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1 Management Summary

1.1 Overview

Workpackages T1 (case studies), E1 (empirical evaluation) have been completed.
A directed model checking algorithm has been implemented and empirically
evaluated. Parts of workpackage T3 and to some extend also I3 have been started
much earlier than planned, and have already generated a scientific paper. Indeed,
two avenues of research have been identified as particularly promising: proof-
directed model checking and flow-analysis guided model checking. This explains
that more resources were put into pursuing these avenues. This shift of focus has
been triggered by the further emergence of Event-B and the Rodin platform,
where a model checker has direct access to proof obligations and the various
provers.

Workpackage I1 (parallel prototype) is nearing completion. However, due to
the rising availability of multi-core systems, we have concentrated our efforts on
a shared memory approach. Other approaches will be investigated in the next
phase of the project. The project is thus progressing very well.

1.2 Published papers and presentations

The following papers have been published within the project:

– Michael Leuschel, The High Road to Formal Validation, Proceedings ABZ
2008, LNCS 5238, p. 4–23.

– Jens Bendisposto, Michael Leuschel: Proof Assisted Model Checking for B,
Proceedings ICFEM 2009, LNCS 5885 , p. 504–520.

– Jens Bendisposto and Michael Leuschel. Parallel Model Checking of Event-B
Specifications with ProB. Preliminary Proceedings PDMC 2009, Eindhoven,
November 2009.

– Mireille Samia, Harald Wiegard, Jens Bendisposto, Michael Leuschel : High-
Level versus Low-Level Specifications: Comparing B with Promela and ProB
with Spin, Proceedings TFM-B 2009, Nantes, June, 2009, APCB.
ISBN:2951246102.

In addition, two papers have been submitted for publication “Automatic Flow
Analysis for Event-B” and “Directed Model Checking for B: An Evaluation and
New Techniques”.

1.3 Outlook

The outcome of the empirical evaluation is that we believe that proof-directed
and flow-analysis-directed model checking to be the most promising avenues for
further work. We believe that a genetic library is less likely to yield good results.1

1 In the project description we promised we would evaluate whether this approach is
likely to be fruitful or not.



On the other hand, an avenue that we had discarded in the original description
now seems more more likely to be fruitful: (dynamic) partial order reduction.
This change is again triggered by the rise of Event-B, which with its simpler
events, provides a much better basis for partial order reduction. Furthermore,
Event-B has been designed for modelling reactive systems, and as such there is
a much bigger need but also potential for partial order reduction.

Hence, in phase two of the project we plan to:

– pursue proof- and flow-analysis-directed model checking much more con-
cretely, and

– develop and experiment with (dynamic) partial order reduction techniques
for Event-B.



2 Workpackage T1: Case Studies

2.1 Overview of Case Studies

We have chosen a variety of case studies for evaluating the effectiveness of exist-
ing and new techniques for model checking, in particular directed and parallel
model checking. All models are either classical B models or Rodin Event-B mod-
els. We have included several industrial specifications (some stemming from vari-
ous EU projects, such as Rodin and Deploy2), as well as academic specifications
of various intricate algorithms. There are a few artificial benchmarks as well,
testing specific aspects of the model checking algorithm. We have also included
some classical puzzles as well, in particular to test directed model checking.

The case studies have been partitioned into four classes:

1. Models with invariant violations,
2. Models with deadlocks,
3. Models with no errors (i.e., no deadlocks or invariant violations), but where

a particular GOAL predicate is to be found. Indeed, in ProB the user can
define a particular GOAL predicate and ask the model checker to find states
which make the predicate true. The main difference with point 1 is that the
goals are often much more precise (sometimes a concrete particular state)
than the invariant violations.

4. Models with no errors, and where the full state space needs to be explored.

Below we briefly describe the individual models. They are used extensively in
the empirical evaluation E1 (Section 3), as well as in the later tasks of the project.
Note that new models will be added as the project progresses. We then describe
in subsection 2.6 tool developments that we have made, so that the performance
of a particular model checking technique can be automatically evaluated for all
those models.

2.2 Models with Invariant Violations

– Scheduler err
The process scheduler from [34] for 5 processes, where an error has been
added to the model.

– Simpson Four Slot
A model of Simpson’s four slot algorithm. This B model only represents the
individual steps of the algorithm. It is intended to be used in conjunction
with a CSP model to describe the sequencing of the steps. Here, the B model
on its own is model checked (thus leading to invariant violations).

– TravelAgency
A B model of a distributed online travel agency, through which users can
make hotel and car rental bookings. It consists of 6 pages of B and was
developed within the ABCD3 project.

2 EU funded FP7 research project 214158: DEPLOY (Industrial deployment of ad-
vanced system engineering methods for high productivity and dependability).

3 “Automated validation of Business Critical systems using Component-based Design,”
EPSRC grant GR/M91013.



– Peterson err
Peterson is the specification of the mutual exclusion protocol for n processes
as defined in [47]. Here we have used 4 processes and have introduced an
error in the protocol.

– SecureBuilding
The model of a secure building equipped with access control; see [?].

– NastyVendingMachine
The model of a simple ticket vending machine. Note that we have compared
the performance of ProB with Spin in [35] (also in Appendix ?).

– Alstom axl3
A train model by Alstom (confidential). This is not the final model but an
intermediate one which still contains errors.

– dfcheck houseset
A simple model (derived from Schneider’s houseset example [51]), where an
operation can add new house numbers to a set. An invariant violation occurs
when the set exceeds a certain limit.

– BreadthFirstTest, DepthFirstTest , DepthFirstTest2 Three artificial
models, to test certain performance aspects of depth-first and breadth-first
search.

– Abrial Press m2 err
A larger development of a mechanical by press by Abrial [2]. The develop-
ment of the mechanical press started from a very abstract model and went
through several refinements. The final model contained “about 20 sensors,
3 actuators, 5 clocks, 7 buttons, 3 operating devices, 5 operating modes,
7 emergency situations, etc.” [2]. This model is a variation of the second
refinement, where an error has been introduced.

– SAP M Partner
An Event-B model of a business process generated by SAP from a MCM
choreography model. This model describes the behaviour of an individual
partner. See [56].

– Needham-Schroeder
The Needham-Schroeder public key protocol is an authentication protocol for
creating a secure connection over a public network [44]. The model consists
of a network with the two normal users called Alice and Bob, an attacker
named Eve and the keyserver. The first version of this protocol, developed
in 1978, contains an error which was found in 1995 [41].
This model is a slightly simplified version (reducing the messages sent by
Eve), to allow the model checker to more quickly find a counter example.
The shortest counter example has 14 steps.

2.3 Models with Deadlocks

– Abrial Earley 3 v3, Abrial Earley 3 v5, Abrial Earley 4 v3
A model developed by Jean-Raymond Abrial, with the help of Dominique
Cansell. The purpose was to formally derive the Earley parsing algorithm in



Event-B and to establish its correctness. The model contains four levels of re-
finement and very complicated guards. Every event corresponds to a step in
the parsing algorithm. The purpose was to animate the model for a particular
grammar and to reproduce the sequence in http://en.wikipedia.org/wiki/Earley parser.
However, ProB did locate deadlocks (in fully proven models). For more de-
tails see [11].

– Alstom axl3 deadlock
The same model as above; but this time we only look for deadlocks.

– Alstom exemple7
Another model by Alstom (confidential). This is again not the final model
but an intermediate one which still contains errors. One counter example
trace has length 22.

– Bosch CrsCtrl
The second level of refinement of a Bosch model of an adaptive cruise control
system, developed within Deploy.

– SAP MChoreography
An Event-B model of a business process generated by SAP from a MCM
choreography model. This model describes the behaviour of an global system.
See [56].

– Dining
The classical Dining philosophers problem, with 8 philisophers.

– CXCC0
CXCC (Cooperative Crosslayer Congestion Control) [50] is a cross-layer
approach to prevent congestion in wireless networks. The key concept is
that, for each end-to-end connection, an intermediate node may only for-
ward a packet towards the destination after its successor along the route has
forwarded the previous one. The information that the successor node has
successfully retrieved a package is gained by active listening. The model is
described in [10]. The invariants used in the model are rather complex.

2.4 Models with GOAL to be found

– Wegenetz
The problem is to find a target state within a graph. The shortest solution
needs 14 moves.

– RussianPostalPuzzle
This is a B model of a cryptographic puzzle. (see, e.g., [23]). The shortest
solution needs 10 moves.

– TrainTorchPuzzle
The shortest solution needs 7 moves.

– BlocksWorld
A model of blocksworld, with five blocks; the goal being to put all blocks in
the right-order on top of each other. The shortest solution needs 6 moves.

– Farmer
The Farmer/Fox/Goose/Grain puzzle. The shortest solution needs 9 moves.



– Hanoi
The well-known towers of Hanoi puzzle. The shortest solution needs 33
moves.

– Puzzle8
The well-known eight puzzle.4 The goal is to arrive at a configuration where
the eight tiles are in the correct order. The shortest solution needs 17 moves.

– RushHour
The Rush Hour puzzle.5 This is the hardest puzzle (number 40 in the regular
version of the game). The shortest solution needs 83 moves.

– Abrial Press m13
This is the last level of refinement of [2]; already described above. The goal
is the guard of a partcular event (traiter arret moteur 2).
The shortest solution has length 3.

– Abrial Queue m1
Level 1 of a non-blocking concurrent Queue algorithm, derived by Abrial
and Cansell in [4]. The goal is to find a particular configuration of the datas-
tructures of the algorithm
(#pp.(pp:PROCESS & pp:dom(tld) & tld(pp)=hdd(pp) & tld(pp)=Tail))).
The shortest solution has length 4.

– SystemOnChip Router
A system-on-chip router developed by Satpathy. The shortest solution has
length 4.

2.5 Models without Errors

– Scheduler1
Another version of the process scheduler, for 5 processes. The first level of
refinement from [37].

– Volvo Cruise
Volvo Vehicle Function. The B specification machine has 15 variables, 550
lines of B specification, and 26 operations. The invariant consists of 40 con-
juncts. This B specification was developed by Volvo as part of the European
Commission IST Project PUSSEE (IST-2000-30103).

– USB4
USB is a specification of a USB protocol, developed by the French company
ClearSy.

– Nokia Nota
A model developed by Nokia within the RODIN Project6 for the validation
and verification of Nokia’s NoTA hardware platform; see [45].

– HuffmanM Event-B model of a Huffman encoder/decoder.
– Cansell Contention

A Firewire-Leader election protocol by Dominique Cansell, see also [48].

4 See, e.g., http://en.wikipedia.org/wiki/Fifteen puzzle.
5 See http://en.wikipedia.org/wiki/Rush Hour (board game).
6 http://rodin.cs.ncl.ac.uk/



– DeMoney GS R1 Part of a model of an electronic purse by Trusted Logic,
developed within the SecSafe project. See for example [12].

– SystemOnChip Router1
See above, but not searching for goal.

– Mondex m2, Mondex m3
The mechanical verification of the Mondex Electronic Purse was proposed
for the repository of the verification grand challenge in 2006. We use an
Event-B model developed at the University of Southampton [17]. We have
chosen two refinements from the model, m2 and m3. The refinement m2 is
a rather big development step while the second refinement m3 was used to
prove convergence of some events introduced in m2, in particular, m3 only
contains gluing invariants.

– Siemens ATP0
This Siemens Mini Pilot was developed within the Deploy Project. It is
a specification of a fault-tolerant automatic train protection system, that
ensures that only one train is allowed on a part of a track at a time. The
model contains a single refinement level and rather complex invariants.

– SSF obsw1
The Space Systems Finland example is a model of a subsystem used for
the ESA BepiColombo mission. The BepiColombo spacecraft will start in
2013 on its journey to Mercury. The model is a specification of parts of the
BepiColombo On-Board software, that contains a core software and two sub-
systems used for tele command and telemetry of the scientific experiments,
the Solar Intensity X-ray and particle Spectrometer (SIXS) and the Mer-
cury Imaging X-ray Spectrometer (MIXS). The model was a mini pilot of
the Deploy project.

– ETH elevator12
This is the twelfth revienement of an elevator model by ETH Zürich.

– Echo
The Echo algorithm [19] is designed to find the shortest paths in a net-
work topology. A start node sends an explore-message to all neighbors. Each
node is marked with red, when it receives an explore-message for the first
time. Moreover, it memorizes the nodes, from which it received the mes-
sage, as a shortest path to the initialization node. It also sends, in turn,
explore-messages to its other neighbors. Whenever the node receives either
an explore-message or an echo-message from all its neighbors, to which it
sent one of such messages, the node will be marked green and sends an echo-
message to the nodes, from which it had first received an explore-message.
When all nodes are marked green, the cycle is finished.
In the B model, every type of message type has one corresponding operation.
The operations are active, as soon as a node sends the appropriate message.
The execution of the operation reflects the receipt of the message by the
node’s recipient. By the non-deterministic order, the selection of the active
operations is assured that any various long message runtime in the channel
of the model is taken into account. It is possible that many messages are
simultaneously on the channel. The edges are depicted as functions between



the nodes. With the proper invariants, it is easy to verify if a protocol ensures
that all nodes are marked green, when no message is in the channel. Fur-
thermore, all shortest paths must be known as soon as all nodes are marked
green.

2.6 Tool developments

The ProB command-line version has been extended so that parameters and
preferences can be set via the command-line. Also, a logging facility has been
developed, which allows to write the results of experiments into a log file. This
log file contains a series of Prolog facts, and can be analysed by ProB itself,
which can either generate gnuplot graphs or Excel (csv) spreadsheets.

Using make, we have written a script which runs ProB for a given configu-
ration on all the benchmarks above, and stores the result in a log file. This was
used to generate the outputs and graphs in the following section.

