
Automatic Flow Analysis for Event-B?

Jens Bendisposto, Michael Leuschel

Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{bendisposto,leuschel}@cs.uni-duesseldorf.de

Abstract. In Event-B a system is developed using refinement. The lan-
guage is based on a relatively small core; in particular there is only a very
small number of substitutions. This results in much simpler proof obli-
gations, that can be handled by automatic tools. However, the downside
is that, in case of software development, structural information is not
explicitly available but hidden in the chain of refinements. This paper
discusses a method to uncover these implicit algorithmic structures and
use them in a model checker. Other applications are code generation,
model comprehension, and test-case generation.
Keywords: Event-B, Model Checking, Theorem Proving, Tool Integra-
tion.

1 Introduction

Some specification formalisms only have limited ways to express ordering of
events. In particular Event-B [1] lacks a notion of sequential composition, or
other ways to explicitly describe the ordering of events. If we specify software
or systems that include software in Event-B, we often have some implicit algo-
rithmic structure.1 Unfortunately this information is implicit only and therefore
not directly usable by tools nor directly visible to users. This paper discusses a
method to uncover this implicit algorithmic structure. This information can be
useful for analyzing or comprehending models and for automatic code genera-
tion. In this paper we also show how to use this information to improve model
checking.

2 Preliminaries

We follow the style of [1] of expressing variables and substitution in formulas. In
particular, let v = v1, . . . , vn be a sequence of n distinct variables, t = t1, . . . , tn
a sequence of n formulas and F a formula. Then F [t/v] is obtained from F by
replacing simultaneously all free occurrences of each vi by ti. We let F (v) denote

? This research is being carried out as part of the DFG funded research project
GEPAVAS.

1 To order events in Event-B the usual method is to introduce abstract program coun-
ters.

a formula, whose free variables are among v1, . . . , vn. Once the formula F (v) has
been introduced, we denote by F (t) the formula F [t/v] with v replaced by t.

In Event-B a state consists of a set of variables that are modified by events.
The values of the variables are constrained by invariants I(v). Each event is
composed of a guard G(t, v) and an action S(t, v), where t are parameters of the
event. We will only consider events of the form

evt =̂ any t
when G(t, v)
then vi1 , . . . , vik

:= E1(v, t), . . . , Ek(v, t) end

for some ij ∈ i1, . . . , in. Note that t can be empty and G(t, v) can be true.
Also note that k can be 0, in which case we write the action part as skip.

All assignments of an action S(t, v) occur simultaneously. Variables vj1 , . . . , vjl

that do not appear on the left-hand side of an assignment of an action are not
changed by the action. The effect of an assignment can be described by a before-
after predicate:

S(v, t, v′) =̂ v′i1 = E1(v, t) ∧ . . . v′ik
= Ek(v, t) ∧ v′j1 = vj1 ∧ . . . v′jl

= vjl

A before-after predicate describes the relationship between the state just be-
fore an assignment has occurred, x, and the state just after the assignment has
occurred, x′.

Note that Event-B also allows non-deterministic actions of the form x :∈
E(t, v) or x :| Q(t, v, x′). Without loss of generality, we assume that those
are rewritten to the above form using new parameters, one for every non-
deterministic action which denotes the chosen element. For instance, we rewrite

any max when max > 10 then x :∈ 1..max end

into

any max, choice when max > 10 ∧ choice : 1..max then x := choice end

3 Dependency Between Events

We are interested in how events influence each other. The motivations are mul-
tiple: either we may try to understand the dynamic behavior of our model, we
may wish to generate code by determining the control flow or we may wish to
improve the performance of model checking.

Suppose we have an event g with action x, y := (x + 1), 0. There are various
ways it can influence another event:

1. it can disable another event. E.g., the event h with guard y > 0 will for sure
be disabled after executing g.

2. it can enable another event. E.g., the event h′ with guard y = 0 would for
sure be enabled after executing g.

3. it can be independent of another event. For example, the enabling of the
event h′′ with guard z > 0 would not be modified by executing g, i.e., it will
be enabled after g if and only if it was enabled before. (Note that, depending
on the action part of h′′, the effect of h′′ could have been modified.)

