 107 h

To assert the overall workload and to identify possi-
ble obstacles, we developed a prototypical implemen-
tation of a model checker suitable for the course. By
doing so, we learned that developing a parser for B,
i.e. a software that turns the human readable repre-
sentation of software into a machine readable form,
is a more time-consuming task than we initially sus-
pected. Furthermore, we all had attended lectures
on compiler construction and thus had at least the-
oretical knowledge in writing parsers. However, as
stated above, we could not assume the same of the
participating students.

In consequence, we decided to make our prototypi-
cal parser available for the students instead of making
it a part of the programming project. This allowed us
to focus more on model checking itself, rather than
spending time on infrastructure. While this somewhat
reduces possible learning outcomes, we still feel our
decision is justified. This is stressed by the fact that
several other lectures, e. g., compiler construction, dy-
namic programming languages or logic programming,
feature the development of parsers.

Documentation Execution
In the following section, we will document our experi-
ence in course execution. In particular, we will discuss
how we introduced the topic and helped students for-
mulate initial research questions. Following, two key
methods used throughout the course are discussed.
We conclude with our approach to grading.

Developing a Research Hypothesis
Following the work by Barron et. al. (Barron u. a.,
1998), we decided to start our course problem-

oriented instead of immediately confronting students
with the need to develop a research question them-
selves1. To do so, we followed a four-step approach
to introduce model checking:

• Error- and hazard analysis of an elevator control
software,

• Introduce specification languages, by discussing a
reduced version of the B language (Abrial, 1996).

• Collaboratively develop key definitions such as
state spaces and transitions,

• Collaboratively develop a simple explicit-state
model checking algorithm.

We decided to rely on B as an input language,
mainly because it is the specification language most
commonly used at our chair. However, it is a rather
complex language with many features students had
to learn. In retrospect, a simpler language could have
been used without reducing learning outcomes. In
consequence, the course was modified for later itera-
tions, as we will discuss later on.

In the following sessions, we switched to a more
inquiry-based approach: For instance, the reduced
input language did not include a way to specify cer-
tain system properties. As students were writing
their own software models in order to gain test cases,
those shortcomings became obvious. In consequence,
students had to come up with language extensions
and develop new model checking algorithms to verify
them.

1For a comparison on inquiry-based and problem-based learning
see, for instance, (Oguz-Unver u. Arabacioglu, 2014).

Of course there are different extensions to simple
explicit-state model checking. We intended for the
students to find them independently as well as share
and discuss their findings. To avoid errors, we had
four lectures allocated to scientific foundations. In
summary, those were barely needed, as our students
were able to independently discover and provide foun-
dations. Without further guidance, they managed to
do literature collection and research and were able to
draw appropriate conclusions for further development.
Furthermore, they managed to bridge the gap to their
undergraduate studies where needed autonomously.

Teaching Methods
In the following sections, we will discuss two teaching
and organization methods, which we used throughout
all lectures. The two methods complement each other:
The hazard collection helps keeping in mind the big
picture. In contrast, the Kanban board is used to struc-
ture the programming project into parts and helps to
discover and tackle todos in an organized manner.

Collection of Hazards
To motivate the how and why of model checking, we
began the first lecture with a simplified hazard anal-
ysis. Working in groups, students were supposed to
describe behavior scenarios of an elevator that per-
forms as bad as possible. Scenarios were collected
and sorted, first by grouping corresponding ideas such
as “the elevator never opens its doors” and “the eleva-
tor never closes its doors”. The resulting collection is
shown in Figure 1a.

Not all of the identified scenarios can be prevented
using a model checker. We thus supposed to reorga-
nize our collection by two axes: The dangerousness
of the scenario and the extent to which the elevator
control software is involved. The sorted collection is
shown in Figure 1b. In the upper right corner, we
see those scenarios that should be considered first,
i. e., those that are hazardous and primarily caused
by software defects.