A sample entry in the log file is as follows:

start_logging(1271961480507,’log/heuristic.log’).
version(1271961480507,1,3,2,beta10,’5115:5120M’,
’$LastChangedDate: 2010-03-30 17:57:13 +0200 (Tue, 30 Mar 2010) $’).

options(1271961480507,[mc(1000),comment(dfbf75),log(’log/heuristic.log’),timeout(180000)],
[’examples/EventBPrologPackages/ProofDirected/benchmarks/siemens_mch_0.eventb’]).

date(1271961480507,datime(2010,4,22,20,38,0)).
loading(1271961480507,’examples/EventBPrologPackages/ProofDirected/benchmarks/siemens_mch_0.eventb’).
start_animation(1271961480507).
starting_model_check(1271961480507,1000).
model_check(1271961480507,1000,2290,no).
prob_finished(1271961480507).



3 Workpackage E1: Empirical Evaluation

3.1 Initial Motivation: Model Checking High-level versus Low-level
Specifications

Most model checking tools work on relatively low-level formalisms. E.g., the
model checker smv [43, 13] works on a description language well suited for spec-
ifying hardware systems. The model checker SPIN [28, 30, 9] accepts the Promela
specification language, whose syntax and datatypes have been influence by the
programming language C. Recently, however, there have also been model check-
ers which work on higher-level formalisms, such as ProB [36, 38] which accepts
B [1]. Other tools working on high-level formalisms are, for example, fdr [25]
for CSP and alloy [33] for a formalism of the same name (although they both
are strictly speaking not model checkers).

It is relatively clear that a higher level specification formalism enables a more
convenient modelling. On the other hand, conventional wisdom would dictate
that a lower-level formalism will lead to more efficient model checking. However,
our own experience has been different. During previous teaching and research
activities, we have accumulated anecdotal evidence that using a high-level for-
malism such as B can be much more productive than using a low-level formalism
such as Promela. Furthermore, quite surprisingly, it turned out that the use of a
high-level model checker such as ProB was much more effective in practice than
using a very efficient model checker such as SPIN on the corresponding low-level
model.

3.2 A small empirical study

We first tried to put this anecdotal evidence on a more firm empirical footing, by
systematically comparing the development and validation time of B models with
that of the corresponding Promela models. [57, 49] studies the elaboration of B-
models for ProB and Promela models for SPIN on ten different problems. With
one exception (the Needham-Schroeder public key protocol), all B-models are
markedly more compact than the corresponding Promela models. On average,
the Promela models were 1.85 longer (counting the number of symbols). The
time required to develop the Promela models was about 2-3 times higher than
for the B models, and up to 18 times higher in extreme cases. No model took
less time in Promela. Some models could not be fully completed in Promela.
The study also found that in practice both model checkers ProB and SPIN were
comparable in model checking performance, despite ProB working on a much
higher-level input language and being much slower when looking purely at the
number of states that can be stored and processed.

Other independent experimental evaluations also report good performance
of ProB compared against SMV.



3.3 Looking for Answers

Within this project we first tried to analyse and understand the counter-intuitive
behaviour described above in subsection 3.2. The results have been published in
[35].

Granularity One tricky issue is the much finer granularity of low-level models.
If one is not careful, the number of reachable states can explode expponentially,
compared to a corresponding high-level model.

In summary, translating high-level models into Promela is often far from
trivial. Additional intermediate states and additional state variables are some-
times unavoidable. When writing Promela models, for example, great care has
to be taken to make use of atomic (or even dstep) primitives and resetting dead
temporary variables to default values. However, restrictions of atomic make it
sometimes very difficult or impossible to hide all of the intermediate states. More
details can be found in [35].

Searching for Errors in Large State Spaces Let us disregard the granularity
issue and let us look at simple problems, with simple datatypes, which can be
easily translated from B to Promela, so that we have a one-to-one correspondence
of the states of the models. In such a setting, it is obvious to assume that the
SPIN model checker for Promela will outperform the B model checker by several
orders of magnitude. Indeed, SPIN generates a specialised model checker in C
which is then compiled, whereas ProB uses an interpreter written in Prolog.
Furthermore, SPIN has accrued many optimisations over the years, such as partial
order reduction [31, 46] and bitstate hashing [29].

However, it is our experience that even in this setting, this potential speed
advantage of SPIN often does not necessarily translate into better performance
in practice in real-life scenarios. Indeed—contrary to what may be expected—
we show in this section that SPIN sometimes fares quite badly when used as a
debugging tool, rather than as verification tool. Especially for software systems,
verification of infinite state systems cannot be done by model checking (without
abstraction). Here, model checking is most useful as a debugging tool: trying to
find errors in a very large state space.

One experiment reported on in [35] is the NastyVendingMachine (see Sec-
tion 2). It has a very large state space, where there is a systematic error in
one of the operations of the model (as well as a deadlock when all tickets have
been withdrawn). To detect the error, it is important to enable this operation
and then exercise this operation repeatedly. It is not important to generate long
traces of the system, but it is important to systematically execute combinations
of the individual operations. This explains why depth-first behaves so badly on
this model, as it will always try to exercise the first operation of the model first
(i.e., inserting the 10 cents coin). Note that a very large state space is a typical
situation in software verification (sometimes the state space is even infinite).

In a corrected non-deadlocking model of the vending machine, the state space
is again very large, but here the error occurs if the system runs long enough;



it is not very critical in which order operations are performed, as long as the
system is running long enough. This explains why for this model breadth-first
was performing badly, as it was not generating traces of the system which were
long enough to detect the error.

In order to detect both types of errors with a single model checking algorithm,
ProB has been using a mixed depth-first and breadth-first search [38]. More
precisely, at every step of the model checking, ProB randomly chooses between
a depth-first and a breadth-first step. This behaviour is illustrated in Fig. 1,
where two different possible runs of ProB are shown after exploring 5 nodes of
the B model from [35].

initialise_machine(0,0,0,0,0,0,2)

insert_10cents insert_20cents insert_50centsinsert_100centsinsert_200centsinsert_card

insert_10cents insert_20cents

insert_50cents

insert_100centsinsert_200cents insert_10centsinsert_20cents insert_50centsinsert_100cents insert_200cents
insert_10cents

insert_20centsinsert_50centsinsert_100centsinsert_200cents

insert_10centsinsert_20centsinsert_50centsinsert_100centsinsert_200cents

initialise_machine(0,0,0,0,0,0,2)

insert_10cents insert_20centsinsert_50centsinsert_100centsinsert_200centsinsert_card

insert_10cents insert_20centsinsert_50centsinsert_100centsinsert_200cents insert_10centsinsert_20centsinsert_50centsinsert_100centsinsert_200cents

insert_10cents insert_20centsinsert_50centsinsert_100centsinsert_200cents insert_10centsinsert_20centsinsert_50centsinsert_100centsinsert_200cents

Fig. 1. Two different explorations of ProB after visiting 5 nodes of the NastyVend-
ingmachine

The motivation behind ProB’s heuristic is that many errors in software
models fall into one of the following two categories:

– Some errors are due to an error in a particular operation of the system; hence
it makes sense to perform some breadth-first exploration to exercise all the
available functionality. In the early development stages of a model, this kind
of error is very common.

– Some errors happen when the system runs for a long time; here it is often
not so important which path is chosen, as long as the system is running
long enough. An example of such an error is when a system fails to recover
resources which are no longer used, hence leading to a deadlock in the long
run.

In summary, if the state space is very large, SPIN’s depth-first search can
perform very badly as it fails to systematically test combinations of the various
operations of the system. Even partial order reduction and bitstate hashing do
not help. Similarly, breadth-first can perform badly, failing to locate errors that
require the system to run for very long. We have argued that ProB’s combined
depth-first breadth-first search with a random component does not have these
pitfalls.



3.4 Depth-First versus Breadth-First: A thorough empirical
Evaluation

We report on a first extensive empirical evaluation of directed model checking
approaches for B and Event-B. The experiments for parallel model checking using
the first prototype are still being undertaken, and will be reported on later.

First task was to compare depth-first versus breadth-first, as well as the
default mixed depth-first/breadth-first approach of ProB.

The results are summarised in Tables 1–4. Relative times are computed with
ProB in default settings (which up to know was a mixed depth-first/breadth-
first strategy with one-third probability of doing depth-first; more on that below).
The experiments were run on a MacBook Pro with a 3.06 GHz Core2 Duo
processor, and ProB 1.3.2 compiled with SICStus Prolog 4.1.2.

Pure Depth-First In a considerable number of cases pure depth-first is the
fastest method, e.g., for the Peterson err, Abrial Earely3 v5, Alstom axl3, and
BlocksWorld benchmarks.

However, we can see in Figure 1 that for some models Depth-First fares very
badly:

– In Alstom ex7 in Figure 2, pure depth-first search even fails to find the
deadlock when given an hour of cputime. This real-life example thus supports
our claim from [35] and subsection 3.3 that when state space is too large to
examine fully, depth-first will sometimes not find a counter example. This
is actually a quite common case for industrial models: they are typically (at
least before abstraction) too large to handle fully.

– Another similar example is Abrial Press m13 in Figure 3, where pure depth-
first is about 900 times slower than ProB in the reference settings.

– Another bad example is Puzzle8, where depth-first is more than 7 times
slower or Simpson4Slot where it is 163 times slower than ProB in the ref-
erence settings. Finally, for the artificially constructed BFTest, depth-first
search fails to find the invariant violation.

For finding goals, the geometric mean was 0.92, i.e., slightly better than the
reference setting. Overall, pure depth-first seemed to fare best for the deadlocking
models with a geometric mean of 0.43. For finding invariant violations, however,
the geometric mean was 1.03, i.e., slightly worse than the reference setting.

The bad performance in the Huffman benchmark is actually not relevant:
here not all nodes were evaluated. As such, the time to examine 10,000 nodes
was measured. The pure-depth first search here encountered more complicated
states, than the other approaches, explaining the additional time required for
model checking.

In conclusion, the performance of pure depth-first alone can vary quite dra-
matically, from very good to very bad. A such, pure depth first search is not a
good choice as a default setting of ProB. Note, however, that we allow the user
to override the default setting and put ProB into pure depth-first mode.



Pure Breadth-First In most cases pure Breadth-First is worse than the ref-
erence setting; in some cases considerably so. The geometric mean was always
above 1, i.e., worse than the reference setting.

For Alstom ex7 pure breadth-first also fails to find the deadlock.
Peterson err in Figure 1 gives a similar picture, Breadth-First being 134

times slower than DF and 11 times slower than the reference settings of ProB.
Other examples where BF is not so good: Abrial Earley3 v5, DiningPhil, Syste-
mOnChip Router, Wegenetz.

There are some more examples where it performs considerably better than
pure depth-first: Puzzle8, Simpson4Slot, Abrial Press m13 and the “artificial”
benchmarks BFTest and DFTest2.

In conclusion, breadth-first on its own is not appropriate, except in special
circumstances. Note, a user can set ProB into breadth-first mode, but the de-
fault is another setting (see below).

Mixed Mixed Depth-first/Breadth-first The motivation behind ProB’s
mixed depth-first/breadth-first heuristic is that many errors in software models
fall into one of the following two categories:

– Some errors are due to an error in a particular operation of the system; hence
it makes sense to perform some breadth-first exploration to exercise all the
available functionality. In the early development stages of a model, this kind
of error is very common.

– Some errors happen when the system runs for a long time; here it is often
not so important which path is chosen, as long as the system is running
long enough. An example of such an error is when a system fails to recover
resources which are no longer used, hence leading to a deadlock in the long
run.

An interesting real-life benchmark is Alstom ex7: here both pure depth-first
and pure breadth-first fail to find the deadlock. However, the mixed strategy
finds the deadlock.

We have experimented with four different versions of the mixed strategy:
DF75, DF50, DF33, DF25. The reference setting was DF33, where there is a
33 % chance of going depth-first at each step. Best overall geometric mean is
obtained when using DF50 (which is now the new default setting of ProB).

In summary, let us look at the radar plots in Figure 2, where we summarise
the results for pure depth-first, pure breadth-first, the old reference setting and
the new one. We can clearly see the quite erratic performance of pure depth-
first (relative to the reference setting), and the less erratic but usually worse
performance of pure breadth-first. We can also see that the new reference setting
usually lies within the reference setting circle, smoothing out most of the (bad)
erratic behaviour of the pure depth-first approach.

The Houseset benchmark clearly shows that mixed DF/BF has problem going
deep if there is a large branching factor. This may indicate a possible way to
improve our current algorithm, by favouring at least some very deep paths.



0.0	  

0.1	  

1.0	  

10.0	  
SchedulerErr	  

Simpson4Slot	  

Peterson_err	  

TravelAgency	  

SecureBldg_M21_e
rr3	  

Abrial_Press_m2_e
rr	  

SAP_M_Partner	  

Needham-‐
Schroeder	  

NastyVending	  

Houseset	  

BFTest	  

DFTest1	  

DFTest2	  

GEOMEAN	  

DF	  Rel.	  

DF50	  Rel.	  

DF33	  Rel.	  

BF	  Rel.	  

0.0	  

0.1	  

1.0	  

10.0	  
Abrial_Earley3_v3	  

Abrial_Earley3_v5	  

Abrial_Earley4_v3	  

Alstom_axl3	  

Alstom_ex7	  

Bosch_CrsCtl	  

SAP_MChoreograph
y	  

DiningPhil	  

CXCC0	  

GEOMEAN	  

DF	  Rel.	  

DF50	  Rel.	  

DF33	  Rel.	  

BF	  Rel.	  

0.0	  

0.1	  

1.0	  

10.0	  
RussianPostal	  

TrainTorch	  

BlocksWorld	  

Farmer	  

Hanoi	  

Puzzle8	  

RushHour	  

Abrial_Press_m13	  

Abrial_Queue_m1	  

SystemOnChip_Ro
uter	  

Wegenetz	  

GEOMEAN	  

DF	  Rel.	  

DF50	  Rel.	  

DF33	  Rel.	  

BF	  Rel.	  

Fig. 2. Radar plot for invariant, deadlock and goal checking (DF/BF Analysis)

3.5 Evaluation the potential of using Heuristics

Directed Model Checking uses additional information about the model or the
destination state in form of a heuristic that guides the model checker towards
a target state. This additional information can be collected using for instance
static analysis or it can be given by the modeler.