In cases 1 and 2 the enabling or disabling may depend on the current state
of the model. Take for example the event h′′′ with guard y = 0 ∧ x > 1. Then
h′′′ would be enabled after g if x > 0 holds in the state before executing g, and
disabled otherwise. The predicate x > 0 is what we call an enabling predicate,
and which we define as follows:

Definition 1 (Enabling predicate). The predicate P is called enabling pred-
icate for an event h after an event g, denoted by g ;P (v,t,s) h, if and only if the
following holds

I(v) ∧G(v, t) ∧ S(v, t, v′)⇒ (P (v, t, s)⇔ H(v′, s))

where I(v) is the invariant of the machine, G(v, t) is the guard of g with pa-
rameters t and S(v, t, v′) the before-after predicate of its action part, and where
H(v, s) is the guard of h with parameters s.

In the absence of non-deterministic actions, an equivalent definition can be
obtained using the weakest precondition notation:

I(v) ∧G(v, t)⇒ (P (v, t, s)⇔ [S(t, v)]H(v, s))

where [S]P denotes the weakest precondition which ensures that after executing
the action S the predicate P holds.

Note that it is important for us that the action part S(t, v) of an event does
not contain any non-determinism (i.e., that all non-determinism has been lifted
to the parameters t; see Section 2). Indeed, in the absence of non-determinism,
the negation of an enabling predicate is a disabling predicate, i.e., it guarantees
that the event h is disabled after g if it holds (together with the invariant) before
executing g. However, if we have non-determinism the situation is different.
There may even exist no solution for P (v, t, s) in Def. 1, as the following example
shows.

Example 1. Take x :∈ {1, 2} as the action part of an event g with no parameters
and the guard true and x = 1 as the guard of h. Then [S(t, v)]H(v) ≡ false
as there is no way to guarantee that h is enabled after g. Indeed, there is no
predicate over x that is equivalent to x′ = 1 in the context Def. 1 : the before after
predicate S(v, t, v′) is x′ ∈ {1, 2} and does not link x and x′. Similarly, there is no
way to guarantee that h is disabled after g. In particular, ¬[S(t, v)]H(v) ≡ true
is not a disabling predicate.

Note that if I(v) ∧G(v) ∧ [S(t, v)]H(v, s) is inconsistent, then any predicate
P (v, t, s) is an enabling predicate, i.e., in particular P (v, t, s) ≡ false.

How can we compute enabling predicates? Obviously, [S(t, v)]H(v) always
satisfies the definition of an enabling predicate. What we can do, is simplify it

in the context of I(v) ∧G(v).2 We will explain later in Sect. 4 how we compute
enabling predicates and discuss the requirements for a simplifier.

Example 2. Take for instance a model of a for loop that iterates over an array
and increments each value by one. Assuming the array is modeled as a function
f : 0..n → IN and we have a global counter i : 0..(n + 1), we can model the for
loop (at a certain refinement level) using two events terminate and loop.

terminate =̂ when i > n then skip end

loop =̂ when i ≤ n then f(i) := f(i) + 1||i := i + 1 end

We can now try to find enabling predicates for each possible combination of
events. Table 1 shows the proof obligations from Def. 1 and simplified predicates
P which satisfy it.

Event Pairs (first ;P second) Enable Predicate Definition (wp notation) Simplified P

terminate ;P terminate i > n =⇒ (P ⇐⇒ i > n) true
loop ;P loop i ≤ n =⇒ (P ⇐⇒ (i + 1) ≤ n) (i + 1) ≤ n
loop ;P terminate i ≤ n =⇒ (P ⇐⇒ (i + 1) > n) (i + 1) > n
terminate ;P loop i > n =⇒ (P ⇐⇒ i ≤ n) false

Table 1. Enable Predicates for a simple model

The directed graph on the left in Figure 1 is a graphical representation of
Table 1. Every event is represented by a node and there for every enabling pred-
icate first ;P second from Table 1 there is an edge between the corresponding
nodes.

