An Approach for Creating Domain Specific
Visualisations of CSP Models

Lukas Ladenberger, Ivaylo Dobrikov, and Michael Leuschel

Institut fiir Informatik, Universitat Diisseldorf**
{ladenberger,dobrikov,leuschel }@cs.uni-duesseldorf.de

Abstract. A domain specific visualisation can greatly contribute to bet-
ter understanding of formal models. In this work we propose an approach
that supports the user in creating domain specific visualisations of CSP
models. CSP (Communicating Sequential Processes) is a formal language
that is mainly used for specifying concurrent and distributed systems. We
have successfully created various visualisations of CSP models in order
to demonstrate our approach. The visualisations of two case studies are
presented in this paper: the bully algorithm and a level crossing gate. In
addition, we discuss possible applications of our approach.

Keywords: Formal Methods, CSP, Domain Specific Visualisation, Vali-
dation, Method, Tool Support, Graphical Editor.

1 Introduction and Motivation

The feedback from a domain expert is crucial in the process of creating a formal
model since certain types of errors can only be detected by a domain expert. More-
over, it is very important for the domain expert to make sure that his expectations
are met in the formal model. However, the communication between the developer
of a formal model and the domain expert can be challenging. One reason for this
is the fact that discussing a formal model requires knowledge about the math-
ematical background of the respective formalism that the domain expert might
not have. To overcome this challenge, it may be useful to create domain specific
visualisations of formal models.

Inspired by the successful application of domain specific visualisations [1], [6]
of Event-B models [3], we have started an attempt to develop an approach for
creating domain specific visualisations for CSP (Communicating Sequential Pro-
cesses). CSP is a notation used mainly for describing concurrent and distributed
systems. There are two major CSP dialects: CSP-M [15] and CSP# [17]. The most
popular tools that support model checking of CSP-M specifications are FDR [19]
and PROB [10]. Support for animating processes of CSP-M specifications is pro-
vided by ProB and ProBE [5]. The more recent CSP# [17] is supported by the
PAT system [18]. In this work, we concentrate on the creation of domain specific
visualisations for CSP-M models.

** The work in this paper is partly funded by ADVANCE, an European Commission
Information and Communication Technologies FP7 project.

Some of the tools provide features for visualising some aspects of the formal CSP
model. For instance, PROB, PAT, and FDR can provide visualisations of counter
examples that come in form of graphs. On the other hand, this work is concerned
with creating domain specific visualisations. This means that if we were modelling,
an interlocking system we could create a domain specific visualisation that shows
a track layout with blocks and points as well as signals and trains. From now on,
when we speak about a visualisation we mean a domain specific visualisation.

In this work we present an approach (method and tool) for visualising CSP-M
models. We describe the method and present an implementation that comes as an
extension for BMotion Studio [8]. BMotion Studio is a visual editor that supports
the user in creating domain specific visualisations for Event-B, a formal language
for state-based modelling and verification of systems.

The difference between our contribution and the original visualisation approach
of BMotion Studio is imposed by the specifics of the CSP formal language. The
basic idea of BMotion Studio is to visualise the information that is encoded in the
states of an Event-B model (e.g. the values of variables), where each state of the
model is mapped to a particular visualisation. In contrast to Event-B, in CSP the
states of the modelled system are left uninterpreted and the behaviour is defined
in terms of sequences of events (traces). Thus, the concepts of BMotion Studio
are not longer applicable on event-based formalisms as CSP. The intention of our
approach is to visualise the traces of the underlying CSP model.

In order to demonstrate our approach, we have created visualisations for various
CSP-M models that we have found in the literature. In this paper, we focus on
the presentation of the visualisations of the bully algorithm [13] and of a level
crossing gate [14]. We also discuss how our approach can be of use in the process
of analysing and validating CSP specifications.

The paper is organised as follows: Sections 2 and 3 describe the method and tool
support, respectively. The presentation of the visualisation of both case studies
is given in Section 4. The discussion of possible applications of our approach is
outlined in Section 5. Finally, we present our conclusions and compare our work
with related work.

Tool Website. The tool, various case studies, and a tutorial can be found at
http://www.stups.hhu.de/bmotionstudio/index.php/CSP.