Currently the state space of ProB is stored as a Prolog fact database. Every
state can be quickly accessed using its ID or using the hash-value of its state;
see Figure 3 The model checker also maintains a pending list of open nodes,
using two predicates: retracting a fact from one of the predicates yields the least
recently added open node (for depth-first traversal) and rectracting from the
other predicate yields the oldest open node (for breadth-frist traversal). This
approach allowed us to implement a mixed depth-first / breadth-first approach
by randomly selecting either an element from the front or the end of the pending
list of open nodes.

We have implemented a priority queue in C++ using the STL (Standard
Template Library) multimap data structure. One can thus efficiently add new
open nodes with a particular weight, and then either chose the node with the
lowest or highest weight.

We evaluated some strategies to assign weights to newly encountered nodes.
In particular a random search, a search based on the number of successor states,
a search based on the (term)size of the state as well as some custom heuristic



functions written by the modeler for a particular model. The latter approach is
used for models where a specific goal was known, e.g., puzzles.

ID1 State1 ID1Hash1

Visited States Hashtable

...

Pending List

IDi ... IDj

ID2 State2 ID2Hash2

... ...

Fig. 3. Some Datastructures of the ProB Model Checker

We now describe the various heuristic functions we have investigated, as well
as the result of the empirical investigation.

Random Hash The idea is simply to use the hash value of a state as the weight
for the priority queue. The hope is that the hash value distributes uniformly,
i.e., that this would provide a good way to randomize the treatment of pending
states. The hash value is computed anyway for every state, using SICStus Prolog
term hash predicate.

The purpose was to use this heuristic as a base-line: a heuristic that is worse
or not markedly better than this one is not worth the effort. We also want to
compare this heuristic with the mixed depth-first/breadth-first approach from
Section 3.4 and see whether there any notable differences. Indeed, the mixed
depth-first/breadth-first search does not really permute the order of nodes in
the list, and this could have an influence on the model checking performance.

Results For finding deadlocks (Figure 6) and goals (Figure 7) it is markedly
better than the reference settings of ProB (except for the Bosch cruise control
model; but runtimes there are very low anyway). For finding invariant violations,
however, (Figure 5) it is worse (its geometric mean is greater than 1 (1.07) and
in two examples it is markedly worse).

Overall, it seems to perform slightly better than our mixed DF/BF search.
We have also experimented with truly random approach, where we use a

random number generator rather than the hash value for the priority. The results
are rather similar, except for Alstom ex7 where it systematically outperforms
Random Hash.

Out Degree The idea is to use the out degree of a state as priority, i.e., the
number of outgoing transitions. The motivation is that if we have found a state
with an an out degree of 0, i.e., the highest priority, we have found a deadlock.
Intuitively, the less transitions are enabled for a state, the closer we may be to
a deadlock. In the implementation we actually do not know the out degree of



a node until it has been processed. Hence, we use the out degree of the (first)
predecessor node for the priority.

Results Indeed, for finding deadlocks this heuristic obtained the best geometric
mean of 0.5. So, this simple heuristic works surprisingly well. For finding goals,
this heuristic still obtains geometric mean of 0.63, but it is worse than the
random hash function. For finding invariant violations it does not work at all;
its geometric mean is 1.56.

A further refinement of this heuristic is to combine the out degree with the
random hash heuristic, i.e., if two nodes have the same out degree (which can
happen quite often) we use the hash value as heuristic to avoid a degeneration
into depth-first search. This refinement leads to a further performance improve-
ment for deadlock finding (geometric mean of 0.34 compared to 0.50), and for
goal finding. But it is markedly worse for invariant violation finding.

In conclusion, the out degree heuristic, especially when combined with ran-
dom hash, works surprisingly well for its intended purpose of finding deadlocks.
In future work, we plan to further refine this approach, by using a static flow
analysis to guide model checker into deadlocks and/or particular enablings for
events.

Term Size The idea of this heuristic is to use the term size of the state (i.e.,
the number of constant and function symbols appearing in its representation)
as priority. The motivation for this heuristic is that the larger the state is, the
more complicated it will be to process (for checking invariants and computing
outgoing transitions). Hence, the idea is to process simpler states first, in an
attempt to maximise the number of nodes processed per time unit.

Results For finding goals this heuristic has a geometric mean of 0.85, i.e., it is
better than the reference setting of ProB, but worse than random hash. For
deadlock and invariant checking, it also performs worse than random hash. In
summary, this heuristic does not seem worth pursuing further.

Effectiveness of custom heuristic function: In order to experiment easily
with other heuristic functions, we have added the possibility for the user to define
a custom heuristic function for a B model. Basically, this function can be intro-
duced in the DEFINITIONS part of a B machine by defining HEURISTIC FUNCTION.
ProB now evaluates the expression HEURISTIC FUNCTION in every state, and
uses its value as the priority of the state. Note, the expression must return an
integer value. For the BlocksWorld benchmark, we have written the following
custom heuristic function:

ongoal == {a|->b, b|->c, c|->d, d|->e};
DIFF(A,TARGET) == (card(A-TARGET) - card(TARGET /\ A));
HEURISTIC_FUNCTION == DIFF(on,ongoal);



Note the machine as a variable on is of type Objects +-> Objects and the
GOAL for the model checker is to find a state where on = ongoal is true.

In the benchmarks, we have mainly written heuristic functions which esti-
mate the distance between a target goal state and the current state. In future,
we plan to derive the definition of those heuristic functions automatically. A
simple distance heuristic, can be derived if the goal of the model checking is to
find specific values for certain variables of the machine (such as on = ongoal).
Basically, for current state s = 〈s1, . . . , sn〉 and a target state t = 〈t1, . . . , tn〉 we
use as heuristic h(s) = Σ1≤i≤n∆(si, ti) where

– ∆(x, target) = abs(x− target) if x integer
– ∆(x, target) = card(x− TARGET )− card(TARGET ∩A) if x a set
– ∆((x, y), (t1, t2)) = ∆(x, t1) +∆(y, t2) for pairs,
– in all other cases: ∆(x, target) = 0 if x = target and 1 otherwise

If the value of a particular variable is not relevant, then we simply set ∆(si, ti) =
0 for that variable.

This defines a kind of Hamming distance for B states. We have applied this
(manually) in the BlocksWorld example above.

We have only evaluated this approach for finding goals. Here, it obtained
the best overall geometric mean of 0.34. For Puzzle8 and Abrial press m13,
this approach yielded by far the best solution. For RussianPostal, TrainTorch,
Blocksworld, Abrial Queue m1 it obtains the best result. There was one exper-
iment were it is markedly worse than ProB in the reference settings: Syste-
mOnChip Router. Here the heuristic did not pay off at all. Indeed, here the last
event changes all of the four variables, relevant for the model checking GOAL,
in one step. This only confirms the fact that we are working with heuristic func-
tions, which are not guaranteed to always improve the performance.

Summary of heuristic function experiments: We have summarised the
main findings of our experiments in Figure 4. We can conclude that:

– for invariant checking, the random hash heuristic fared best.7 This seems to
indicate that it is maybe useful to combine some more random component
into the depth-first/breadth-first techniques of Section 3.4, e.g., to also ran-
domly permute the operation order. Indeed, the approaches from Section 3.4
always process the operations in the same order, and does not shuffle the
states inside the pending list.

– for deadlock checking, the out-degree-hash heuristic is the best. It should
provide a good basis for further improved deadlock checking techniques.

– for goal finding, a custom heuristic function provides (except in one case)
by far the best result. The next step is to derive those heuristic functions
automatically.

7 However, note that DF50 had an overall geometric mean of 0.58, and was hence
better overall than random hash.
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Fig. 4. Radar plot for invariant, deadlock and goal checking (Heuristic Analysis)

The out-degree-hash heuristic also provides reasonably good performance
(its geometric mean is 0.41, which is better than the best mixed-depth-first
one of 0.57 for DF75).

3.6 Overall Conclusions of all Experiments

– The mixed depth-breadth-first strategy is a good idea, it is much more robust
than either depth-first and breadth-first. Still, it may be useful to improve
the approach by randomising the order of transitions and by favouring some
very deep paths.

– The use of heuristics can pay off considerably. The out-degree heuristic was
successful for deadlock checking, while measuring a distance to a target state
was generally very successful for goal finding tasks.
Still, more refined heuristics are required to fully exploit the potential. It
is probably a good idea to use control flow graph information to guide the
model checker more precisely.

3.7 Experimental Results (Figures and Tables)

Note: we use geometric mean [24], as the arithmetic mean is useless for nor-
malised results. Of course, the geometric mean itself should also be taken with a
grain of salt (various articles also attack its usefulness). Indeed, without know-
ing how representative the chosen benchmarks are for the overall population of



B specifications, we can conclude little. In Section 2 we have tried to assem-
ble a variety of benchmarks from our own experience; but this sample may be
inadequate for other application scenarios.

Thus, we also provide all figures in the tables below, so that minimum, max-
imum relative runtimes can be seen, as well as the absolute runtime of the
reference benchmark. Indeed, the relative runtimes are less reliable, when the
absolute runtime of the reference benchmark is already very low.



Invariant Benchmark DF DF75 DF50 DF33 (abs+rel) DF25 Rel BF

SchedulerErr 0.33 0.33 0.33 30 ms 1.00 1.00 2.67
Simpson4Slot 163.33 0.22 0.67 90 ms 1.00 0.78 2.11
Peterson err 0.08 0.08 0.22 360 ms 1.00 3.06 11.17
TravelAgency 0.16 0.27 0.10 630 ms 1.00 0.78 2.43
SecureBldg M21 err3 0.50 0.50 1.00 20 ms 1.00 1.00 1.00
Abrial Press m2 err 0.26 3.38 0.34 880 ms 1.00 1.81 1.26
SAP M Partner 0.58 1.08 1.00 120 ms 1.00 0.92 0.83
NastyVending 0.02 0.08 8.00 130 ms 1.00 2.85 1.00
NeedhamSchroeder 1.28 1.52 0.95 22620 ms 1.00 0.70 1.37
Houseset 0.05 0.06 0.22 2610 ms 1.00 2.66 ** 336.27
BFTest ** 15000.00 11592.75 0.75 80 ms 1.00 1.00 0.88
DFTest1 0.20 0.35 0.71 2360 ms 1.00 1.01 1.02
DFTest2 7.86 0.50 0.60 2930 ms 1.00 0.99 1.00

GEOMEAN 1.03 0.78 0.58 394 ms 1.00 1.24 2.35
DF: out of memory
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Table 1. Relative times for checking models with invariant violations (DF/BF Anal-
ysis)



Deadlock Benchmark DF DF75 DF50 DF33 (abs+rel) DF25 Rel BF

Abrial Earley3 v3 0.33 0.44 0.93 270 ms 1.00 1.19 1.19
Abrial Earley3 v5 0.13 0.32 0.75 4320 ms 1.00 2.18 7.95
Abrial Earley4 v3 0.89 0.89 1.00 90 ms 1.00 1.00 1.00
Alstom axl3 0.10 0.17 0.20 51270 ms 1.00 3.51 14.61
Alstom ex7 ** 4.20 0.23 0.35 856320 ms 1.00 ** 1.21 ** 3.00
Bosch CrsCtl 1.00 1.00 1.00 3 ms 1.00 4.00 4.00
SAP MChoreography 0.50 0.50 0.50 20 ms 1.00 1.00 1.00
DiningPhil 0.13 0.26 0.36 1690 ms 1.00 2.49 6.20
CXCC0 0.50 1.00 1.00 10 ms 1.00 2.00 2.00

GEOMEAN 0.43 0.44 0.59 540 ms 1.00 1.82 3.02
AVG 0.00 0.00 0.00 0 ms 0.00 0.00 0.00
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Table 2. Relative times for checking models with deadlocks (DF/BF Analysis)



Goal Benchmark DF DF75 DF50 DF33 (abs+rel) DF25 Rel BF

RussianPostal 0.95 0.14 0.73 220 ms 1.00 1.05 1.50
TrainTorch 1.14 1.17 0.69 350 ms 1.00 1.06 0.94
BlocksWorld 0.07 0.25 1.16 440 ms 1.00 1.18 1.07
Farmer 0.50 1.00 0.50 20 ms 1.00 1.00 1.00
Hanoi 0.54 0.48 1.00 500 ms 1.00 0.84 0.90
Puzzle8 7.56 2.86 0.40 59060 ms 1.00 0.11 0.71
RushHour 0.41 0.66 0.90 127020 ms 1.00 1.09 1.11
Abrial Press m13 899.78 1.64 1.26 800 ms 1.00 0.66 2.23
Abrial Queue m1 1.60 3.00 1.00 50 ms 1.00 1.60 1.40
SystemOnChip Router 0.05 0.14 0.08 2050 ms 1.00 1.04 1.45
Wegenetz 0.08 0.08 0.25 120 ms 1.00 0.17 2.58

GEOMEAN 0.92 0.57 0.58 715 ms 1.00 0.71 1.26
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Table 3. Relative times for checking models with goals to be found (DF/BF Analysis)



No Error Benchmark DF DF75 DF50 DF33 (abs+rel) DF25 Rel BF

Scheduler1 1.00 1.00 1.00 6010 ms 1.00 1.00 1.00
Volvo Cruise 1.01 1.01 1.01 5360 ms 1.00 1.00 1.00
USB4 1.00 1.00 1.00 3270 ms 1.00 1.00 1.00
Nokia Nota 1.09 1.03 1.01 44220 ms 1.00 1.00 1.00
Huffman 17.98 1.15 1.05 11100 ms 1.00 1.00 0.98
Cansell Contention 1.00 1.01 1.01 1490 ms 1.00 1.01 1.01
Demoney GS R1 1.00 1.01 1.00 1580 ms 1.00 1.00 1.00
SystemOnChip Router 0.99 1.00 1.00 27020 ms 1.00 1.00 1.01
Mondex m2 1.10 0.95 0.96 1700 ms 1.00 1.02 1.14
Mondex m3 1.09 0.95 0.96 1910 ms 1.00 1.01 1.12
Siemens ATP0 1.12 1.10 1.00 2090 ms 1.00 0.98 0.93
SSF obsw1 1.10 1.05 1.04 22500 ms 1.00 1.00 1.00
Echo 0.98 0.98 1.00 440 ms 1.00 1.00 1.00
ETH Elevator12 0.83 0.86 0.93 106520 ms 1.00 1.01 0.90