We keep the collection around during the course
of the semester, removing those cards representing
errors our model checker was able to detect. In conse-
quence, the hazard collection was driving the inquiry-
based learning process: While some errors were easy
to detect using simple explicit-state model checking
techniques, others made more involved techniques
necessary. For instance, a property such as “If the
elevator is moving, doors are closed” is comparably
simple to verify. In contrast, “At some point in time
the elevator is moving”, is more involved due to time-
based reasoning.

Project Management using Simplified Kanban
Boards
To manage programming tasks and how they are dis-
tributed between the participants we used a method
based on simplified Kanban boards. Every occurring
task is collected on a (virtual) flashcard. While be-

ing processed, tasks follow a predefined live cycle by
moving from and to different stacks:

1. Backlog - Newly created tasks start here. If a
task is not actionable, because a precondition is
missing, a new flashcard for the precondition is
added. If a task is too large or to unwieldy to
handle, it is split into multiple subtasks. Tasks
that can be approached now are moved to the
next stack.

2. To Do / Ready - Includes actionable tasks that can
be addressed right now. Students can pick a task
and assign it to themselves. Once this happens,
the task moves forward.

3. In Development - Tasks in process by someone.
Each task in this stack has someone responsible
for its handling assigned.

4. Testing / In Review - Task that the assigned stu-
dents consider finished are moved here. For qual-
ity control, another student has to verify whether
the task has been handled satisfactorily. This is
usually done by adding automatic test cases and
by performing manual code review. If problems
are identified, the task is moved back to “In Devel-
opment”. Added test cases and comments should
now help find a better solution. Otherwise, the
task is moved to the next stack.

5. Done - Tasks that have been finished and verified.

We used a virtual board on GitHub as shown in Fig-
ures 2 and 3. The method proved easy to learn for
students and efficient in handling programming pro-
cess. Furthermore, it served as a documentation of
participation that could be considered for grading, as
we will discuss in the following section.

Grading
As the course was teaching both theoretical and prac-
tical aspects of model checker development, exams
were supposed to measure both parts. In additional,
we had to ensure that grading complies with the exam-
ination regulations. In particular, regulations enforce
grades to be based on individual performance, i.e.,
group work can not easily be taken into account.

To improve constructive alignment (Biggs, 1996),
we implemented a combination of formative and sum-
mative exams:

• Constant participation in the programming project
was documented using the Kanban project man-
agement method as outlined above. As changes
in tasks and issues were recorded together with
the student’s username, following the individual
contribution was easy. This formative part mostly
considered the individual contributions to the pro-
gramming project and takes into account that dif-
ferent parts of the model checker were developed

(a) By Topic (b) By Hazardousness / Software Influence

Figure 1: Elevator System - Hazard Analysis

Figure 2: Kanban Board, Part 1

independently. For example, UI and model check-
ing core were developed by different students and
at different times.

• Changes in attitude, development of soft skills
such as ability to cooperate and stance towards
ethical issues in software development could be
observed both in the live sessions and the on-
line discussions. Of course, those cannot simply
be graded on observation alone and thus mostly
served for the lecturers to assert progress.

• Theoretical foundations of model checking were
verified by a written summative exam at the end
of the semester. Keep in mind that we had to
reduce theoretical content to be able to fit in the
programming project.

The combined exam is able to verify, whether the
learning objectives stated above have been reached:

• The goal to enable the students to present and
compare different techniques for program veri-
fication was verified using project contributions.
Students had to decide between different algo-
rithms (i.e. compare) and they had to present the
implementations during the reflection & evalua-
tion sections.

• The goal to enable the students to summarize se-
lected scientific literature on program verification
and be able to criticize where appropriate, was
partially covered by the reflection & evaluation
sections. Additionally, we used the exam to ask
students to select an appropriate algorithm for
given problems, i.e. to criticize weaknesses ruling
out algorithms.

• Students wrote their own specifications and eval-
uated them in order to create test cases for the
programming project.

Figure 3: Kanban Board, Part 2

• Again, we used the written exam to ask students
to decide on appropriate formalisms, algorithms
and tools for given verification tasks.