2 The Method

The mathematical semantics of CSP are mainly based on traces. A trace is a
sequence of events performed by a process that can communicate and interact
with other processes within the CSP model. The basic idea of our approach is to
visualise the information encoded in the given sequence of events (trace). However,
a process may perform many different traces and thus creating a visualisation
manually for each possible trace is an almost impossible task.

Our method requires the user to set up only one visualisation that may be capable
of representing any possible trace of a CSP process of a particular model. This is
achieved by means of observers that are used to link the visualisation with the
model. Formally, one can describe the method by means of Algorithm 1.

Algorithm 1: Visualising a CSP trace

1 procedure visualiseTrace(trace (e1,es,...,e,), observers obs)
2 for i=1 to n do

3 foreach o € obs do

4 if member(e;, 0.exp) then
5 trigger(o.acts)

6 end if

7 end foreach

8 end for

9 end proc

For visualising a particular trace tr = (e, ea, ..., €,), we sequentially go through
each event e; of tr with ¢ € {1..n} and execute all established observers obs for
e;. Note that by “visualisation of a trace” we mean the visualisation of the state
reached after the sequential execution of the events of a trace.

Each observer o has a user-defined CSP expression o.exp that constitutes a set
of observed events. For instance, the CSP expression {e.z | z <+ {0..3}} will
constitute the set of observed events {e.1, e.2,e.3}. In addition, an observer defines
a list of actions o.acts that determine the appearance and the behaviour of the
visualisation. The actions are only triggered when the currently processed event e;
of the given trace is a member of the respective set of observed events defined by
o.exp. More precisely, the actions are triggered (line 5) whenever the expression
member(e;, 0.exp) evaluates to true (line 4).

3 Tool Support

Fig. 1 shows an overview of the tools and components that are used in this work, as
well as how our contribution fits into this overview (marked with dotted border).

We implemented the method presented in Section 2 as an extension for the new
version! of BMotion Studio [8]. BMotion Studio is a visual editor for creating
domain specific visualisations of formal models. It uses PROB [9] to interact with
the model, to obtain trace information and to evaluate expressions. PROB is a
validation tool for model checking and animating Event-B, Classical-B and CSP-
M models [10], as well as other formalisms (e.g. [7] and [12]). The current version of
BMotion Studio supports the user in creating visualisations for Event-B models [8].
This work extends BMotion Studio to support the creation of visualisations for
CSP-M models.

In BMotion Studio, a visualisation is described by a visualisation template that
contains wvisual elements and observers. Visual elements may be, for instance,
shapes or images that represent some aspects of the model. For example, in case of
modelling a communication protocol, we can use circles for representing the com-
municating entities of the protocol and arrows for the message exchanges between

! The new version of BMotion Studio is not officially released yet, but the source code
is available from http://www.stups.hhu.de/bmotionstudio/index.php/Source.

CSP-M model

l

Model Refinement
Checker Checker

Animator

ProB

result of
CSP expression
+ query
trace CSP expression
information

4

E CSP Event Observers E
. (JSON) H

Visual Elements
(SVG and CSS)

Visualisation Template

. CSP Support o

Graphical Editor

BMotion Studio

Fig. 1. Overview of the components that are used in this work

the entities. The new version of BMotion Studio uses web technologies like Scal-
able Vector Graphics (SVG) [21] and Cascading Style Sheets (CSS) [20] for this
purpose. SVG is an XML-based markup language for describing two-dimensional
vector graphics. It comes with a number of visual elements like shapes, images and
paths. On the other hand, CSS is a language that can be used to describe the style
of SVG visual elements (e.g. the colour or the dimension).

Observers are used to link visual elements with the model. An observer is noti-
fied whenever a model change its state, e.g. an event was executed. In response,
the observer will query the model’s state and triggers actions on the linked vi-
sual elements in respect to the new state. BMotion Studio comes with a number
of default observers for creating visualisations for Event-B. For instance, BMo-
tion Studio provides an observer that takes a user-defined predicate that is to be
evaluated in every state. Depending on the result of the predicate (true or false),
the observer will trigger an action to change the appearance of the linked visual
elements (e.g. the colour of a shape).

