
Inquiry- and Research-based Teaching in a
Course on Model Checking

Sebastian Krings, Philipp Körner, and Joshua Schmidt

Universität Düsseldorf, Hochschule Niederrhein
sebastian.krings@uni-duesseldorf.de

Abstract. In this presentation, we discuss a recent publication on our
course on model checking. The course has been shifted from a classical
lecture-based format to inquiry and research-based teaching. In the article
to be presented, we documented course development, presented some
didactic methods used and evaluated the course based on peer review and
student feedback. Furthermore, we tried to assert student engagement
empirically.

1 Introduction and Motivation

The development and improvement of model checkers [3] for the validation of
hard- and software is an ongoing research topic in computer science [4]. Model
checking research connects theoretical and practical aspects; new algorithms
are often implemented inside well-known model checkers which have been in
development for many years. This is seldom taken into account by university
courses, which often remain on the theoretical level.

In particular, both complexity and code volume of commonly used model
checkers prevent students from coming to grips with internal workings. In conse-
quence, typical courses on model checking stay on a theoretical level. Students
often have no way of experiencing the practical aspects of developing a model
checker, leading to shortcomings in different areas as discussed in our paper [5].

To improve, we remodeled our course on model checking as published at
SEUH 2019 [5], moving it from classic lectures to active learning techniques for
an improved hands on experience. Furthermore, we noticed that students writing
theses at our chair sometimes lack the required knowledge about how research
is performed and thus need close supervision and initial training. In order to
motivate individual research and to enable students to train their skills, we
decided to move from a classic lecture setting to inquiry-based and research-based
learning.

Barron et al. [1] identified four important aspects contributing to the success
of inquiry-based courses. In the presentation, we will discuss those factors and
show how we realized them in our course.

Additionally, the course provides other more long term benefits to the chair,
as we can use the resulting software in bachelor’s and master’s theses, given
that it is more easily accessible than other model checkers and can thus help
evaluating alternative techniques.



2 Context, Goals and Challenges

Following a discussion of course context and learning objectives, we will describe
the remodeled course in detail, starting with participants, goals and milestones of
the redesign and the steps performed in preparation, execution and postprocessing.
Additionally, we will discuss two teaching methods employed during the course.

Regarding our goals, students should gain more practical access to model
checking and how it connects to software engineering. Furthermore, the course
should be connected to recent research results. Additionally, we want to encourage
independent research. In particular, this includes supporting students throughout
the common research phases from finding a suitable hypothesis to publication.

Switching from a classic lecture to inquiry-based learning resulted in a number
of challenges we had to address, e.g., cognitive requirements are higher, as
we switch from knowledge reproduction to production. Furthermore, course
progression is less linear and project progress will be fluctuating and thus has to
be monitored more closely. Of course, adding an additional programming task
increases the workload for students. For grading, exams have to be prepared
carefully to meet both the didactic requirements and the ones posed by exam
regulations, due to the higher amount of group work and cooperation.

The given challenges have been addressed by different means during the course
redesign. In the presentation, we will discuss the methods used to address them
and how well they played out in the long run.

3 Course Preparation and Execution

We began course preparation by collecting and inspecting existing lecture material
such as slides and exercise sheets. Furthermore, in order to gain additional
material, the latest literature on model checking was sighted as well.

Reducing existing material to make room for the programming tasks proved
difficult for two reasons. First, it was hard to anticipate the speed with which
students would progress. Second, we intended for the module to be as open
as possible. In particular, we wanted to avoid predetermining techniques and
algorithms to be used. However, this made it impossible to anticipate what the
students would come up with first.

Following the work by Barron et al. [1], we decided to start our course problem-
oriented instead of immediately confronting students with the need to develop
a research question themselves1. To do so, we followed a four-step approach to
introduce model checking: (1) Error- and hazard analysis of an elevator control
software, (2) introduce specification languages, (3) collaboratively develop key
definitions such as state spaces and transitions and (4) collaboratively develop a
simple explicit-state model checking algorithm.

Following, we switched to a more inquiry-based approach: For instance, the
reduced input language did not include a way to specify certain system properties.

1 For a comparison on inquiry-based and problem-based learning see, for instance, [6].



As students were writing their own software models in order to gain test cases,
those shortcomings became obvious. In consequence, students had to come up
with language extensions and develop new model checking algorithms for them.

The course was mainly driven forward by two methods complementing each
other: A hazard collection used to keep the big picture in mind, and a Kanban
board, which was used to structure the programming project into parts and to
discover and tackle todos in an organized manner.

To motivate the how and why of model checking, we began the first lecture
with a simplified hazard analysis. Working in groups, students were supposed
to describe behavior scenarios of an elevator that performs as bad as possible.
Scenarios were collected and sorted, first by grouping corresponding ideas such
as “the elevator never opens its doors” and “the elevator never closes its doors”.