Course Evaluation
This section will discuss several means of evaluation
we employed to measure the success of the redesign.
We will discuss review by other faculty members as
well as student feedback and engagement.

Peer Review
Two sessions were monitored and reviewed by other
faculty members and members of the didactics depart-
ment. Each time, certain weaknesses were spotted
and later fixed based on suggestions of the observers.
R & D Session
The intention of the first observed session was to de-
velop novel model checking techniques in order to be
able to detect more of the hazards collected in Fig-
ure 1b. In particular, we tried to encourage research
and experimentation and avoided discussing known
solutions beforehand. We decided to have the session
supervised in order to verify if we hit the sweet spot
between student research and lecture progress.

The overall concept of the sessions and the belong-
ing teaching methods were evaluated as coherent and
aligned with the goals of the sessions. However, weak-
nesses were spotted when it comes to student interac-
tion and result summarization and recapitulation:

• Sometimes, we failed to ensure that all students
had understood the currently discussed idea well
enough to participate in further discussions. In
consequence, some ideas for new algorithms were
developed within smaller groups of students and
only later discussed with the group as a whole.

For future sessions we decided to discuss and doc-
ument new ideas more thoroughly, including visu-
alizing them on a flip chart. Resulting documenta-
tion should also help later implementation.

• For some ideas the group decided to be worth-
while of further experimentation, the next steps
to take remained unclear. In particular, resulting
tasks have to be identified immediately and clear
commitment to resolving them has to follow.

Reflection & Evaluation Session
The second session that was observed was meant as a
synchronization point between different groups work-
ing individually. While certain students were working
on verification techniques for infinite software mod-
els, others were working on time-based reasoning. As
discussed, both topics are considered essential for the
course. We thus decided to form focus groups with
the intent of later updating the other groups.

Furthermore, presenting intermediate results to
other groups was intended to account for the appro-
priate reflection upon the executed research tasks. As
pointed out in (Blumenfeld u. a., 1991; Schauble u. a.,
1995), project-based work could otherwise focus too
much on the execution without evaluation results and
lessons learned. In consequence, students would have
less opportunity for self-assessment and revision, vio-
lating one of the principles of successful inquiry-based
courses stated by Barron et. al. (Barron u. a., 1998).

During the lecture, presentation of intermediate
results was sluggish, students appeared to be only
superficially prepared. In retrospect, we identified
our imprecise task statement as the most likely rea-
son. Again, we adapted following sessions in order to
improve:

• In addition to asking for a presentation of inter-
mediate research results, we supply an outline:

1. Short presentation of used techniques and
how they are supposed to work.

2. Summary of difficulties and solutions im-
plemented so far.

3. Open problems, followed by a discussion
of possible solutions.

4. Code examples and actual implementa-
tion where sensible.

• To increase student commitment, outline and pre-
sentation content has to be discussed with the
lecturers beforehand (see milestone 6 in Table 1).

Student Feedback
Due to the small number of participants, no official
evaluation was performed by the university. For the
same reason, there are no former evaluations we could
compare to.

However, during the course, we performed several
intermediate evaluations using short online surveys.
Feedback was very positive and encouraging. In par-
ticular, the course was described as both interesting
and challenging at the same time. Furthermore, stu-
dents evaluated their own learning achievements as
high. More sustainable learning was attributed to the
increased self-reliance compared to other courses.

The main point of criticism was the volatile speed
of progression during the lectures. While this is not
uncommon for research-based processes, it turned out
to be the major cause of frustration for students. As
an immediate remedy, we started to monitor progress
more closely and intervened early once students got
stuck. For the next iteration of the course, we believe
we should reconsider the balance between problem-
based and inquiry-based learning.

In order to gain more insight into workload, moti-
vation and learning outcomes, we performed another
feedback round when writing this article.

The student’s workload was rated with an average
of 3.75 on a scale from 1 (= low) to 5 (= high).
This is in line with our expactations and does not
suggest that the inquiry-based setup increased the
overall workload. Learning outcome was rated with
an average of 4.375, while overall motivation was
rated with an average of 4.625, both again on a scale
from 1 (= low) to 5 (= high).