We extended BMotion Studio with a new observer type called CSP event ob-
server in order to support creating visualisations of CSP models. The observer
has the following JSON structure (in BMotion Studio an observer is represented
in JSON [2]):

{ "exp": "<user-defined CSP expression>",
"actions": [
{ "selector":"<selector>", "attr":"<attribute>", "value":"<value>" 1},
{...}
13

Each observer has a user-defined CSP expression and a list of actions. The user-
defined expression constitutes a set of observed events, whereas the actions deter-
mine the changes made on visual elements.

An action defines a selector that matches a set of visual elements in the visu-
alisation (SVG graphic). A selector follows the syntax provided by jQuery?. For
instance, to match the visual element with the ID “elem1” (each element should
have a unique ID in the visualisation) the user can define the selector “#elem1”.
The prefix “#” is used for matching a visual element by its ID in jQuery. An
action also defines an attribute (e.g. “fill” for colouring the interior of a visual
element like a circle shape) and a corresponding value that will be set as the new
value of the attribute when the action is triggered. The actions of an observer o
are triggered when the currently processed event is in the set of observed events
of o.

The user can refer to the information given by the arguments of the currently
processed event within the action fields (selector, attribute and value). This is
achieved by means of the construct “{{aN}}” where aN refers to the N-th argument
of the event. For instance, if the event has two arguments, then the first and the
second one can be obtained with “{{al}}” and “{{a2}}”, respectively. To illustrate
this, consider an event evt.z with x < 0..4. One may want to use the information
given by the first argument x of evt within a selector in order to match visual
elements that have an ID of the form “elemz”. This can be done by defining the
selector “#elem{{al}}”. The construct “{{al}}” will be replaced by the value of
the first argument of the currently processed event in the observer. For instance,
if the currently processed event is evt.2, the selector “#elem{{al}}” will become
“#elem?2”.

Fig. 2 illustrates the function of the CSP event observer on a simple example.
The visualisation consists of an SVG graphic with a text field element with the ID
“txt” and one CSP event observer. The CSP event observer defines an expression
that constitutes the set of observed events evt = {evt.2,evt.4,evt.6,..} and one
action actl that changes the value of the attribute "text” to “{{al}}” of the
visual element with the ID “txt” (the text field). According to our method (see
Section 2), the observer is executed for each event of a given trace. This means
that, whenever the currently processed event is in the set of observed events evt,
the observer will trigger the defined action actl. For instance, the execution of the

2 For more information about jQuery and selectors we refer the reader to the jQuery
API documentation http://api.jquery.com/category/selectors/.

ProB

evt.l evt.2 evt.3 evt.4 evt.5 evt.6
» E— > »>
KT 3 T \r k

x x 3

trace

exp| | false exp true exp | |false exp | |true exp | |false

v v v v v

{"exp":"{evtx|x<-1.n&x%2=01}"

"actions" : [
{ "selector" : "#txt", "attr" : "text", "value" : "{{al}}" }
1} CSP Event Observer
Set text of elem. Set text of elem.
with ID "txt" to "2" with ID "txt" to "4"

4

ID: txt SVG Graphic (Visualisation)

BMotion Studio

Fig. 2. The function of the CSP event observer

event evt.4 causes the observer to set the value of the text field element to “4” as
demonstrated in Fig. 2.

Creating a Visualisation. BMotion Studio provides a graphical editor with
different views and wizards that supports users in creating visualisations for formal
models. Fig. 3 shows the bully algorithm visualisation template opened in the
graphical editor (the bully algorithm visualisation will be introduced in Section 4).
The editor consists of a set of tools (1) for creating SVG widgets (e.g. visual
elements as shapes and images), a canvas (2) holding the actual visual elements, a
view (3) for editing observers, and another view (4) for manipulating the attributes
of the currently selected visual element in the canvas. The corresponding JSON file
which contains the observers is created by the editor automatically. We extended
the graphical editor of BMotion Studio in order to support the editing of CSP
event observers.

Running a Visualisation. Once a visualisation template is created, it can be
started with BMotion Studio as shown in Fig. 4. BMotion Studio uses the default
web browser of the user’s operating system to view the visualisation and the PROB
tool to animate the corresponding CSP-M model.