GEOMEAN 1.25 1.00 1.00 6687 ms 1.00 1.00 1.01
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Table 4. Relative times for checking models without errors (DF/BF Analysis)



Invariant Benchmarks DF33 (abs+rel) HashRand OutDegree OutDegHash TermSize

SchedulerErr 30 ms 1.00 0.33 3.67 10.67 2.67
Simpson4Slot 90 ms 1.00 0.89 2.22 0.78 2.22
Peterson err 360 ms 1.00 0.75 11.25 1.42 9.14
TravelAgency 630 ms 1.00 0.52 1.02 9.98 0.49
SecureBldg M21 err3 20 ms 1.00 0.50 1.00 0.50 0.50
Abrial Press m2 err 880 ms 1.00 1.45 3.38 3.19 1.25
SAP M Partner 120 ms 1.00 1.17 0.75 0.33 1.00
NeedhamSchroeder 22620 ms 1.00 1.40 **48.51 41.58 ** 46.06
Houseset 2610 ms 1.00 0.08 ** 333.53 0.16 ** 338.61
BFTest 80 ms 1.00 16.00 0.88 73.00 0.88
DFTest1 2360 ms 1.00 0.64 1.02 0.69 1.02
DFTest2 2930 ms 1.00 0.53 1.00 0.57 1.66

GEOMEAN 432 ms 1.00 0.79 2.44 1.54 1.93
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Table 5. Relative times for checking models with invariant violations (Heuristics Anal-
ysis)



Deadlock Benchmarks DF33 (abs+rel) HashRand OutDegree OutDegHash TermSize

Abrial Earley3 v3 270 ms 1.00 0.74 1.22 0.70 1.22
Abrial Earley3 v5 4320 ms 1.00 0.41 5.88 0.16 7.95
Abrial Earley4 v3 90 ms 1.00 0.89 1.00 0.89 1.00
Alstom axl3 51270 ms 1.00 0.82 0.09 0.16 0.08
Alstom ex7 856320 ms 1.00 0.55 ** 1.91 1.10 **1.57
Bosch CrsCtl 3 ms 1.00 8.00 1.00 1.00 4.00
SAP MChoreography 20 ms 1.00 0.50 0.50 0.50 1.00
DiningPhil 1690 ms 1.00 1.16 0.05 0.03 1.59
CXCC0 10 ms 1.00 0.25 0.25 0.25 0.25

GEOMEAN 432 ms 1.00 0.80 0.58 0.34 1.07
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Table 6. Relative times for checking models with deadlocks (Heuristics Analysis)



Goal Benchmarks DF33 (abs+rel) HashRand OutDegree OutDegHash TermSize CUSTOM

RussianPostal 220 ms 1.00 0.45 0.77 0.36 1.18 0.45
TrainTorch 350 ms 1.00 0.97 0.26 1.14 0.20 0.20
BlocksWorld 440 ms 1.00 1.16 0.07 0.07 1.20 0.02
Farmer 20 ms 1.00 1.00 1.00 0.50 1.00 1.00
Hanoi 500 ms 1.00 0.52 0.92 0.52 0.90 0.34
Puzzle8 59060 ms 1.00 20.54 1.31 2.69 0.71 0.03
RushHour 127020 ms 1.00 0.42 0.60 0.56 1.12 0.79
Abrial Press m13 800 ms 1.00 0.49 2.36 2.21 2.48 0.20
Abrial Queue m1 50 ms 1.00 0.40 16.60 0.60 2.80 0.40
SystemOnChip Router 2050 ms 1.00 0.10 0.05 0.04 1.50 72.42
Wegenetz 120 ms 1.00 0.17 0.33 0.08 0.08 0.08

GEOMEAN 715 ms 1.00 0.64 0.63 0.41 0.85 0.34
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Table 7. Relative times for checking models with goals to be found (Heuristics Anal-
ysis)



noerror DF33 (abs+rel) HashRand OutDegree OutDegHash TermSize

Scheduler1 6010 ms 1.00 1.00 1.00 1.00 1.02
Volvo Cruise 5360 ms 1.00 1.01 1.00 1.01 1.01
USB4 3270 ms 1.00 1.00 0.99 1.00 1.00
Nokia Nota 44220 ms 1.00 1.10 0.90 0.92 1.12
Huffman 11100 ms 1.00 1.64 1.04 2.09 1.03
Cansell Contention 1490 ms 1.00 1.00 1.01 1.01 1.02
Demoney GS R1 1580 ms 1.00 1.00 0.99 1.01 1.03
SystemOnChip Router 27020 ms 1.00 1.00 0.98 1.00 1.02
Mondex m2 1700 ms 1.00 1.03 1.44 1.27 0.97
Mondex m3 1910 ms 1.00 1.02 1.39 1.24 0.96
Siemens ATP0 2090 ms 1.00 1.81 1.03 0.92 0.93
SSF obsw1 22500 ms 1.00 1.12 1.01 1.02 1.19
ETH Elevator12 106520 ms 1.00 1.09 0.54 0.56 0.66
GEOMEAN 6687 ms 1.00 1.12 1.00 1.04 0.99

Table 8. Relative times for checking models without errors (Heuristics Analysis)



4 Workpackage I1: Generic Parallelisation Prototype

We investigated different approaches for building a parallel version of ProB.
Because Multicore platforms become more and more popular we decided to not
only investigate a distributed version of ProB, but also a version that works
on multicore platforms. However the lack of thread support in SICStus Prolog
makes the implementation of a multicore version more difficult. In this report
we describe some attempts we tried (i.e., using shared memory for inter process
communication, using a database) and the lessons we learnt from these proto-
types.

4.1 Interfacing with SICStus Prolog

Because SICStus Prolog does not yet support multithreading it is necessary to
parallelize the model checking using different processes. To share data among
these processes we considered the following approaches:

– Share data using socket communication to a Java process.
– Share data using the SICStus to C interface.
– Share data using direct socket communication between the Prolog Processes.

We use the first approach for interaction of the ProB core and our Plug-in
for the Rodin tool. It has the advantage that we could reuse a large number
of frameworks for distributed computing. However when developing the Rodin
Plug-in we noticed that the communication has a performance impact that is
tolerable when animating a model but it could become a problem when it comes
to more frequent interaction between Java and Prolog during model checking.
The Jasper Java interface of SICStus Prolog has turned out to be quite hard to
setup and fragile across different platforms. The second approach was intensively
pursued in the first project phase. It is required in particular when using shared
memory to communicate between processes running on the same platform. We
report on this approach in section 4.2. The last method was used in the first
prototype that used a tuple space for communication. The prototype turned
out to be not very robust against changes of the environment, i.e., a process is
getting killed or a network connection is lost. Also the blackboard approach does
only scale until a certain amount of traffic because of the client server structure.
Implementing a more sophisticated concept in pure Prolog does not seems to
be a good idea because it requires to write a lot of functionality from scratch.
Instead we want to investigate to use Java as the control layer while Prolog
processes share the data directly.

4.2 Share data using the SICStus C-Interface

ProB uses two main facts to represent the state space. To represent a state
it asserts a visited_expression/2 fact containing a unique id of the node
and the state itself in a Prolog encoding. We represent a transition using a



transition/3 fact containing the ids of the source and the destination state
and a representation of the transition event, i.e., an encoding of the opetartion’s
name and its parameters. We also have a few additional predicates as flags,
e.g. invariant_violated/1 to mark all stated that violate the invariant. The
reason for this is that SICStus Prolog does not support multi indexing, i.e.,
finding all states violating the invariant would be inefficient if this information is
incorporated into the visited_expression fact. However our C representation
allows multi indexing therefore we can join all information about a particular
state into a single structure. In addition we gain the possibility to efficiently
search for incoming transitions. Without duplicating the transition facts this
is not possible using SICStus Prolog.

However the representation in C has also some drawbacks. It is difficult to
support sharing of data structures. Let us consider the following Prolog predi-
cate.

share :- fact(A), fact(B), R=tree(A,B), assert(fact(R)).

If we call share Prolog will fetch the data structures A and B from the
database, combine them and store them as a new structure. Notice that Prolog
does not have to copy A and B. The new fact tree(A,B) contains pointers to the
original structures. Discovering these structural sharing using the foreign inter-
face is difficult because the internal representation is hidden from the interface.

Our prototype implementation stores states and transitions in the memory
controlled by the C extension rather than Prolog together with some counters
and index structures to provide a fast lookup of transitions. To save memory a
symbol table mapping atoms to integer values was implemented. Is is also stored
in the shared memory. However for the prototype the memory architecture is
implemented as a static structure and has to be configured manually before
compiling ProB.

Big segments of memory are allocated at startup of ProB and will be filled
when model checking starts. ProB uses two segments for storing structs of tran-
sitions and visited expressions, with some meta information and a pointer to
the term associated with these expressions, the terms are stored in two other
chunks, containing the serialized terms as a string. For indexing transitions by
source and destination three segments are allocated, a src- and dst-array point-
ing to an index element list in the third segment. Another segment stores some
counter and the last one is used to store the symbol table.

Prolog terms are represented as a tree and can be accessed on the C-level
with a hand full of functions provided by SICStus Prolog. Using these functions
it is possible to determine how many arguments a functor has and to get the type
and value of any atom. To flatten a term a recursive function in the extension is
called and saves the term representing atoms as ids from the symbol table and
arity of functors in a string. Saving the additional information of arity is used
to deserialize the string to a tree in a single run.



4.3 Using ProB with shared memory

On Linux and OS X systems we can use the shared memory implementation
for inter process communication (IPC) to share information among processes.
The implementation provides functions to allocate, attach and detach shared
memory segments and to create semaphores for synchronization. The idea is to
use distributed shared memory to increase the power of ProB by using more
CPUs and to have more RAM available. Indeed our prototype implementation
of the Prolog to C interface already uses shared memory. In combination with
OSS we can use the same implementation to get a version of ProB that can be
used in a cluster.

4.4 Using Berkely DB

SICStus Prolog contains an interface to the Berkely Database(bdb) Because
this interface is built in we wanted to evaluate if its performance is sufficient to
share the state space among instances of the ProB process. We had the hope
that SICStus can use faster techniques (i.e., direct copying of memory blocks)
than a foreign interface can. We developed a simple prototype to compare the
performance of asserting facts in the Prolog database and storing the facts in
a database. We also tried to access the database concurrently with multiple
threads. Storing a million facts into the Berkeley database is about 40 times
slower than asserting them in Prolog. This performance loss is not surprising
because the database uses disk I/O while Prolog uses memory. But the approach
does not scale at all. Using two processes (one only reading and one reading and
writing) the performance of the database collapses writing 100000 facts takes
about 7 seconds using a single process. If we add a process that only reads facts
from the database writing the same facts takes more than 2 minutes. Because
we cannot control the way the database is used by Prolog we cannot fine-tune
it, i.e., we cannot exploit the fact that we never remove entries from the state
space. We will not consider using the SICStus bdb library in the future, but it
might be an option to use a distributed database together with the Prolog to C
interface instead of OSS.

4.5 Combining ProB and Spin

We did investigate using Spin, using Spin’s C-interface to link the ProB inter-
preter via Prolog’s C-interface. However, after discussions with Gerhard Holz-
mann and Dragan Bosnacki, this avenue seems very tricky as our Prolog inter-
preter is inherently non-deterministic.

4.6 Future Work

We currently evaluate if it is reasonable to use the shared memory approach for
a multicore version of ProB. We require that the additional costs of storing the



state space in the shared memory can be compensated by sharing the computa-
tion among a reasonable low number (i.e., two) processes. Luckily, first results
have shown that this is the case for the majority of the benchmarks, but there
are also several models where we clearly fail. In some cases the version that uses
shared memory is up to 16 times slower than the Prolog version. We suspect that
our rather naive encoding of the state (and in particular the symbol table) is the
reason for these problems. However, we are confident that these issues can be
solved. The next steps are therefore the optimization of the symbol table and a
better memory management. It is clearly necessary to not allocate huge blocks of
memory. Instead we want to implement our own page table and manage smaller
chunks to get a more scalable system. Furthermore, we plan to port ProB to
a distributed memory system using OSS. In addition we started to work on a
prototype that uses Java to control communicating Prolog processes. We will
not further pursue the database approach unless the OSS version turns out to
be not sufficient and we will also not consider to combine ProB and Spin.



5 Workpackages T2/I2: Abstract Interpretation of B

During the evolution of the project, we realised that in addition to a “classical”
abstract interpretation, we would need a flow analysis. The latter can actually
also be viewed as a predicate-abstraction-based abstract interpretation. This is
described in Workpackage T3.

As far as classical abstract interpretation is concerned, we have developed
and implemented a particular predicate analysis technique to infer intervals for
integers and cardinalities. We describe this in Section 5.1. We have also developed
a generic abstract interpretation framework, which approximates the effects of
B operations. We describe this in Section 5.2.

5.1 Predicate Analysis

A static analysis of predicates provides information that can be used in several
contexts.

– Sometimes the constraint solver has to enumerate all possible values of vari-
ables to find values that satisfy a predicate. The additional information can
be used to restrict the search to a subset of such values.

– Some variables can be represented more effectively when additional info
about the possible values is known. E.g., a relation could be stored as a
map if we known that it is a function.

We also plan to use our analysis to enable translation of B predicates to SAT
solvers via Kodkod. Finally, we also plan to use our analysis to detect erroneous
settings of MAXINT, MININT in ProB.

The analysis we implemented as a prototype is easily extensible for different
kinds of information and works as follows. For each node in the abstract syntax
tree of a predicate we store an arbitrary number of “inferred information points”,
depending of the node’s type. E.g. for an integer expression we store the integer
interval of possible values, identified by intval. For a set, we store the integer
interval of possible cardinalities, identified by card.

Each type of information point can also be used for all elements of a set
(elem). E.g. for a set of integers, we can store the cardinality of the set (card)
and the integer interval in wich all elements are located (elem:intval).