However, given the low number of course partici-
pants, we cannot claim any statistical significance.

Grades
In 2017, six students participated in the exam. With-
out taking into account the project work, all students
passed the exam with an average of 1.43 (equivalent
to US 3.9 - 3.7, “excellent”). When taking into ac-
count the formative part of the exam, i. e., project

Table 2: Average Grades

2014 2015 2016 2017 2018
Students 2 5 7 6 5
∅ Grade 1.85 2.58 1.71 1.28 1.88

work and participation, the average improves to 1.28
(equivalent to US 3.9, “excellent”).

For comparison, the average grades of different
course iterations is given in Table 2. The low average
in 2015 is due to one student not passing. If only
passing students are counted, the average improves
to 1.98.

Judging by the average grades, the highly inquiry-
based course in 2017 performed better than the lesson-
based course in 2016. Furthermore, the next iteration
of the course, which includes several improvements
we we will discuss below, again exhibits a slightly
worse average grade.

Of course, we would like to attribute the improved
grades to the practical research experience, that stu-
dents could gain during the hands-on sessions. How-
ever, with only five to seven students participating in
the exams, the sample size is much to small to draw
reliable conclusions.

Student Engagement
One of the main challenges was to keep students moti-
vated to participate in research and programming. In
particular, participation outside of lecture hours had
to be ensured. Given that we used Git to record all
changes made to the source code, we can use the data
collected for statistics on participation and engage-
ment. Apparently, we were able to motivate partici-
pants to consistently and autonomously work towards
the course goals.

For instance, this can be seen in Figure 4, showing a
so called “punchcard”. Time of day on the x-axis and
days of the week on the y-axis form a grid in which
dots of different diameters are drawn. The larger a dot
is, the more extensively the source code was changed
at that time interval.

Of course by far the biggest amount of changes was
made during lectures, exercises and tutorials, wednes-
day and friday 12 - 2 p.m. While these are the most
active phases, we can see student activity throughout
all days and times. Particularly pleasant is the con-
stant activity occurring wednesdays at 7 p.m. and
fridays at 8 p.m. Apparently, they are caused by stu-
dents revising lecture material and incorporating it
into the programming project.

Another indicator for high motivation is that the
project was both fascinating and motivating enough
to cause the occasional all-nighter. For instance, we
see source code changes thursdays at 3 a.m. and satur-
days at 4 a.m. To determine if this is an indication of
motivation or high work load, we asked the students

Figure 4: Source Code Changes per Day / Time

to evaluate. Students stated that late night work was
not due to high work load or last-minute submissions,
but to individual interest, motivation and time man-
agement. As we already stated, the workload was
rated as 3.75 on average, using a scale from 1 (= low)
to 5 (= high).

With the data depicted in Figure 5 we tried to
evaluate, whether students were indeed following
an inquiry-based approach to the course topics. To
do so we tried to evaluate if progress was linear or if
students had to follow the typical research pattern of
finding approaches, try and experiment and later eval-
uate. The x-axis shows project progress from February
to September. Y-axis shows additions and deletions
performed in the source code, i.e., the higher the
green part, the more source code has been added to
the project. The red part depicts deletions, that is the
lower the red bar is, the more source code has been
remove from the project.

The small peak at the begin of February is caused
by the lecturers developing a prototypical implemen-
tation as we discussed for the preparation phase. Lec-
tures itself started in april. In summary, the graph
shows that a considerable proportion of the source
code added has been removed later on. The amount
of lines removed rises and falls with the amount of
lines added. This hints at the fact that students did not
only add new code once a new idea was developed.
Rather, constant reevaluation lead to code being revis-
ited or even replaced. Participants did not progress in
a linear fashion.

Another interesting point is the peak mid of June.
At that time, students developed certain ideas of “sym-
bolic model checking” and started to implement them
in our tool. For this peak, there is no following peak
with deletions. This could mean that students made
some fundamental progress by reinventing and realiz-
ing a classic idea of model checking.