The user can access the entire function range of PROB. For instance, Fig. 4 shows
two views (Events and History) that come from PROB. The first one (Events) lists
all possible events that are available in the current state of the animation. The
second one (History) shows the executed events so far. The left side of Fig. 4
shows the visualisation of the trace that is displayed in the History view. If the
user executes an event in the Events view, a new trace (the trace generated so far

(1) (2) (3) (4)

Object View Configuration

=|= Ellipse

{test.x.y | x <- {0..N-1}, y <-
* {0..N-1}}
Legend I fokxy|x<-{0.N-1},y <- {0..N-
ode status ~ Communication Ly

xmepy) test.x.y * Events {okxy |x<- {0..N-1},y <- {0

= xmupy) €lection.x.y
HO coordinator

= ; mushy) ANSWEr.X. ~
(O coordinated < y re o
. x mpp) COOrdinator.x.y -

1 Attribute
: value

1 & Selector
I Attribute

Fig. 3. CSP support within BMotion Studio graphical editor

plus the recently executed event) is provided which is visualised according to our
approach.

4 Case Studies

In order to test our approach, we successfully created various visualisations for
CSP specifications that we have found in the literature. In this work we present
the visualisation of the bully algorithm specification from [13] and of the level
crossing gate specification from [14]. The specifications are written in the machine
readable dialect CSP-M and have not been modified for the visualisation we have
created. Both visualisations were created by means of the built-in graphical ed-
itor of BMotion Studio. However, for presentation purposes the observers of the
visualisations are described in the JSON notation in this section.

4.1 The Bully Algorithm

The algorithm represents a method of distributed computing for electing a node
to be the coordinator amongst a group of nodes. Each node has a unique ID and
the algorithm intends to select the node with the highest ID to be the coordina-
tor. It is assumed that the nodes may fail and revive from time to time and the
communication between the nodes is reliable. Three types of messages are defined
within the design of the algorithm: election (announcing an election), answer (re-
sponding to an election message), and coordinator (announcing the identity of the
coordinator).

The specification from [13] defines six additional types of events needed for the
formalisation of the algorithm in CSP: the fail and revive events (for modelling

BMotion Studio ProB
Legend
Node status Communication Q election.1.2 1T
election.1.3
X =p(y) test.x.y I R KN 12 @ | Lfeviver
© failed H coordinator.2.0
ved (Y ok.x.y ! P answer(2,1) coordinator.2.1
@ revive Xmup(y) election.x.y ‘-‘.‘ P answer(2, 1) t(l)d(t' -
(O coordinator > fail(0) e ei ion.2.
) Xmusp(y) answer.x.y > fail(1) Jog
D coordinated > failL) kest2.3
X m=py) coordinator.x.y > fail(3) a‘:-l
: > leader(0, 2) l\?‘e't?uork
> revive(3) .

Fig. 4. The Bully Algorithm visualisation

failing and reviving of a node), the test and ok events (for simulating a test-
response communication), the leader events (for indicating the coordinator of a
living node), and the tock event (for modelling timeouts and time).

Visualising the Bully Algorithm. In general, we want to visualise the process
of electing a leader in the network. More precisely, we aim to visualise the Network
process of the CSP specification. As the bully algorithm specification in [13] is
presented for a network with four nodes, we also intend to create a visualisation
for four nodes (the nodes are enumerated from 0 to 3). Fig. 4 demonstrates the
visualisation of a particular trace.

There are two major aspects of the specification that we want to visualise: the
nodes and the communication between the nodes. Each node is visualised by means
of a circle in which the respective ID is positioned, whereas the communication
between the nodes is illustrated by directed arrows. Each directed arrow is made
up of a line and a corresponding arrowhead.

To each visual element in the visualisation we assign a unique ID referring to the
elements in the CSP specification. Thus, the node with ID x in the CSP specifica-
tion is presented by the circle with ID “n-x” in the visualisation. Additionally, a
message transfer from the node with ID z to the node with ID y is represented by
the line with ID “l-x-y” and the arrowhead with ID “p-y” (i.e. the arrow connect-
ing “n-x” and “n-y”). In this section, both symbols = and y stand for an integer
ranging from 0 to 3.