We generate constraints between those information points by applying pat-
tern matching to the syntax tree. E.g. for a predicate x ∈ S we can propagate
the information of each point elem:I(S) to an information point I(x). For a
predicate x < y we can propagate the minimum of intval(x) to intval(y) and
the maximum of intval(y) to intval(x).

The prototype’s constraint solving technique is a näıve approach where infor-
mation is propagated until a fixpoint or a maximum number of inference steps
is reached. The appliction of modern constraint solving techniques should be
future work.



Example. For the predicate x ∈ 1 .. 10 we generate the following “inferred in-
formation points” with their initial values: intval(x) = (−∞,∞), intval(1) =
[1, 1], intval(10) = [10, 10], card(1 .. 10) = [0,∞), elem:intval(1 .. 10) =
(−∞,∞). For x..y we can propagate the minimum resp. maximum of intval(x)
and intval(y) to the node elem:intval(1 .. 10). Additionally we can use the
information elem:intval(1 ..10) to limit the maximum cardinality card(1 ..10).
With the inference rule of membership as presented above, we can derive the
information: intval(x) = (1, 10), card(1 .. 10) = [0, 10], elem:intval(1 .. 10) =
[1, 10]. Whereas the example seems trivial, the generality of the presented ap-
proach can be easily applied to more complex problems.

5.2 Generic Abstract Interpretation Framework for B

We have developed a framework for applying abstract interpretation to B and
Event-B machines.

1. The state of a machine is represented using abstract domains. Our framework
currently supports three domains: Boolean domains, integer domains and set
domains. The set domain is approximated by an interval domain representing
bounds of the set cardinality.

2. We have abstract counterparts for the B functions, such as union (∪), addi-
tion (+), ... They take abstract values and produce a new abstract value.

3. We have abstract counterpart for the B predicates, such as membership (∈),
<, ... They take abstract values and succeed if the predicate may be true.
They can also narrow down the abstract values of its argument: e.g., after
checking that a value is v is greater than zero (v > 0) we now definitely
know in the remainder of the abstract interpretation that v must be greater
than zero.

4. We have abstract counterparts for the B substitutions. In general these be-
have exactly like the concrete B substitutions; the only difference being that
the environment contains abstract rather than concrete values.
In the implementation we reuse the ProB interpreter-part for substitutions
almost without modification. Note that non-determinism may arise for sub-
stitutions such as the IF-THEN-ELSE, in case the abstract values are not
precise enough to decide which branch is taken. This situation does, however,
not a pose a problem for the interpreter: it was already designed to work
with partially instantiated states, where this same situation also arises.

5. The abstract interpretation procedure starts off with an abstract representa-
tion of the initial states and then repeatedly applies the abstract counterpart
for all operations of the machine. This gives rise to new abstract states. In
the mono-variant version of the procedure, only a single abstract state is
retained and all states are merged using the leastupper-bound operator. In
the polyvariant version, multiple abstract states are allowed. A widening
operator can be applied to ensure convergence of the procedure.



5.3 Flow Analysis for B

We have also started to investigate the foundations of a new kind of flow analysis
for Event-B. Flow analysis answers questions like “Can event h take place after
event g was observed? If so, under which conditions?”. We report on this work
later in Section 6.2, together with its application to directed model checking.



6 Workpackage T3: Intelligent Techniques for Directed
and Parallel Model Checking

Thus far we have concentrated within this workpackage on directed model check-
ing. In particular we incorporated static information gained from a prover into
the process of consistency checking (i.e., checking that all reachable states satisfy
the invariant). Section 6.1 describes how we can use information about invariant
preservation to reduce the size of the invariant we have to check, while sec-
tion 6.2 describes an approach to reduce the number of guards evaluations using
automatic flow analysis. We have also developed some more potential use cases,
where flow analysis can help to improve model checking. We have a prototype
implementation that shows that flow analysis is feasible for many Event-B mod-
els. A paper on automatic flow analysis has been submitted. We believe that
flow analysis can help to find intelligent strategies for directed model checking
and we want to continue to improve this kind of analysis in this work package.



6.1 Proof supported and proof-directed model checking

The Rodin platform for the formal Event-B notation provides an ideal framework
for integrating model checking and prove techniques. Indeed, Rodin is based on
the extensible Eclipse platform and as such it is easy for provers, model checkers
and other arbitrary tools to interact. We report how we ca make use of this tight
interaction inside Rodin to improve the ProB [36, 38] model checking algorithm
by using information provided by the various Rodin provers.

More concretely, we show how we can optimize the consistency checking of
Event-B and B models, i.e., checking whether the invariants of the model hold
in all reachable states. The key insight is that from the proof information we can
deduce that certain events are guaranteed to preserve the correctness of specific
parts of the invariant. By keeping track of which events lead to which states, we
can avoid having to check a (sometimes considerable) amount of invariants.

The Rodin platform interactively checks a model, generates and discharges
proof obligations for Event-B. These proof obligations deal with different aspects
of the correctness of a model. In this report we only deal with proofs that are
related to invariant preservation, i.e., if the invariant holds in a state and we
observe an event, the invariant still holds in the successor state:

I(v) ∧G(v, t) ∧ SBA(v, t, v′) =⇒ I(v′)

By SBA(v, t, v′) we mean the substitution S expressed as a Before-After pred-
icate. The primed variables refer to the state after the event happened, the un-
primed variables to the state before the event happened. In our small example,
SBA(v, t, v′) is the predicate x′ = x + ab. If we want to express, that x is a
positive integer, i.e. x ∈ N1, we need to prove:

x ∈ N1 ∧ a ∈ N ∧ b ∈ N ∧ x′ = x+ ab =⇒ x′ ∈ N1

This implication is obviously very easy to prove, in particular, it is possible to
automatically discharge this obligation using the Rodin tool.

For each pair of invariant and event the Rodin Proof Obligation Generator,
generates a proof obligation (PO) that needs to be discharged in order to prove
correctness of a model as mentioned before. A reasonable number of these POs
are discharged fully automatically by the tool. If an obligation is discharged,
we know that if we observe an event and the invariant was valid before, then
it will be valid afterwards. Before generating proof obligations, Rodin statically
checks the model. Because this also includes type checking, the platform can
eliminate a number of proof obligations that deal with typing only. For instance
the invariant x ∈ Z does not give rise to any proof obligation, its correctness is
guaranteed by the type checker.

The propagation and exploitation of this kind of proof information to help
the model checker is the key concept of the combination of proving and model
checking presented in this report.



Consistency checking One core application of ProB is the consistency check-
ing of a B model, i.e., checking whether the invariant of a B machine is satisfied
in all initial states and whether the invariant is preserved by the operations of
the machine. ProB achieves this by computing the state space of a B model, by

– computing all possible initializations of a model and
– by computing for every state all possible ways to enable events and comput-

ing the effects of these events (i.e., computing all possible successor states).

Graphically, the state space of a B model looks like in Figure 5. Note that
the initial states are represented as successor states of a special root node.

ProB then checks the invariant for every state in the state space. (Note that
ProB can also check assertions, deadlock absence and full LTL properties [39].)

Another interesting aspect is that ProB uses a mixture of depth-first and
breadth-first evaluation of the state space, which can lead to considerable per-
formance improvements in practice [35].

root

State3

Initial
State2

Initial
State2 Event1

State4Event1

Event2

Event3

Event3

Event2

Fig. 5. A simple state space with four states

Proof-Supported Consistency Checking The status of a proof obligation
carries valuable information for other tools, such as a model checker. As de-
scribed, ProB does an exhaustive search, i.e. it traverses the state space and
verifies that the invariant is preserved in each state. This section describes how
we incorporate proof information from Rodin into the ProB core.

Assuming we have a model, that contains the invariant [I1, I2, I3]8 and we
follow an event evt to a new state. If we would, for instance, know that evt
preserves I1 and I3, there would be no need to check these invariants. This
kind of knowledge, which is precisely what we get from a prover, can potentially
reduce the cost of invariant verification during the model checking.
8 Sometimes it is handier to use a list of predicates rather than a single predicate, we

use both notations equivalently. If we write [P1, P2, . . . , Pn], we mean the predicate
P1 ∧ P2 ∧ . . . ∧ Pn.



The ProB plug-in translates a Rodin development, consisting of the model
itself, its abstractions and all necessary contexts into a representation used by
ProB. We evolved this translation process to also incorporate proof information,
i.e., our representation contains a list of tuples (Ei, Ij) of all discharged POs,
that is event Ei preserves invariant Ij .

Using all this information, we determine an individual invariant for each
event that is defined in the machine. Because we only remove proven conjuncts,
this specialized invariant is a subset of the model’s invariant. When encountering
a new state, we can evaluate the specialized invariant rather than the machine’s
full invariant.

As an example we can use the Event-B model shown in Figure 6. The full
state space of this model and the proof status delivered by the automatic provers
of the Rodin tool are shown in Figure 7.

VARIABLES
f, x

INVARIANTS
inv1 : f ∈ N 7→ N
inv2 : x > 3

EVENTS
Initialisation
f := {1 7→ 100}||x := 10
Event a b=
f := {1 7→ 100}||x := f(1)
Event b b=
f := f ∪ {1 7→ 100}||x := 100

Fig. 6. Example for intersection of invariants

S1 S2

a

b

a,bInitialize

✓

✓

✘

✘

a / inv1

a / inv2

b / inv1

b / inv2

Fig. 7. State space of the model in figure 6



The proof status at the right shows, that Rodin is able to discharge the
proof obligations a/inv1 and b/inv2 but not a/inv2 and b/inv1. This means, if
a occurs, we can be sure that f ∈ N 7→N holds in the successor state if it holds in
the predecessor state. Analogously, we know, that if b occurs, we are sure, that
x > 3 holds in the successor state if it holds in the predecessor state.

Consider a situation, where we already verified that all invariants hold for
S1 and we are about to check S2 is consistent. We discovered two incoming
transitions corresponding to the events a and b. From a, we can deduct that
f ∈ N 7→ N holds. From b, we know that x > 3 holds. To verify S2, we need to
check the intersection of unproven invariants, i.e., {f ∈ N 7→ N} ∩ {x > 3} = ∅,
thus we already know that all invariants hold for S2.

This is of course only a tiny example but it demonstrates, that using proof
information we are able to reduce the number of invariants for each event sig-
nificantly, and sometimes by combining proof information from different events,
we are able to get rid of the whole invariant. We actually have evidence that this
is not only a theoretical possibility, but happens in real world specifications (see
Section 7.2).

Algorithm 8 describes ProB’s consistency checking algorithm, we will justify
it formally in section 6.1. The algorithm employs a standard queue data structure
to store the unexplored nodes. The key operations are:

– Computing the successor states, i.e., “state →evt succ”.
– Verification of the invariant “∃invi ∈ Inv(state) s.t . invi is false”
– Determining whether “succ 6∈ Visited”

The algorithm terminates when there are no further queued states to ex-
plore or when an error state is discovered. The underlined parts highlight the
important differences with the algorithm in [38].

In contrast to the algorithm, the actual implementation does the calculation
of the intersection (Inv(succ) := Inv(succ) ∩ Unproven(op)) in a lazy manner,
i.e., for each state 6∈ V isited, we store the event names as a list. As soon as
we evaluate the invariant of a state, we calculate and evaluate the intersection
on the fly. The reason is, that storing the invariant’s predicate for each state is
typically more expensive than storing the event names.

Verification To show, that our approach is indeed correct, we developed a
formal model of an abstraction of algorithm 8. We omitted few technical de-
tails, such as the way the state space is traversed by the actual implemen-
tation and also we omitted the fact, that our implementation always uses all
available information. Instead, we have proven correctness for any traversal
and any subset of the available information. Our model was developed using
Event-B and fully proven in Rodin. The model is available as a Rodin 1.0
archive from http://deploy-eprints.ecs.soton.ac.uk/152/. In this report
we present only some parts of the model and some lemmas, without their proofs.
All the proofs can be found in the file, we thus refer the reader to the Rodin
model.



while Queue is not empty do

if random(1) < α then

state := pop from front(Queue); /* depth-first */

else

state := pop from end(Queue); /* breadth-first */

end if

if ∃invi ∈ Inv(state) s.t. invi is false then

return counter-example trace in Graph

from root to state

else

for all succ,evt such that state →evt succ do

Graph := Graph ∪ {state →evt succ}

if succ 6∈ Visited then

push to front(succ, Queue);

Visited := Visited ∪ {succ}

Inv(succ) := Unproven(evt)

else

Inv(succ) := Inv(succ) ∩ Unproven(evt)

end if

end if

end for

od

return ok

Fig. 8. Proof-Supported Consistency Checking



We used three carrier sets STATES, INVARIANTS and EVENTS. We as-
sume, that these sets are finite. For invariants and events this is true by definition
in Event-B, but the state space can in general be unbounded. However, the as-
sumption of only dealing with finite state spaces is reasonable in the context of
our particular model, because we can interpret the STATES set as the subset of
all states that can be traversed by the model checker within some finite number
of steps.9 The following definitions are used to prove some properties of Event-B:

truth ⊆ STATES× INVARIANTS
trans ⊆ STATES× STATES
preserve = {s | {s} × INVARIANTS ⊆ truth}
violate = STATES \ preserve
label ⊆ trans× EVENTS
discharged ⊆ EVENTS× INVARIANTS

The model also contains a set truth: pair of a state s and an invariant i is in
truth if and only if i holds in s. The set preserve is defined as the set of states
where each invariant holds, the relations trans and label describe, how two states
are related, i.e. a triple (s 7→ t) 7→ e is in label (and therefore s 7→ t ∈ trans) if
and only if t can be reached from s by executing e. The observation that is the
foundation of all theorems we proved and is the following assumption:

∀i, t · (∃s, e · s ∈ preserve ∧ (s 7→ t) ∈ trans∧

(s 7→ t) 7→ e ∈ label ∧ (e 7→ i) ∈ discharged)

⇒ (t 7→ i) ∈ truth

The assumption is, that if we reach a state t from a state s where all invariants
hold by executing an event e and we know, that the invariant i is preserved by e,
we an be sure, that i holds in t. This statement is what we prove by discharging
an invariant proof obligation in Event-B, thus it is reasonable to assume that it
holds.