Publication
The last state of inquiry and research, namely publi-
cation, was not part of the course for several reasons.
First of all, preparing a meaningful publication takes
a lot of work and publication cycles can be quite time
consuming as well. Thus, it was impossible to fit pub-
lishing into the course as well. Second, while publish-
ing teaches a lot about how the scientific community
works, it does not contribute to the course topic.

Nevertheless, three of the participating students
were interested in writing a follow-up paper and pre-
senting their work to the community. This gave us the
opportunity to introduce them to the common publi-
cation process, including concepts such as peer review
as well as pre- and post-proceedings of conferences.

The overall process went through a number of mee-
tups and discussion sessions:

1. In a first session, we discussed the publication
process as it usually takes places.

2. For two sessions, we discussed how to write an
interesting paper, mostly following Simon Peyton
Jones’ advise on the topic (Jones, 2018).

3. We did a brainstorming session in order to identify
the key research questions students answered dur-
ing the course and to assert which of them would
be relevant to a larger audience.

4. We had several meetups to discuss the writing
progress and to synchronize us.

As the publication process was not part of any of-
ficial lecture or university event, we were unable to
provide credit points to the participants. Yet, all three
of them were very enthusiastic about the idea of writ-
ing their first article. In retrospect, we believe that it
was mostly the fact that we were aiming for a “real
scientific workshop”, that was highly motivating. Stu-
dents felt as part of the scientific community and truly
as peers among peers.

Figure 5: Source Code Add / Delete by Date

To our joy, the paper (Petrasch u. a., 2018) was
accepted for the 18th International Workshop on Au-
tomated Verification of Critical Systems, which took
place in Oxford, GB in January 2018. Two students
attended the workshop, with one of them giving the
presentation. It lead to fruitful discussions both about
the topic and about the course itself. As many of those
attending were teachers themselves, success reports
of our hands-on approach were of particular interest
to them.

Lessons Learned - the Next Semester
Two terms after we remodeled the course, the next
iteration took place. During the preparation stage, we
started reconsidering the course and how to develop
it further. In particular, we intended to address the
following concerns, some of which occurred in the
old course, while some are caused by environmental
variables:

• We do not think the presented approach scales
to larger groups. A single project for all students
seamed infeasible, since 18 students registered
and even more showed up in the first session.

• We were concerned that knowledge did not propa-
gate evenly, as students specialized on a subset of
topics, e.g. LTL or explicit-state model checking.

• As the B language is a rich formalism, many prob-
lems unrelated to model checking might surface.

• Given that theoretical foundations were reduced
quite heavily, we feared students working on more
advanced topics had to catch up individually.

In consequence, we tried to find a middle ground
between focussing on the implementation of a model
checker and a lessons-based course.

As knowledge propagation was our most prominent
concern, we decided early on that each student should
implement a model checker on their own. This is a
trade-off between allowing exploration and hands-on
experience as well as feature-completeness, as obvi-
ously a single student is not expected to do the work
that six students did beforehand.

When switching from group projects to individual
programming tasks, students do not gain experience
in best practices of software development in a team
and project management. However, we think that
this was more of a side-effect, given that collaborative
software development and synchronization in teams
is taught in other courses.

Thus, the overall programming workload had to be
reduced. To do so, we introduced two changes. First,
we changed the formalism from B to petri nets (Petri,
1966), which are considerably easier to understand
and implement: As far as the language interpreter is
concerned, only addition and subtraction is required.
This allows to focus on model checking techniques in-
stead of writing a more complex language interpreter.

However, writing meaningful test cases is harder
in such a low-level formalism. Therefore, we used
benchmarks from the annual model checking con-
test (Kordon u. a., 2016) instead of making students
writing their own. As in the previous iteration, we
provided a parser for the input format.

Furthermore, we split the programming project into
two parts. In the first part of the project, the students
had to implement a very basic explicit-state model
checker to check for deadlock freedom and to verify

certain safety properties. This part of the project had
to be passed in order to receive the permission to
write the final exam. The second part of the project
dealt with more advanced topics: The existing model
checker had to be be extended in order to verify linear-
time properties by implementing algorithms that have
been introduced in the lecture. We graded the second
part of the programming project of each student and
incorporated the result into the overall grade with a
weight of 25 %.