We can classify all types of events in the specification into the following groups:

— status: Events that can change the status of a particular node z: fail.z,
revive.x, coordinator.xr.y, and leader.z.y.

— message: Events illustrating a message transfer from node z to node y:
test.x.y, ok.x.y, election.x.y, answer.x.y, and coordinator.x.y.

— hidden: Events that are not considered in the visualisation: tock.

Thus, we can infer that there are two general types of observers to define: the status
and the message observers. Note that each coordinator event (coordinator.z.y) has
been included in the first two groups above. This is because in the specification

each of the coordinator events intends to identify the coordinator (x) and at the
same time represents a message transfer (to node y).

The status of a node usually changes when one of the status events has been
executed. Each node, except for the node with the lowest ID?, can have the follow-
ing status: failed, revived, coordinator, or coordinated. A unique fill pattern
has been selected for distinguishing each possible status of a node (see legend in
Fig. 4).

In order to associate a status event from the CSP specification with a node in the
visualisation, we use the selector “#n-{{al}}” in the definition of the respective
observer. The construct “{{al}}” is used in the selector for obtaining the value
of the first argument of the respective status event. For example, the observer for
changing a status of a node to failed can be defined as follows:

{ "exp": "{fail.x | x <- {0..N-1}}",
"actions": [{"selector":"#n-{{al}l}",
"attr":"fill", "value":"url(#diagonalHatch)"} 1 }

The observer will fill the respective node with a diagonal hatch pattern whenever
a fail event has been processed. For instance, the node with ID “n-3” will be
filled with a diagonal hatch pattern when the event fail.3 has been processed. In
a similar fashion we have defined the observers for the other node status changes.

For creating the message observers we need to consider both arguments of the
message events. The types of the messages are distinguished by different stroke
patterns (see Fig. 4). Thus, each message observer, except for the coordinator ob-
server (this observer has three actions), has two actions: one action for appearing
the arrow (the line and arrowhead constituting the respective arrow in the visual-
isation) and one action for changing the stroke pattern of the arrow. For instance,
the observer for visualising the election message can be defined as follows:

{ "exp": "{election.x.y | x <- {0..N-1}, y <- {0..N-1}}",
"actions": [{ "selector": "#l1-{{a1}}-{{a2}}, #p-{{a2}}",
"attr": "class", "value": "visible" },
{ "selector": "#1-{{a1}}-{{a2}}",
"attr": "stroke-dasharray", "value": "5,2,2,2" }] }

To provide a clear visualisation an additional observer has been added to hide
all arrows after performing an arbitrary event. This observer is applied on the
currently processed event before all other defined observers.

The initial state of the specification and the visualisation is the state in the
network where all nodes are alive and the coordinator is the node with the ID 3
(the node with the greatest ID). Additionally, no message exchanges are performed.

4.2 Level Crossing Gate

The model of the first case study introduced in [14] specifies a level crossing gate
of a single railway track along which trains move only in one direction. The track
is divided into segments such that each of the segments is at least as long as any

3 The node with ID 0 can never be a coordinator as there is no node with a lower ID.

BMotion Studio ProB

Q enter.4.Trainl 11
tock
iR W 13 @ | Jock
o I I . tock
sensorin ; sensorout : > leave(3, Trainl) |eave.2.Trainl

> enter(2, Train2) enter.3.Trainl
H tock
i tock

segmentl§ segment2 segment3§ segment4 i |:| bock
;I. sensorin

leave.0.Train2
enter.1.Train2
leave.1.Trainl
enter.2.Trainl
tock
tock

ol

Fig. 5. The Level Crossing Gate visualisation

train. There are five track segments considered for the level crossing gate where
one of the track segments represents the outside world.

The track segments are numbered. The input sensor is placed in segment 1
and the crossing and output sensors in segment 4. The outside world segment is
identified by 0. A train enters segment (i 4 1) before it leaves segment . Entering
and leaving of a segment are specified by the events enter and leave, respectively.
The entering of train ¢ into segment j is described by enter.j.t. Accordingly, the
leaving of train ¢ from segment j is designed by means of the event leave.j.t.