We are now able to prove a lemma, that will capture the essence of our
proposal; it is enough to find for each invariant i one event that preserves this
invariant leading from a consistent state into a state t to prove, that all invariants
hold in t.

Lemma 1. ∀t · t ∈ STATES∧ (∀i · i ∈ INVARIANTS∧ (∃s, e · s ∈ preserve∧ e ∈
EVENTS ∧ (s 7→ t) ∈ trans ∧ (s 7→ t) 7→ e ∈ label ∧ e 7→ i ∈ discharged)) ⇒ t ∈
preserve

Proof. All proofs have been done using Rodin and can be found in the model
archive. ut
9 Alternatively, we can remove this assumption from our Rodin models. This only

means that we are not be able to prove termination of our algorithm; all other
invariants and proofs remain unchanged.



We used five refinement steps to prove correctness of our algorithm. We
will describe the first three steps, the last two steps are introduced to prove
termination of new events. The first refinement step mc0 contains two events
check state ok and check state broken. The events take a yet unprocessed state
and move it either into a set containing consistent or inconsistent states. Al-
gorithm 9 shows the check state ok event, check state broken is defined analo-
gously, except that it has the guard s 6∈ preserve and it puts the state into the
set inv broken.

event check state ok

any s

where

s ∈ open

s ∈ preserve

then

inv ok := inv ok ∪ {s}

open := open \ {s}

end

Fig. 9. Event check state ok from mc0

At this very abstract level this machine specifies that our algorithm separates
the states into two sets. If they belong to preserve, the states are moved into the
set inv ok . Otherwise, they are moved into inv broken. Lemma 2 guarantees,
that our model always generate correct results.

Lemma 2. mc0 satisfies the invariants

1. inv ok ∪ inv broken = STATES \ open
2. open = ∅⇒ inv ok = preserve ∧ inv broken = violate

The next refinement strengthens the guard and removes the explicit knowl-
edge of the sets preserve and violate, the resulting proof obligation leads to
lemma 3.

Lemma 3. For all s ∈ open

{s} × INVARIANTS \ discharged[label[inv ok C trans B {s}]]) ⊆ truth

⇔ s ∈ preserve



The third refinement introduces the algorithm. We introduce a new relation
invs to verify in this refinement. The relation keeps track of those invariants,
that need to be checked, in the initialization, we set invs to verify := STATES×
INVARIANTS.

The algorithm has three different phases. It first selects a state that has not
been processed yet then it checks if the invariant holds and moves the state into
either inv ok or inv broken. Finally, it uses the information about discharged
proofs to remove some elements from invs to verify as shown in algorithm 10.

event mark successor

any p s e

where

p ∈ inv ok

s ∈ trans[{p}]

(p 7→ s) 7→ e ∈ label

(p 7→ s) 7→ e 6∈ marked

ctrl = mark

then

invs to verify := invs to verify �− ({s}× (invs to verify [{s}]∩ unproven[{e}]))

marked := marked ∪ {(p 7→ s) 7→ e}

end

Fig. 10. Event mark successor from mc2

We take some state s and event e, where we know that s is reachable via e
from a state p, where all invariants hold. Then we remove all invariants but those,
that are not proven to be preserved by e. This corresponds to the calculation of
the intersection in algorithm 8.

The main differences between the formal model and our implementation are,
that the model does not explicitly describe how the states are chosen and the
algorithm uses all available proof information while the formal model can use any
subset. In addition, the model does not stop if it detects an invariant violation.
We did not specify these details because it causes technical difficulties (e.g., we



need the transitive closure of the trans relation) but does not seem to provide
enough extra benefit.

Correctness of algorithm 8 is established by the fact that the outgoing edges
of a state are added to the Graph only after the invariants have been checked for
state. Hence, the removal of a preserved invariant only occurs after it has been
established that the invariant is true before applying the event. This corresponds
to the guard p ∈ inv ok . However, the proven proof obligations for an event
only guarantee preservation of a particular invariant, not that this invariant is
established by the event. Hence, if the invariant is false before applying the event,
it could be false after the event, even if the corresponding proof obligation is
proven and true. If one is not careful, one could easily set up cyclic dependencies
and our algorithm would incorrectly infer that an incorrect model is correct.

Proof-Assisted Consistency Checking for Classical-B In the setting of
Event-B and the Rodin platform, ProB can rely on the other tools for providing
type inference and as we have seen the proof information.

In the context of classical B, we are working on a tighter integration with
Atelier B [54]. However, at the moment ProB does not have access to the proof
information of classical B models.

ProB does perform some additional analyses of the model and annotates the
AST (Abstract Syntax Tree) with additional information. For instance for each
event we calculate a set of variables that are possibly modified. For instance if
we analyze the operation10

Operation1 = BEGIN x := z || y := y ∧ {x 7→ z} END

the analysis will discover that the set of variables that could potentially influence
the truth value of the invariant is {x, y}.

This analysis was originally used to verify the correct usage of SEES in the
classical B-Method. The SEES construct was used in the predecessor of Event-B,
so-called classical B, to structure different models. In classical B a machine can
see another machine, i.e., it is allowed to call operations that do not modify
the state of the other machine. To support this behavior, it was necessary to
know if an operation has effect on state variables, that is the set of modified
variables is the empty set. It turned out, that the information is more valuable
than originally thought, as it is equivalent to some proof obligation:

If u and v are disjoint sets of state variables, and the substitution of an oper-
ation is SBA(v, t, v′) we know that u = u′ and thus a simplified proof obligation
for the preservation of an invariant I(u) over the variables u is

I(u) ∧G(u ∪ v, t) ∧ SBA(v, t, v′)⇒ I(u)

which is obviously true. These kind of proof obligations are not generated by
any of the proving environments for B we are aware of. In particular Rodin does

10 Operations are the equivalent of events in classical B.



not generate them. For a proving environment, this is a good idea as they do not
contain valuable information for the user and they can be filtered out by simple
syntax analysis. But for the model checker these proofs are very valuable; in most
cases they allow us to reduce the number of invariants we need to check. As this
type of proof information can be created from the syntax, we can use them even
if we do not get proof information from Rodin, i.e., when working on classical B
machines. As such, we were able to use Algorithm 8 also for classical B models
and also obtain improvements of the model checking performance (although less
impressive than for Event-B).

Conclusion and Future Work First of all, we never found a model where
using proof information significantly reduced the performance, i.e., the additional
costs for calculating individual invariants for each state are rather low. Using
proof information is the new default setting in ProB.

We got a number of models, in particular those coming from industry, where
using the proof information has a high impact on the model checking time. In
other cases, we gained only a bit or no improvement. This typically happens if
the invariant is rather cheap to evaluate compared to the costs of calculating the
guards of the events. We used an out-of-the-box version of Rodin11 to produce
our experimental results. Obviously, it is possible to further improve them by
adding manual proof effort. In particular, it gives the user a chance to influ-
ence the speed of the model checker by proving invariant preservation for those
parts that are difficult to evaluate, i.e., those predicates that need some kind of
enumeration.

Related Work A similar kind of integration of theorem proving into a model
checker was previously described in [?]. In their work Pnueli and Shahar intro-
duced a system to verfify CTL and LTL properties. This system works as a layer
on top of CMU SMV and was sucessfully applied to fragments of the Futurebus+
system [?]. SAL is a framework and tool to combine different symbolic analysis
[52], and can also be viewed as an integration of theorem proving and model
checking. Mocha [5] is another work where a model checker is complemented by
proof, mostly for assume-guarantee reasoning. Some more works using theorem
proving and model checking together are [20, 7, 21, 26].

In the context of B, the idea of using a model checker to assist a prover has
already been exploited in practice. For example, in previous work [11] we have
already shown how a model checker can be used to complement the proving
environment, by acting as a disprover. In [11] it was also shown that sometimes
the model checker can be used as a prover, namely when the underlying sets
of the proof obligation are finite. This is for example the case for the vehicle
function mentioned in [36]. Another example is the Hamming encoder in [18],
where Dominique Cansell has used ProB to prove certain theorems which are
difficult to prove with a classical prover (due to the large number of cases).

11 For legal reasons, it is necessary to install the provers separately



Future Work We have done but a first step towards exploiting the full poten-
tial for integrating proving and model checking. For instance, we may feed the
theorem prover with proof obligations generated by the model checker in order
to speed up the model checking. A reasonable amount of time is spent evaluating
the guards. If the model checker can use the theorem prover to prove that an
event e is guaranteed to be disabled after an event f occurs, we can reduce the
effort of checking guards. We may need to develop heuristics to find out when
the model checker should try to get help from the provers.

Also we might feed information from the model checker back into the proving
environment. If the state space is finite and we traverse all states, we can use this
as a proof for invariant preservation. ProB restricts all sets to finite sets [38]
to overcome the undecidability of B, so this needs to be handled with care. We
need to ensure, that we do not miss states because ProB restricted some sets.
Also we need to ensure that all states are reachable by the model checker, thus
we may need some additional analysis of the model.

We also think of integrating a prover for classical B, to exploit proof infor-
mation. The integration is most likely not as seamless as in Rodin and the costs
of getting proof information is higher.

Although the cost of calculating the intersections of the invariants for each
state is too low to measure it, the stored invariants take some memory. It might
be possible to find a more efficient way to represent the intersections of invariants.



6.2 Automatic Flow Analysis

Event-B [3] has only very limited ways to express ordering of events. In particular
it lacks a notion of sequential composition, or other ways to explicitly describe
the ordering of events. If we specify software or systems that include software in
Event-B, we often have some implicit algorithmic structure.12 Unfortunately this
information is implicit only and therefor not directly usable by tools nor directly
visible to users. We report on a method to uncover this implicit algorithmic
structure. This information can be useful for analyzing or comprehending models
and for automatic code generation. We also show how to use this information to
improve model checking. We use Event-B to illustrate our approach and present
an implementation for Event-B inside the animator an model checker ProB.
Our method, however, is not limited to that particular specification language
and can also be used for a range of other formalisms such as TLA+.

Preliminaries We follow the style of [3] of expressing variables and substitution
in formulas. In particular, let v = v1, . . . , vn be a sequence of n distinct variables,
t = t1, . . . , tn a sequence of n formulas and F a formula. Then F [t/v] is obtained
from F by replacing simultaneously all free occurrences of each vi by ti. We
let F (v) denote a formula, whose free variables are among v1, . . . , vn. Once the
formula F (v) has been introduced, we denote by F (t) the formula F [t/v] with
v replaced by t.

In Event-B a state consists of a set of variables that are modified by events.
The values of the variables are constrained by invariants I(v). Each event is
composed of a guard G(t, v) and an action S(t, v), where t are parameters of the
event. We will only consider events of the form

evt =̂ any t
when G(t, v)
then vi1 , . . . , vik

:= E1(v, t), . . . , Ek(v, t) end

for some ij ∈ i1, . . . , in. Note that t can be empty and G(t, v) can be true.
Also note that k can be 0, in which case we write the action part as skip.

All assignments of an action S(t, v) occur simultaneously. Variables vj1 , . . . , vjl

that do not appear on the left-hand side of an assignment of an action are not
changed by the action. The effect of an assignment can be described by a before-
after predicate:

S(v, t, v′) =̂ v′i1 = E1(v, t) ∧ . . . v′ik
= Ek(v, t) ∧ v′j1 = vj1 ∧ . . . v′jl

= vjl

A before-after predicate describes the relationship between the state just be-
fore an assignment has occurred, x, and the state just after the assignment has
occurred, x′.

12 To order events in Event-B the usual method is to introduce abstract program coun-
ters.



Note that Event-B also allows non-deterministic actions of the form x :∈
E(t, v) or x :| Q(t, v, x′). To simplify the presentation of our method, and with-
out loss of generality, we assume that those are rewritten to the above form
using new parameters, one for every non-deterministic action which denotes the
chosen element. For instance, we rewrite

any max when max > 10 then x :∈ 1..max end

into

any max, choice when max > 10 ∧ choice : 1..max then x := choice end

Dependency Between Events We are interested in how events influence
each other. The motivations are multiple: either we may try to understand the
dynamic behavior of our model, we may wish to generate code by determining
the control flow or we may wish to improve the performance of model checking...

Suppose we have an event g with action x, y := x + 1, 0. There are various
ways it can influence another event:

1. it can disable another event. E.g., the event h with guard y > 0 will for sure
be disabled after executing g.

2. it can enable another event. E.g., the event h′ with guard y = 0 would for
sure be enabled after executing g.

3. it can be independent of another event. For example, the enabling of the
event h′′ with guard z > 0 would not be modified by executing g, i.e., it will
be enabled after g if and only if it was enabled before. (Note that, depending
on the action part of h′′, the effect of h′′ could have been modified.)

In cases 1 and 2 the enabling or disabling may depend on the current state
of the model. Take for example the event h′′′ with guard y = 0 ∧ x > 1. Then
h′′′ would be enabled after g if x > 0 holds in the state before executing g, and
disabled otherwise. The predicate x > 0 is what we call an enabling predicate,
and which we define as follows:

Definition 1 (Enabling predicate). The predicate P is called enabling pred-
icate for an event h after an event g, denoted by g ;P (v,t,s) h, if and only if the
following holds

I(v) ∧G(v, t) ∧ S(v, t, v′)⇒ (P (v, t, s)⇔ H(v′, s))

where I(v) is the invariant of the machine, G(v, t) is the guard of g with pa-
rameters t and S(v, t, v′) the before-after predicate of its action part, and where
H(v, s) is the guard of h with parameters s.

In the absence of non-deterministic actions, an equivalent definition can be
obtained using the weakest precondition notation:

I(v) ∧G(v, t)⇒ (P (v, t, s)⇔ [S(t, v)]H(v, s))



where [S]P denotes the weakest precondition which ensures that after executing
the action S the predicate P holds.

Note that it is important for us that the action part S(t, v) of an event does
not contain any non-determinism (i.e., that all non-determinism has been lifted
to the parameters t; see Section 6.2). Indeed, in the absence of non-determinism,
the negation of an enabling predicate is a disabling predicate, i.e., it guarantees
that the event h is disabled after g if it holds (together with the invariant) before
executing g. However, if we have non-determinism the situation is different.
There may even exist no solution for P (v, t, s) in Def. 1, as the following example
shows.