We kept the collection around during the semester, removing those cards
representing errors our model checker was able to detect. In consequence, the
hazard collection was driving the inquiry-based learning process: While some
errors were easy to detect using simple explicit-state model checking techniques,
others made more involved techniques necessary, e.g., “If the elevator is moving,
doors are closed” is comparably simple to verify, whereas “At some point in time
the elevator is moving” is more involved due to time-based reasoning.

To manage programming tasks and how they are distributed between the par-
ticipants we used a method based on simplified Kanban boards. Every occurring
task is collected on a (virtual) flashcard. The method proved easy to learn for
students and efficient in handling programming process.

The teaching methods used for the problem-oriented introduction as well as
those used during the later sessions have been documented thoroughly in our
article [5] and will be part of the presentation in greater detail.

To improve constructive alignment [2], we implemented a combination of
formative and summative exams able to verify whether the learning objectives
stated above have been reached. Both Kanban boards and Git history served as
a documentation of participation that was considered for grading.

4 Course Evaluation

We followed three different approaches to course evaluation. First, we used peer
review. Two sessions, one for research and development as well as one dedicated
to knowledge synchronization, were monitored and reviewed by other faculty
members and members of the didactics department. In the presentation, we will
discuss the weaknesses discovered and how we adaptet the course to improve.

Second, we relied on classical course evaluations by students. However, due
to the small number of participants, no official evaluation was performed by the
university. For the same reason, there are no former evaluations we could compare
to. Instead, we performed several intermediate evaluations using short online
surveys. Feedback was very positive and encouraging. In particular, the course
was described as both interesting and challenging at the same time. Furthermore,
students evaluated their own learning achievements as high. The main point



of criticism was the volatile speed of progression during the lectures. As an
immediate remedy, we started to monitor progress closely and intervened earlier.

Last, we tried to empirically evaluate student engagement, as one of the main
challenges was to keep students motivated to participate in research and pro-
gramming. Given that we used Git to record all changes made to the source code,
we used the data collected for statistics on participation and engagement. Appar-
ently, we were able to motivate participants to consistently and autonomously
work towards the course goals, as we will show in the presentation by discussing
different statistics performed on the data collected.

5 Conclusion

In summary, we believe that our new “model checking” course meets our self-set
goals. Realization was more hassle-free than anticipated. In particular, we had no
problems motivating students to active participation. We only had to intervene
with speed and progress direction seldomly.

One of the key challenges proved difficult however. Due to the scale of the
programming project, students had to work on different aspects, e.g., some were
working on verification algorithms while others were working on performance
improvements. However, all students were supposed to take the same exam.

As planned, we had regular meetings dedicated to synchronizing the different
groups. However, specialist knowledge remains and is not distributed equally
throughout the participants. While the exam and its results show that all partic-
ipants reached the desired learning outcomes, we think that with a better focus
on knowledge transfer an even better outcome could have been reached.

We believe that a few insights can be carried over to other courses both in
model checking and in general and would thus like to present our work to a more
general audience than before [5]. In particular, we believe that a strong connection
between teaching and research is highly beneficial and can be achieved with
little overhead. Depending on the scenario, a switch to inquiry-based learning
is feasible and leads to high motivation among participants, without causing
too much reduction in course content. However, focus has to be given to the
synchronization of participants, i.e., teachers have to ensure that nobody is left
behind.

The actual publication process, was not part of the course for several reasons.
Nevertheless, three students were interested in writing a follow-up paper and
presenting their work to the community. Even though we were unable to provide
credit points, all three of them were very enthusiastic about the idea of writing
their first article. To our joy, the paper was accepted for the 18th International
Workshop on Automated Verification of Critical Systems [7]. In consequence, our
course shows that with the right motivation and proper support, inquiry-based
learning methods can produce research results on a very high level.



References

1. B. J. Barron, D. L. Schwartz, N. J. Vye, A. Moore, A. Petrosino, L. Zech, and J. D.
Bransford. Doing With Understanding: Lessons From Research on Problem- and
Project-Based Learning. Journal of the Learning Sciences, 7(3-4):271–311, 1998.

2. J. Biggs. Enhancing Teaching through Constructive Alignment. Higher Education,
32(3):347–364, 1996.

3. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, USA, 1999.

4. O. Grumberg and H. Veith, editors. 25 Years of Model Checking: History, Achieve-
ments, Perspectives. Springer-Verlag, Berlin, Heidelberg, 2008.

5. S. Krings, P. Körner, and J. Schmidt. Experience Report on An Inquiry-Based Course
on Model Checking. In Tagungsband des 16. Workshops zu Software Engineering im
Unterricht der Hochschulen, volume 2358 of CEUR, 2019.

6. A. Oguz-Unver and S. Arabacioglu. A comparison of inquiry-based learning (IBL),
problem-based learning (PBL) and project-based learning (PJBL) in science educa-
tion. 2:120–128, 07 2014.

7. J. Petrasch, J.-H. Oepen, S. Krings, and M. Gericke. Writing a Model Checker in 80
Days: Reusable Libraries and Custom Implementation. ECEASST, 2018.