The sensors send control signals to the gate. The gate goes down after a train
enters segment 1 and accordingly the gate goes up after the train leaves segment
3 and no train is moving along the segments 1 to 2. The control signals sent by
the input and output sensors are specified by the events sensor.in and sensor.out,
respectively. The communication between the controller and the gate processes
is specified by the channel gate which defines four different events. The events
gate.go_down and gate.go_up represent the commands from the controller to the
gate for moving the barriers down or up. And the events gate.down and gate.up
denote the confirmations from the gate sensors that the barriers are down or up,
respectively.

In addition, timing constraint are set for the trains moving on the tracks. The
speed of each train is determined by how many units of time a train can spend per
track segment. This additional property is required since the goal of the system
is to guarantee via timing that the gate is up and down at appropriate moments.
In the CSP model the speed of a train per track segment has been set to three
time units. A unit of time is denoted by the tock event in the level crossing gate
specification.

Visualising the Level Crossing Gate. In our visualisation (see Fig. 5) we
assume that the trains are moving from left to right. Track segments 1 to 4 are
illustrated by rectangles separated by vertical, dotted lines. Segment 0, which
represents the outside world, can be seen as the space left from track segment 1
and the space right from segment 4. A train leaves the outside world after entering
track segment 1 and a train enters the outside world before leaving track segment
4. The length of each of the track segments 1 to 4 in the visualisation is considered
to be 100 pixels.

Since the model from [14] handles two trains, we also intend to visualise only two
trains (these are indicated as Train! and Train2). Both trains are represented by
two boxes coloured in grey and slate grey, respectively. Moving of a train along
the track is simulated by shifting the respective box from left to right. In order
to simulate a movement along the track segments, we shift the respective box 50
pixels from left to right. In doing so, entering of a new segment is represented
such that the box is laid half on the new segment and half on the previous. On
the other hand, when the train leaves a track segment, the box is moved fully
on the recently entered segment. Referring to Fig. 5, the grey box representing
Trainl is laid half on segment 4 and half on segment 3 after executing the event
enter.4.Trainl, whereas Train2 (the slate grey box) is moved fully on segment 1
after performing consecutively the events enter.1.Train2 and leave.0.Train2. We
have set each box representing a train to the length of 100 pixels.

For visualising the movement of the trains, we defined two observers that listen
respectively to the events enter.j.t and leave.j.t. Both observers contain an action
that changes the transform attribute [21] of the matched visual element. For in-
stance, the leave observer is defined such that by executing an event leave.j.t the
visual element with the ID “train-t” (¢ refers to the second argument of the leave
events) will be moved 50 pixels to right by setting the transform attribute to the
value translate(50,0). Thus, the observer for leaving a track is defined as follows:

{ "exp": "{leave.j.t | j <- {0..3}, t <- {Traini,Train2}}",
"actions": [{ "selector":"#train-{{a2}}",
"attr":"transform", "value":"translate(50,0)" }] }

Note that the leave observer does not fire its actions when an event leave.4.t is
executed since in our visualisation the respective box “train-t” is intended to be
moved on the left site of track segment 1 when the event enter.0.t is executed.
We decided to define the observers in this way because after entering the outside
world (track segment 0) and leaving at last track segment 4, the same train can
enter the crossing gate segments once again.

For the overall visualisation we defined four different observers. The other two
observers are responsible for simulating the up and down movement of the bar-
riers in the visualisation after proceeding of the events gate.up and gate.down,
respectively. For this, we created for each of the barriers two visual elements that
illustrate accordingly the two possible states of the appropriate barrier: barrier is
up and barrier is down. This means that we have four visual elements illustrating
the different positions of the barriers. When, for example, the event gate.down is
processed, then the go-down observer executes two actions. The first is to hide
all barrier elements and the second action is to display the visual elements repre-
senting that the barriers are down. The hiding and displaying of the barriers are

realised by setting the “opacity” attribute of the visual elements to 0 and 100,
respectively. The go-down observer is given as follows:

{ "exp": "{gate.down}",
"actions": [
{ "selector":"gl[id"=gate]", "attr":"opacity", "value":"O" }
{ "selector":"g[id"=gate-go_down]", "attr":"opacity", "value":"100" }1}

Analogously, we defined the go-up observer. The initial state of the specification
and its visualisation is the state in which both trains are in the “outside world”
track segment and both barriers are up.