Example 1. Take x :∈ {1, 2} as the action part of an event g with no parameters
and the guard true and x = 1 as the guard of h. Then [S(t, v)]H(v) ≡ false
as there is no way to guarantee that h is enabled after g. Indeed, there is no
predicate over x that is equivalent to x′ = 1 in the context Def. 1 : the before after
predicate S(v, t, v′) is x′ ∈ {1, 2} and does not link x and x′. Similarly, there is no
way to guarantee that h is disabled after g. In particular, ¬[S(t, v)]H(v) ≡ true
is not a disabling predicate.

Note that if I(v) ∧G(v) ∧ [S(t, v)]H(v, s) is inconsistent, then any predicate
P (v, t, s) is an enabling predicate, i.e., in particular P (v, t, s) ≡ false.

How can we compute enabling predicates? Obviously, [S(t, v)]H(v) always
satisfies the definition of an enabling predicate. What we can do, is simplify it
in the context of I(v)∧G(v).13 We will explain later in Sect. 6.2 exactly how we
compute enabling predicates.

Example 2. Take for instance a model of a for loop that iterates over an array
and increments each value by one. Assuming the array is modeled as a function
f : 0..n → N and we have a global counter i : 0..(n + 1), we can model the for
loop (at a certain refinement level) using two events terminate and loop.

terminate =̂ when i > n then skip end

loop =̂ when i ≤ n then f(i) := f(i) + 1||i := i+ 1 end

We can now try to find enabling predicates for each possible combination of
events. Table 9 shows the proof obligations from Def. 1 and simplified predicates
P which satisfy it.

The directed graph on the left in Figure 11 is a graphical representation of
Table 9. Every event is represented by a node and there for every enabling pred-
icate first;P second from Table 9 there is an edge between the corresponding
nodes.

The right picture shows the same graph if we take independence of events
into account, i.e., if an event g cannot change the guard of another event h, we
13 This is similar to equivalence preserving rewriting steps within sequent calculus

proofs, where I(v), G(v) are the hypothesis and [S(t, v)]H(v) is the goal of the se-
quent.



Event Pairs (first ;P second) Enable Predicate Definition (wp notation) Simplified P

terminate ;P terminate i > n =⇒ (P ⇐⇒ i > n) true
loop ;P loop i ≤ n =⇒ (P ⇐⇒ (i+ 1) ≤ n) (i+ 1) ≤ n
loop ;P terminate i ≤ n =⇒ (P ⇐⇒ (i+ 1) > n) (i+ 1) > n
terminate ;P loop i > n =⇒ (P ⇐⇒ i ≤ n) false

Table 9. Enable Predicates for a simple model

do not insert an edge between g and h. In particular, as terminate does not
modify any variables, it cannot modify the truth value of any guard. On first
sight it seems as if we may have also lost some information, namely that after
the execution of terminate the event loop is certainly disabled. We will return
to this issue later and show that for the purpose of reducing model checking and
other application, this is actually not relevant.

terminate loop

(i+1) > n

false

(i+1) ≤ ntrue terminate loop

(i+1) > n

(i+1) ≤ n

Fig. 11. Graph Representations of Dependence for a Simple Model

In Event-B models of software components independence between events oc-
curs very often, e.g., if an abstract program counter is used to activate a specific
subset of the events at a certain point in the computation. We can formally
define independence as follows.

Definition 2 (Independence of events). Let g and h be events. We say that
h is independent from g — denoted by g 6; h — if the guard of h is invariant
under the substitution of g, i.e., iff the following holds:

I(v) ∧G(v, t) ∧ S(v, t, v′) =⇒ (H(v, s) ⇐⇒ H(v′, s))

Our first observation is that an event g can only influence the enabledness
of an event h (we do not require g 6= h) if g modifies some variables that are
read in the guard of h. We denote the set of variables used in the guard of h
by read(h) and the set of variables modified by g by write(g). If write(g) and
read(h) are disjoint, then h is trivially independent from g:

Lemma 4. For any two events h and g we have that read(h) ∩ write(g) = ∅
⇒ g 6; h.

This happens in our loop example, because read(terminate) = ∅, and hence
all events (including terminate itself) are independent from terminate.



However, read(h) ∩ write(g) = ∅ is sufficient for independence of events
but not necessary. Take for instance the events from figure 12. Event g clearly
modifies variables that are read by h and therefor read(h)∩write(g) 6= ∅ but g
can not enable or disable h.

event g event h

begin when

x := x + 1 x + y > 5

y := y - 1 then

end end

Fig. 12. Independent events

The trivial independence can be decided by simple static analysis, i.e., by
checking if read(h) ∩ write(g) = ∅. Non trivial independence is in general un-
decidable. In practice, it is a good idea to try to prove that two events are
independent in the sense of Def. 2, as it will result in a graph representation
with fewer edges. However, it is not crucial for our method that we detect all
independent events.

As we have seen in the right side of Fig. 11, the information we gain about
enabling and independence can be represented as a directed graph, now formally
defined as follows.

Definition 3 (Enable Graph). An Enable Graph for an Event-B model is
a directed edge labeled graph G = (V,E,L). The vertices V of the graph are
the events of the model. Two events can be linked by an edge if they are not
independent, i.e., (g 7→ h) 6∈ E ⇒ g 6; h. Each existing edge g 7→ h is labeled
with the enabling predicate, i.e., g ;L(g 7→h) h.

Above we define a family of enable graphs, depending on how precise our
information about independence is. Below, we often talk about the enable graph
for a model, where we assume a fixed procedure for computing independence
information.

Aside. There is another representation of the graph that is sometimes more
convenient for human readers. We can represent the graph as a forest where each
tree has one event as its root and only the successor nodes as leafs. The alternate
representation is shown in figure 13 for a small example.

Computing the Enabling Predicates As mentioned in section 6.2, the weak-
est precondition [S(t, v)]H(v, t, s) obviously satisfies the property of enabling
predicates. We can use the syntax tree library of the Rodin tool to calculate the
weakest precondition. However, these candidates for enabling predicates need to
be simplified, otherwise they are as complicated as the original guard and we will
gain no benefit from them. therefor we simplify the candidate, in the context of
the invariant I(v) and the guard of the preceding event G(v, t).
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Fig. 13. Representations of the Enable Graph

Consider the model shown in figure 6.2. The weakest precondition for g pre-
ceding h is [x := x+ 2]x = 1 which yields x = −1. This contradicts the invariant
x > 0 and thus h can never be executed after g took place. In the context of the
invariant, x = −1 is equivalent to false.

invariant x > 0

event g event h

begin when x = 1

x := x + 2 end

end

Fig. 14. Simplification

The simplification of the predicates is an important step in our method, deriv-
ing an enabling predicate P (v, t, s) from the weakest precondition [S(t, v)]H(v, s).
Recall, that we simplify the predicate [S(t, v)]H(v, s) in the context of the in-
variant I(v) (and the guard G(v, t))

I(v) ∧G(v, t)⇒ (P (v, t, s)⇔ [S(t, v)]H(v, s))

A very important requirement in our setting is that the simplifier never in-
creases the number of conjuncts. We have to keep the input for our enable and
flow graph constructions small to prevent exponential blowup. Our simplifier
shall find out if a conjunct is equivalent to true or false. In the first case the con-
junct can be removed from the predicate in the second case the whole predicate
is equivalent to false.

We have implemented a first prototype simplifier in Prolog that uses a rel-
atively simple approach. The core algorithm is presented in Fig. 15. First it
normalizes all negated formulas; this is part of the conjuncts function, which
also translates the formula into a set of conjuncts. For example, the formula
x 6= false is normalized to x = true and ¬(a ≤ b) is normalized to a > b.
Then we successively try to add the conjuncts of the formulas to a set of current
conjuncts K. If we try to add the conjunct C we can observe two special cases:

1. c is already a member of K: then we skip c because we know that it is true
in the context of K.



KI := closure(conjuncts(I(v))) (is precomputed)
Kg := closure(conjuncts(G(v, t))) (is precomputed for every event g)
K := closure(KI ∪Kg)
WP := conjuncts([S(t, v)]H(v, s))
P := ∅
while WP 6= emptyset do

choose C and remove from WP
if C 6∈ K then
K := closure(K ∪ {C})
if inconsistent(K) then
P := {false}; WP := ∅

else
P := P ∪ {C}

end if
end if

od
P is the simplified version of [S(t, v)]H(v, s)

Fig. 15. Algorithm for simplifying the weakest precondition in the context of the in-
variant and guard of g

2. c is inconsistent with a member of K: then the enabling predicate is false.

The second special case is detected using a few number of Prolog clauses such as
the following (where, the first argument is the binary operator followed by the
arguments to the operator):

inconsistent_fact(not_equal,X,X).

inconsistent_fact(less,X,X).

inconsistent_fact(less,X,Y) :- value(X), value(Y), X >= Y.

inconsistent_fact(equal,X,Y) :- value(X), value(Y), X \= Y.

inconsistent_fact(member,_,empty_set).

% some more rules [...]

The first rule states that x 6= x is inconsistent, the second one that x < x is
inconsistent, the third one that x < y is inconsistent if x and y are known values
with x ≥ y, and so on.

In any other case we add the conjunct and calculate the closure of K using
some rules that combine two formulas, computing new logical consequences (e.g.,
deriving from transitivity of the arithmetic operators, i.e., x ≤ y and y < z
implies x < z).

For example, assume we have built the set of conjuncts K = {x < 2, y = 5}
and we now try to add x = y. Combining x = y with y = 5 yields x = 5 which
we add to K.

Assume we have only the rules mentioned above. Now we combine x = 5 and
x < 2, yielding the new fact 5 < 2. This triggers the third Prolog rule detecting
an inconsistency.

The actual implementation does not always recompute everything from scratch.
As outlined in algorithm 15 we precompute a closure KI from the conjuncts of



the invariant. This set can be reused for the whole model. For each event g we
precompute a closure Kg from the guards. This set can be reused for all enabling
predicates where g is the first event.If the algorithm has not stopped because of
a contradiction the enabling predicate is the conjunction of the formulas stored
in P .

Using the Enable Graph for Model Checking The enable graph contains
valuable information for a model checker. In this section we describe how it can
be used within ProB. When checking the consistency of an Event-B model,
ProB traverses the state space of the model starting from the initialization and
checks the model’s invariant for each state it encounters. The cost for checking
a state is the sum of the cost of evaluating the invariant for the state and the
calculation of the successors. Finding successor states requires to find solutions
for the guards of each event. A solution means that the event is applicable and
we can find some parameter values. ProB then applies the actions to the current
state using the parameter values resulting in some successor states. In some cases
the enable graph can be used to predict the outcome of the guard evaluation.
The special case of an enabling predicate P = false is very important. It means
that no matter how we invoke g we can omit the evaluation of the guard of h
because it will be false after observing g. In other words it is a proof that the
property h is disabled holds in any state that is reachable using g.

When encountering a new state s via event e, we look up e in the enable
graph. We can safely skip evaluation of the guards of all events f that have an
edge (e,f) which is labeled with false in the Enabled Graph. We can even go
a step further if we have multiple ways to reach s. When considering an event
to calculate successor states we can arbitrary chose one of the incoming events
and use the information from the enable graph. For instance, if we have four
events a, b, c and d and we know that a disables c and b disables d. Furthermore
we encounter a state s via a but do not yet calculate the successors. Later we
encounter s again, this time via b. When calculating the successors we can skip
both, c and d.

The reason is that we have a proof for c is disabled because the state was
reachable using event a and a proof that d is disabled because the state was
reachable using event b. Thus the conjunction c and d are disabled is also true.

Because we use the invariant when simplifying the enabling predicate (see
Section 6.2), the invariant must hold in the previous state in order to use the
flow information. However we believe this is reasonable because most of the time
we are hunting bugs and thus we stop at a state that violates the invariant. The
implementation must take this into account and in case of an invariant violation
it must not use the information gained by flow analysis. Also it needs to check
not only the invariant but also the theorems if they are used in the simplifier.

Enable Graph Case study In this section, we will apply the concept to a
model of the extended GCD algorithm taken from [27]. The model consists of
a refinement chain, where the last model consists of two loops. The first loop



builds a stack of divisions. The second loop calculates the result from this stack.
The last refinement level contains five events excluding the initialization. The
events up and dn are the loop bodies, the events upini, dnini initialize the loops
and gcd is the end of the computation. The event init is the INITIALISATION
of the model.

gcd

init

true

false
false

false

false

upini

false

dn=false & 
a mod b != 0 dn = true

dn=false & 
a mod b = 0

false

up

t(f) mod r(f) != 0

false

t(f) mod r(f) = 0

false

false dnini false

f > 0

false

f-1 = 0

falsedn

f-1 > 0

f = 0

Fig. 16. Enable graph of the extended GCD example

The first step is to extract the read and write sets for each event; the result is
shown in Table 10. Then we construct the enable graph. We calculate the weakest
precondition for each pair of independent events and simplified them. Both steps
were done manually but they were not very difficult. For instance, the most
complicated weakest precondition was [Sup]Gdnini. In the presentation below
we left out all parts of the guard and substitution that do not contain shared
identifiers, e.g., the guard contains up = TRUE but the substitution does not
modify up. The next step is calculating the weakest precondition mechanically,
finally we simplify the relational override using the rule (r �− a 7→ b)(a) = b.



event read(event) write(event)

init ∅ {a, b, d, u, v, up, f, s, t, q, r, uk, vk, dn, dk}
upini {up} {up, f, s, t, q, r}
up {up, r, f, dn} {f, s, t, r, q}
gcd {up, f, dn} {d, u, v}
dnini {up, dn, r, f} {dn, dk, uk, vk}
dn {dn, f} {uk, vk, f}

Table 10. Read and write sets

[Sup]Gdnini = [f := f + 1, r �− {f + 1 7→ f(t) mod r(f)}] (r(f) = 0)
= (r �− {f + 1 7→ t(f) mod r(f)})(f + 1) = 0

= t(f) mod r(f) = 0

The other simplification were much easier, for example, replacing dn =
TRUE ∧ dn = FALSE by false. The constructed graph is shown in figure 16.