Secondly, we brought back some of the theoreti-
cal lessons and exercises, yet cutting down on enor-
mous proofs so there was enough time to spare to
let our students work on their model checkers. We
intended that the theoretical exercises in particular
deepen the knowledge and allow pointing out connec-
tions between individual components throughout the
lectures.

Thirdly, in addition to the parser, we provided some
components of the model checker that were not cov-
ered in the lecture and required cumbersome imple-
mentation of algorithms that are only sparsely docu-
mented in literature.

In the exam, we focused on theoretical problems in-
stead of applying basic algorithms since each student
implemented them already. Thus, given that we think
the exam was harder overall, we are pleased with the
result in 2018 as shown in Table 2.

During supervision and discussing of the model
checking projects, it became clear that many students
procrastinated and put off work until the last few
weeks, not making use of the available time given by
cutting back lectures. This might be caused by the lack
of fruitful discussion about how components should
be implemented that results in inspiration to try it out
and peer-pressure to reach common goal during the
next week. A possible solution might be to enforce
peer-programming during practical sessions.

Conclusion
In summary, we believe that the restructured course
on “model checking” met our self-set goals. Realiza-
tion was more hassle-free than we anticipated.

In particular, contrary to our concerns, we had no
problems motivating students to active participation.
Even though the course was quite experimental at
times, everybody was willing to try. We only had to
intervene with speed and progress direction seldomly.

One of the key challenges proved difficult however.
Due to the scale of the programming projects, stu-
dents had to form groups concerned with different
partial aspects. For instance, some were working on
techniques for the verification of temporal properties
while other were working on performance improve-
ments. However, all students were supposed to take
the same exam.

As planned, we had regular meetings dedicated to
synchronizing the different groups. However, special-

ist knowledge remains and is not distributed equally
throughout the participants. While the exam and its
results show that all participants reached the desired
learning outcomes, we think that with a better focus
on knowledge transfer an even better outcome could
have been reached.

To summarize, our refurbished lecture on model
checking is gradually being refined. It is intended to
replace the former lessons-only course in following
iterations.

We believe that a few insights can be carried over
from our course to other courses. In particular, we
believe that a strong connection between teaching and
research is highly beneficial and can be achieved with
little overhead using programming projects. Depend-
ing on the scenario, a switch to inquiry-based learn-
ing is feasible and leads to high motivation among
participants, without causing too much reduction in
course content. However, focus has to be given to the
synchronization of participants, i.e., teachers have to
ensure that nobody is left behind.

Last, our course shows that with the right motiva-
tion and proper support, inquiry-based learning meth-
ods can produce research results on a very high level.

Acknowledgments
The authors would like to thank the university didac-
tics department of the Heinrich-Heine-University for
their constant support and consulting. In particular,
the authors would like to thank Susanne Wilhelm
for the project supervision and Jens Bendisposto and
Janine Golov for peer reviewing the lectures.

References
[Abrial 1996] ABRIAL, J.-R.: The B-book: Assigning

Programs to Meanings. New York, NY, USA : Cam-
bridge University Press, 1996

[Barron u. a. 1998] BARRON, Brigid J. ; SCHWARTZ,
Daniel L. ; VYE, Nancy J. ; MOORE, Allison ; PET-
ROSINO, Anthony ; ZECH, Linda ; BRANSFORD,
John D.: Doing With Understanding: Lessons From
Research on Problem- and Project-Based Learning.
In: Journal of the Learning Sciences 7 (1998), Nr.
3-4, S. 271–311

[Biggs 1996] BIGGS, John: Enhancing Teaching
through Constructive Alignment. In: Higher Ed-
ucation 32 (1996), Nr. 3, S. 347–364