5 Application of the Approach

Using validation tools for performing various consistency checks automatically is
a powerful technique for verifying the correctness of the analysed specification. A
failure of a consistency check is mostly reported by producing of a counterexam-
ple (very often presented as a trace leading to an error state). However, trying to
understand the failure behaviour of the model by simply examining the trace can
sometimes be difficult as the error trace may, for example, be the result of the
interaction of various components in the specified system. Thus, using a visualisa-
tion in order to facilitate the effort of understanding the error trace can be very
useful.

In this Section we show how the bully algorithm visualisation introduced in
Section 4 may, for example, contribute to the better understanding of an erroneous
behaviour in the models.

For example, the trace of the Network process of the bully algorithm model

(fail .2, fail.3,test.1.3, tock, election.1.3, election.1.2, revive.2, revive.3,
coordinator.3.2, fail.3,test.0.3, tock, coordinator.1.0, leader.2.3)

represents a sequence of events leading to a state in the network in which the
elected leader is not the living node with the greatest ID. In general, the false
behaviour that is explicitly discussed in [13] illustrates a problem occurring by a
certain combination of node failures and mixing up various elections.

While examining the given error trace, it is hard for the user to reproduce and to
see the actual problem. In contrast, Fig. 6 shows a stepwise graphical representa-
tion of the error trace. The user can see at a glance the erroneous behaviour that
is shown in the last step of the trace (after performing leader.2.3) in the graphical
representation.

6 Conclusion

In this paper, we presented an approach for creating domain specific visualisations
of CSP-M models and an implementation based on BMotion Studio. In particular,
we extended BMotion Studio and the built-in graphical editor with a new observer
type (CSP event observer) that implements the algorithm presented in Section 2.

fail.2, fail.3

test.1.3 tock, election.1.3
_— e -

o &
@

coordinator.3.2 revive.3, revive.2
-

®
@,
®

lelection.l.z

® ®
®
®

o
@

test.0.3 ' tock, coordinator.1.0
_— i

g @ o |

©)

leader.2.3

®

®

Fig. 6. A stepwise visualisation of a trace of the Bully Algorithm model

The difference between our contribution and the primary approach of BMotion
Studio (the domain specific visualisation of Event-B models) is imposed by the
question of what is to be visualised of a model. On the one hand, in CSP each
trace is mapped to a particular visualisation. On the other hand, in Event-B the
information to be visualised is given by the states (e.g. the values of variables) of
an Event-B model, where each state is mapped to an individual visualisation.

We tested our approach by creating visualisations of various CSP-M models. A
demonstration of our approach is given by visualising the bully algorithm specifi-
cation from [13] and the level crossing gate specification from [14]. We also have
shown how our approach could be of use in the process of analysing and validating
CSP specifications.

Our tool comes with a graphical editor that can be used to create easily vi-
sualisations. The developer of a visualisation remains in the CSP domain. This
means that only CSP expressions and jQuery selectors (see Section 3) are required
for establishing the link between a visualisation and the CSP model. Moreover, a
modification of the CSP model is not necessary to create a visualisation for it.

A domain specific visualisation of a CSP model can be useful in various ways.
For example, the graphical representation of the behaviour of the CSP processes
can be helpful for discussing the specification with non-formal method experts and
for the further development of the specification.

We also believe that our approach may be of use to identify inconsistencies or
unexpected behaviours within the specification. Indeed, in the process of exam-
ining the various case studies, the visualisation helped us to better understand
some of the unexpected behaviours (error traces) discovered by validating the
corresponding specification (see Section 5).

Finally, we believe that our approach may be useful for teaching formal methods,
as the execution of a specification with a graphical representation may give a
better idea and overview of the system being modelled. For instance, we used our
approach successfully in our lectures as a way to present formal models to students
and to motivate them to write their own formal models.

Related Work. BMotion Studio was initially developed for creating domain spe-
cific visualisations of Event-B models [8]. Our approach extends BMotion Studio
to permit users to also create visualisations for CSP-M.

The tools presented in [4] and [16] support the creation of domain specific visu-
alisations for Classical-B. In contrast to our approach, both tools require the user
to set up scripts in order to link the visualisation to the model.