The enable graph can be used by the model checker to reduce the number of
guard evaluations. Let us examine one particular run of the algorithm for fixed
input numbers. The run will start with init and upini then contain a certain
number of up events, say n. This will be followed by dnini and then exactly n
dn events and will finish with one gcd event. In all, the calculation takes 2n+ 4
steps. After each step, the model checker needs to evaluate 5 event guards (one
for each event, except for the guard of the initialization which does not need to
be evaluated) yielding 10n+20 guard evaluations in total. Using the information
of the enable graph we only need a total of 4n+4 guard evaluations. For example,
after observing up, we only need to check the guards of up and dnini: they are
the only outgoing edges of up in Fig. 16 which are not labelled by false.

Flow Construction Beside the direct use in ProB the enable graph can be
used to construct a flow. A flow is an abstraction of the model’s state space
where an abstract state represents a set of concrete states. Each abstract state
is characterized by a set of events, representing all those concrete states where
those (and only those) events are enabled.

The flow graph is a graph where the vertices are labeled with sets of events,
i.e., the set of enabled events. The edges are labeled with an event and a predicate
composed from the enable predicates for this event. The construction of the flow
graph takes the enable graph as its input. Starting from the state where only the
initialization event is enabled the algorithm unfolds the enable graph. We will
describe the unfolding in a simple example, an algorithm is shown in Figure 18
and 19.

Figure 17 shows a simple flow graph construction. On the left side the enable
graph for the events init, a and b are shown. The graph reveals that b always
disables itself while it does not change the enabledness of a. The event a keeps



itself enabled if and only if P holds and it enables b if and only if Q holds. The
init event enables a and disables b.

We start the unfolding in the state labeled with {init}. In this case we do
not have a choice but to execute init. From the enable graph on the left hand
side we know that after init occurs a is the only enabled event. Therefor we
have to execute a. We know that if P is true then a will be enabled afterwards
and analogously if Q holds then b will be enabled. Combining all combination
of P and Q and their negations, we get the new states {}, {b} and {a, b}. If we
continue, we finally get the graph shown on the right hand side. If more than
one event is enabled, we add edges for each event separately. We can combine
edges by disjunction of the predicates. In our case we did that for the transition
from {a, b} to {a} which can be used by either executing b or a.

The algorithm in Figure 19 calculates for a given event e the successors in
the flow graph by combining all possible configurations. The algorithm also uses
a list of independent events that are enabled in the current state and therefor
they are also enabled in any new state. The algorithm in Figure 18 produces the
flow graph starting form the state {init}.

a

ba

P Q

b

b

false {a}

{}

{b}

{a,b}

(a,¬P∧¬Q)

(a,¬P∧Q)

(a,P∧Q)

(a,P∧¬Q)

(a,P∧¬Q) 
∨ 

(b,true)

(a,¬P∧Q)

(a,¬P∧¬Q)
(b,true)

Fig. 17. Simple Flow Graph Construction

Generating the Flow Graph can be infeasible because the graph can be of size
O(2#Events). However, in cases where constructing the flow graph is feasible, we
gain a lot of information about the algorithmic structure and we can generate
code if the model is deterministic enough. We will discuss applicability and
restrictions of the methods in section 6.2.

Flow Graph Case Study If we apply the flow construction to the example
graph shown in figure 16 we get the flow graph shown in figure 21. Compared



todo := {{init}}
done := ∅
flow := ∅
while todo 6= emptyset do

choose node from todo
foreach e ∈ node do
keep := node ∩ independent(e)
atoms := expand(e, keep)
todo := (todo ∪ ran(atoms))
flow := flow ∪ {node 7→ atoms}

od
done := done ∪ {node}
todo := todo− done

od

Fig. 18. Algorithm for constructing a Flow Graph

Given: enable graph as EG : (Events× Events) 7→ Predicate
def expand(e, keep) =
true pred := {f 7→ true|(e 7→ f) ∈ dom(EG) ∧ EG(e 7→ f) = true}
maybe pred := {f 7→ p|(e 7→ f) ∈ dom(EG) ∧ EG(e 7→ f) = p ∧ p 6= false}
result := ∅

foreach s ⊆ node do
targets := dom(true pred) ∪ dom(s) ∪ keep
predicate :=

V
ran(s) ∧ ¬(

W
ran(s�−maybe pred)

result := result ∪ {predicate 7→ targets}
od

return result
end def

Fig. 19. Algorithm for expanding the Enable Graph (i.e., computing successor config-
urations)



to the structured model developed by Hallerstede in [27] shown in 20 we see a
very similar shape.

up

upini

dn

dnini gcd

Fig. 20. Structural model from [27]

However, the automatic flow analysis helped us to discover an interesting
property. The flow graph contains a state that corresponds to concrete states
where no event is enabled, i.e., states where the system deadlocks. Thus the
model contains a potential deadlock. Inspection showed that the deadlock ac-
tually does not occur. The reason why the flow graph contains the deadlock
state is a guard that is too strong. The guards of dn and gcd only cover f ≥ 0.
The invariant implicitly prevents the system from deadlocking by restricting the
values of f .

{dnini}{init}

{}

{upini}

{up} {dn}

{gcd}

true

a mod b ≠ 0 

a mod b = 0 

t(f) mod r(f) ≠ 0 

t(f) 
mod r(f)

 = 0 

true

f > 0

f = 0

f < 0

f-1 > 0

f -1 = 0

f -1 < 0

Fig. 21. Example for a relation between abstract and concrete states

In Figure 21 we can see that is is possible to automatically generate sequential
code from a flow graph. The events up and dn can be translated into while loops
and upini and dnini are if − then− else statements. In the particular case the
termination of the computation was encoded into the gcd event.



Applicability and Restrictions An important question is when to apply a
method and maybe even more important when not to apply it. It is clear that flow
analysis is probably not applicable if the model does not contain an algorithmic
structure. In the worst case for flow construction, any combination of events can
be enabled in some state, leading to 2card(Events) states, where card(Events) is
the number of events. However in case of software developments it is very likely
that eventually the model will contain events that are clustered, i.e, at each point
during the computation a hopefully small set of events is enabled. We conjecture
that the more concrete a model is, the better are results from simplification.

Constructing the enable graph is relatively efficient; it requires to calculate
O(card(Events)2) enabling predicates. In case of software specifications gener-
ating the enable graph and using the information gained for guard reduction
is probably worth trying. We can also influence the graph interactively. For in-
stance, suppose the enable graph contains an edge labeled with card(x) > 0.
Suppose we know that after the first event x = ∅ but the simplifier was too
weak to figure it out, i.e., the empty set is written down in a difficult way, let’s
say x := S∩T where S and T are disjoint. By specifying (and proving) a theorem
that helps the simplifier, e.g., x = ∅, we can interactively improve the graph.
We believe that expressing these theorems does not only improve the graph but
also our understanding of a model because we explicitly formalize properties of
the model that are not obvious (at least not for the automatic simplifier).

Constructing the flow graph is much more fragile; it can blow up very fast. It
is crucial to inspect the enable graph and try to reduce the size of the predicates
as much as possible. However our experience is that Event-B models of software
at a sufficient low level of refinement typically have some notion of an abstract
program counter that implicitly control the flow in a model. These abstract
program counter are not very complicated and therefor it is likely that they are
exploited by the simplifier.

Related and Future Work

Inferring Flow Information Model checking itself explores the state space of
a model, and as such infers very fine-grained flow information. For Event-B,
the ProB model checker [36, 38] can be used for that purpose. However, it is
quite rare that the complete state space of a model can be explored. When it
is possible, the state space can be very large and flow information difficult to
extract. Still, the work in [40] provides various algorithms to visualize the state
space in a condensed form. The signature merge algorithm from [40] merges all
states with the same signature, and as such will produce a picture very similar
to the flow graph. However, the arcs are not labelled by predicates and the
construction requires prior traversal of the state space.

Specifying Flow Information There is quite a lot of related work, where flow
information is provided explicitly by the modeler (rather than being deduced
automatically, as in our method). For example, several works use CSP to specify



the sequencing of operations of B machines [55, 14, 16] or of Z specifications [22,
42, 53, 8].

In the context of Event-B, there are mainly three other approaches that are
related to our flow analysis. Hallerstede introduced in [27] a new approach to
support refinement in Event-B that contains information about the structure
of a component. Also Butler showed in [15] how structural information can be
kept during refinement of a component. Both approaches have the advantage to
incorporate the information about structure into the method, yielding in better
precision. However both methods require the developer to use the methods from
the beginning while automatic flow analysis can be applied to existing projects.
In particular automatic flow analysis can actually be used to discover properties
of a model such as liveness and feasibility of events. Hallerstede’s structural
refinement approach does not fully replace our automatic flow analysis. Both
methods overlap to some extend but we think that they can can be combined,
such that the automatic flow analysis uses structural information to ease the
generation of the flow graph and in return our method can suggest candidates
for the intermediate predicates used during structural refinement. Actually the
enable predicated can be used as candidates.

The third approach is yet unpublished but implemented as a plug-in for
Rodin [32]. It allows the developer to express flow properties for a model and to
verify them using proofs.

Future Work The next step is to fully integrate our method into the next release
of ProB, and use it to improve the model checking procedure and help the user
in analyzing or comprehending models. We also plan to use the technique to
develop a new algorithm for test-case generation. In [56] we have introduce a
first test-case generation algorithm for Event-B, tailored towards event coverage.
One issue is that quite often it is very difficult to cover certain events. Here the
flow analysis will hopefully help guide the model checker towards enabling those
difficult events.

Conclusion In summary, we have developed techniques to infer algorithmic struc-
ture from a formal specification. From an Event-B model, we have derived the
enable graph, which contains information about independence and dependence
of events. This graph can be used for model comprehension and to improve
model checking. We have described a more sophisticated flow analysis, which
derives a flow graph from an Event-B model. It can again be used for model
comprehension, model checking but also for code generation.



7 Workpackage I3: Parallel and Directed ProB

The techniques mentioned in Section 3.4 and Section 6.1 have been integrated
into the core ProB codebase and are now available in the latest distributions.
The heuristic model checking algorithm has been integrated into the ProB
codebase, but is currently not available in the compiled versions (due to issues
generating a shared library version for the C++ priority queue under Windows).
The implementation of the flow analysis from Section 6.2 is still ongoing. Be-
low, we describe an empirical evaluation of the proof directed model checking
technique from Section 6.1.



7.1 Implementation and Evaluation of Proof-Directed MC

To show, that our approach is indeed correct, we developed a formal model of the
Algorithm used in ProB. The model was developed in Event-B and fully proven
in Rodin. We have shown that the proof supported model checking algorithm is
a refinement of the original algorithm. Thus the new algorithm accepts a state
if and only if the old one does.

7.2 Experimental results

To verify that the combination of proving and model checking results in a consid-
erable reduction of model checking effort, we prepared an experiment consisting
of specifications we got from academia and industry. The specification are taken
from the benchmarks chosen in T1. In addition we prepared a constructed ex-
ample as one case, where the prover has a very high impact on the performance
of the model checker. It basically contains an event, that increments a number x
and an invariant ∀a, b, c.a ∈ N∧ b ∈ N∧ c ∈ N⇒ (a = a∧ b = b∧ c = c∧ x = x).
Because the invariant contains the variable modified by the event, we cannot
simply remove it. But Rodin can automatically prove that the event preserves
the invariant, thus our tool is able to remove the whole invariant. Without proof
information, ProB needs to enumerate all possible values for a,b and c which
results in an expensive calculation.

Except for the case of the Siemens specification, we removed all interactive
proofs from the models and used only those proof information, that Rodin was
able to automatically generate using default settings. In the case of the Siemens
model, we used both, a version with automatic proofs only and a development
version with few additional interactive proofs; the development version was not
fully proven.

The results have been gathered using a Mac Book Pro, 2.4 GHz Intel Core 2
Duo Computer with 4 GB RAM running Mac OS X 10.5. We collected 5 samples
for each model and calculated the average and standard deviation of the times
measured in milliseconds.. The result of the experiment is shown in tables 11
and 12. The proof assisted model checking algorithm requires to pre-calculate
specialized invariants for each event. We tried to measure the time required
for this calculation but we could not find a case where the pre-calculation had
significant impact on the total time so it can be neglected.

We believe that proof information can be used as a heuristic to direct the
model checker in order minimize its work when verifying a model or in order
to optimize the search when finding an invariant violation. If we think that
our model is correct we use the observation that if we have multiple events
leading to a state, the invariant we only need to check is the intersection of the
sets unproven invariants of these events. Instead of ProB’s mixed depth and
breadth first search, we can do a best fist search based on the total number of
remaining invariants. This approach does not reduce the number of states but
can significantly reduce the number of invariant evaluations.



w/o proof using proof
information [ms] information [ms] Speedup-Factor

Mondex m2 1747± 21 1767± 38 0.99
Mondex m3 1910± 20 1893± 6 1.01
Earley Parser m2 309810± 938 292093± 1076 1.06
Scheduler 9387± 124 8167± 45 1.15
SSF 35447± 285 30590± 110 1.16
SAP 50783± 232 34927± 114 1.45
Earley Parser m3 7713± 40 5047± 15 1.53
Siemens (auto proof) 51560± 254 24127± 93 2.14
Siemens 51533± 297 23677± 117 2.18
CXCC 18470± 151 6700± 36 2.76
Constructed Example 18963± 31 967± 6 19.61

Table 11. Experimental results (multiple refinement level check)

w/o Proof [#] w Proof [#] Savings [%]

Earley Parser m2 − − -
Mondex m3 440 440 0
Earley Parser m3 540 271 50
Constructed Example 42 22 50
SAP 48672 16392 66
Scheduler 20924 5231 75
Mondex m2 6600 1560 76
SSF 24985 5009 80
CXCC 88480 15368 83
Siemens 280000 10000 96
Siemens (auto proof) 280000 10000 96

Table 12. Number of invariants evaluated (single refinement level check).
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