[Blumenfeld u. a. 1991] BLUMENFELD, Phyllis C. ;
SOLOWAY, Elliot ; MARX, Ronald W. ; KRAJCIK,
Joseph S. ; GUZDIAL, Mark ; PALINCSAR, Annemarie:
Motivating Project-Based Learning: Sustaining the
Doing, Supporting the Learning. In: Educational
Psychologist 26 (1991), Nr. 3-4, S. 369–398

[Clarke u. a. 1999] CLARKE, Edmund M. Jr. ; GRUM-
BERG, Orna ; PELED, Doron A.: Model Checking.
Cambridge, MA, USA : MIT Press, 1999

[Grumberg u. Veith 2008] GRUMBERG, Orna (Hrsg.) ;
VEITH, Helmut (Hrsg.): 25 Years of Model Checking:
History, Achievements, Perspectives. Berlin, Heidel-
berg : Springer-Verlag, 2008

[Jones 2018] JONES, Simon P.: How to write a great
research paper. https://www.microsoft.com/en-
us/research/academic-program/write-great-
research-paper/, 2018. – Accessed: 2018-10-24

[Kordon u. a. 2016] KORDON, Fabrice ; GARAVEL, Hu-
bert ; HILLAH, Lom M. ; PAVIOT-ADET, Emmanuel
; JEZEQUEL, Loïg ; RODRÍGUEZ, César ; HULIN-
HUBARD, Francis: MCC’2015 – The Fifth Model
Checking Contest. (2016), S. 262–273

[Leuschel u. Butler 2003] LEUSCHEL, Michael ; BUT-
LER, Michael: ProB: A Model Checker for B. In:
Proceedings FME’03, Springer, 2003 (LNCS 2805),
S. 855–874

[Leuschel u. Butler 2008] LEUSCHEL, Michael ; BUT-
LER, Michael: ProB: an automated analysis toolset
for the B method. In: Int. J. Softw. Tools Technol.
Transf. 10 (2008), Nr. 2, S. 185–203

[Oguz-Unver u. Arabacioglu 2014] OGUZ-UNVER,
Ayse ; ARABACIOGLU, Sertac: A comparison of
inquiry-based learning (IBL), problem-based learn-
ing (PBL) and project-based learning (PJBL) in sci-
ence education. 2 (2014), 07, S. 120–128

[Petrasch u. a. 2018] PETRASCH, Jessica ; OEPEN, Jan-
Hendrik ; KRINGS, Sebastian ; GERICKE, Moritz:
Writing a Model Checker in 80 Days: Reusable Li-
braries and Custom Implementation. In: ECEASST
(2018)

[Petri 1966] PETRI, Carl A.: Communication with
automata, Universität Hamburg, Diss., 1966

[Radermacher u. Walia 2013] RADERMACHER, Alex ;
WALIA, Gursimran: Gaps Between Industry Expecta-
tions and the Abilities of Graduates. In: Proceeding
of the 44th ACM Technical Symposium on Computer
Science Education. New York, NY, USA : ACM, 2013
(SIGCSE ’13), S. 525–530

[Radermacher u. a. 2014] RADERMACHER, Alex ;
WALIA, Gursimran ; KNUDSON, Dean: Investigat-
ing the Skill Gap Between Graduating Students and
Industry Expectations. In: Companion Proceedings
of the 36th International Conference on Software En-
gineering. New York, NY, USA : ACM, 2014 (ICSE
Companion 2014), S. 291–300

[Schauble u. a. 1995] SCHAUBLE, Leona ; GLASER,
Robert ; DUSCHL, Richard A. ; SCHULZE, Sharon ;
JOHN, Jenny: Students’ Understanding of the Ob-
jectives and Procedures of Experimentation in the
Science Classroom. In: The Journal of the Learning
Sciences 4 (1995), Nr. 2, S. 131–166

[Tafliovich u. a. 2015] TAFLIOVICH, Anya ; PETERSEN,
Andrew ; CAMPBELL, Jennifer: On the Evaluation of
Student Team Software Development Projects. In:
Proceedings of the 46th ACM Technical Symposium
on Computer Science Education. New York, NY, USA
: ACM, 2015 (SIGCSE ’15), S. 494–499