Our approach uses ProB [10] to execute a CSP-M specification. ProB and other
CSP tools [18,19] are capable of displaying graphs of processes and counterexam-
ples. Whereas, the purpose of our work is to provide a tool that allows the user to
create custom visualisations that are specific to a domain.

A central goal of our work is to gain a better understanding of CSP models
by creating domain specific visualisations. A different approach has been taken
by [11], which presents a tool for visualising CSP in UML.

References

1. ADVANCE Deliverable D4.2 (Issue 2). Methods and tools for simulation and testing
I, Mar. 2013.

2. ECMA-404 The JSON Data Interchange Standard. Ecma International, Oct. 2013.

3. J. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge Uni-
versity Press, June 2010.

4. J. Bendisposto and M. Leuschel. A generic flash-based animation engine for prob.
In J. Julliand and O. Kouchnarenko, editors, Proceedings of B 2007, volume 4355 of
Lecture Notes in Computer Science, pages 266—269. Springer, 2007.

5. Formal Systems (Europe) Ltd. Process Behaviour Ezplorer (ProBE User Manual,
version 1.80). Available at http://www.fsel.com/probe manual.html.

6. D. Hansen, L. Ladenberger, H. Wiegard, J. Bendisposto, and M. Leuschel. Validation
of the abz landing gear system using prob. In F. Boniol, V. Wiels, Y. Ait Ameur,
and K.-D. Schewe, editors, ABZ 2014: The Landing Gear Case Study, volume 433
of Communications in Computer and Information Science, pages 66—79. Springer
International Publishing, 2014.

7. D. Hansen and M. Leuschel. Translating TLA+ to B for validation with ProB. In
Proceedings iFM’2012, LNCS 7321, pages 24-38. Springer, 2012.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

L. Ladenberger, J. Bendisposto, and M. Leuschel. Visualising Event-B Models with
B-Motion Studio. In M. Alpuente, B. Cook, and C. Joubert, editors, Proceedings
FMICS °09, volume 5825 of LNCS, pages 202—204. Springer, 2009.

M. Leuschel and M. Butler. ProB: An Automated Analysis Toolset for the B Method.
STTT, 10(2):185-203, 2008.

M. Leuschel and M. Fontaine. Probing the Depths of CSP-M: A new FDR-compliant
Validation Tool. ICFEM 2008, pages 278-297, 2008.

M. Y. Ng and M. Butler. Tool support for visualizing CSP in UML. In Formal
Methods and Software Engineering, pages 287—298. Springer, 2002.

D. Plagge and M. Leuschel. Validating Z specifications using the ProB animator
and model checker. In J. Davies and J. Gibbons, editors, Integrated Formal Methods,
volume 4591 of Lecture Notes in Computer Science, pages 480-500. Springer-Verlag,
2007.

A. Roscoe. Understanding Concurrent Systems. Springer-Verlag New York, Inc.,
New York, NY, USA, 1st edition, 2010.

A. W. Roscoe, C. A. R. Hoare, and R. Bird. The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

B. Scattergood and P. Armstrong. CSP-M: A Reference Manual. 2011.

T. Servat. Brama: A new graphic animation tool for B models. In B 2007: Formal
Specification and Development in B, pages 274-276. Springer, 2006.

J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating Specification and Programs for
System Modeling and Verification. In W.-N. Chin and S. Qin, editors, Proceedings
TASE 09, pages 127-135. IEEE Computer Society, 2009.

J. Sun, Y. Liu, J. S. Dong, and J. Pang. Pat: Towards flexible verification under
fairness. volume 5643 of Lecture Notes in Computer Science, pages 709-714. Springer,
20009.

A. B. A. R. Thomas Gibson-Robinson, Philip Armstrong. FDR3 — A Modern Model
Checker for CSP. In E. brahm and K. Havelund, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 8413 of Lecture Notes in Computer
Science, pages 187-201, 2014.

W3C CSS Working Group. Cascading Style Sheets (CSS) Snapshot 2010.
http://www.w3.org/TR/css-2010/, May 2011.

W3C SVG Working Group. Scalable Vector Graphics (SVG) 1.1 (Second Edition).
http://www.w3.org/TR/SVG11/, Aug. 2011.