The right picture shows the same graph if we take independence of events
into account, i.e., if an event g cannot change the guard of another event h, we
do not insert an edge between g and h. In particular, as terminate does not
modify any variables, it cannot modify the truth value of any guard. On first
sight it seems as if we may have also lost some information, namely that after
the execution of terminate the event loop is certainly disabled. We will return
to this issue later and show that for the purpose of reducing model checking and
other application, this is actually not relevant.

In Event-B models of software components independence between events oc-
curs very often, e.g., if an abstract program counter is used to activate a specific
subset of the events at a certain point in the computation. We can formally
define independence as follows.

2 This is similar to equivalence preserving rewriting steps within sequent calculus
proofs, where I(v), G(v) are the hypotheses and [S(t, v)]H(v) is the goal of the se-
quent.

terminate loop

(i+1) > n

false

(i+1) ≤ ntrue terminate loop

(i+1) > n

(i+1) ≤ n

Fig. 1. Graph Representations of Dependence for a Simple Model

Definition 2 (Independence of events). Let g and h be events. We say that
h is independent from g — denoted by g 6; h — if the guard of h is invariant
under the substitution of g, i.e., iff the following holds:

I(v) ∧G(v, t) ∧ S(v, t, v′) =⇒ (H(v, s) ⇐⇒ H(v′, s))

Our first observation is that an event g can only influence the enabledness
of an event h (we do not require g 6= h) if g modifies some variables that are
read in the guard of h. We denote the set of variables used in the guard of h
by read(h) and the set of variables modified by g by write(g). If write(g) and
read(h) are disjoint, then h is trivially independent from g:

Lemma 1. For any two events h and g we have that read(h) ∩ write(g) = ∅
⇒ g 6; h.

This happens in our loop example, because write(terminate) = ∅, and hence
all events (including terminate itself) are independent from terminate.

However, read(h) ∩ write(g) = ∅ is sufficient for independence of events
but not necessary. Take for instance the events from Figure 2. Event g clearly
modifies variables that are read by h and therefore read(h) ∩ write(g) 6= ∅ but
g can not enable or disable h.

event g event h

begin when

x := x + 1 x + y > 5

y := y - 1 then

end end

Fig. 2. Independent events

The trivial independence can be decided by simple static analysis, i.e., by
checking if read(h) ∩ write(g) = ∅. Non trivial independence is in general un-
decidable. In practice, it is a good idea to try to prove that two events are
independent in the sense of Def. 2, as it will result in a graph representation
with fewer edges. However, it is not crucial for our method that we detect all
independent events.

As we have seen in the right side of Fig. 1, the information we gain about
enabling and independence can be represented as a directed graph, now formally
defined as follows.

Definition 3 (Enable Graph). An Enable Graph for an Event-B model is
a directed edge labeled graph G = (V,E,L). The vertices V of the graph are
the events of the model. Two events can be linked by an edge if they are not
independent, i.e., (g 7→ h) 6∈ E ⇒ g 6; h. Each existing edge g 7→ h is labeled
with the enabling predicate, i.e., g ;L(g 7→h) h.

Above we define a family of enable graphs, depending on how precise our
information about independence is. Below, we often talk about the enable graph
for a model, where we assume a fixed procedure for computing independence
information.

Aside. There is another representation of the graph that is sometimes more
convenient for human readers. We can represent the graph as a forest where each
tree has one event as its root and only the successor nodes as leafs. The alternate
representation is shown in Figure 3 for a small example.

a

c

b a
P
Q

true false

b c

trueQ

b

a c

falsep

c

Fig. 3. Representations of the Enable Graph

4 Computing the Enabling Predicates

As mentioned before the weakest precondition [S(t, v)]H(v, t, s) obviously satis-
fies the property of enabling predicates. We can use the syntax tree library of the
Rodin tool to calculate the weakest precondition. However, these candidates for
enabling predicates need to be simplified, otherwise they are as complicated as
the original guard and we will gain no benefit from them. Therefore we simplify
the candidate, in the context of the invariant I(v) and the guard of the preceding
event G(v, t).

Consider the model shown in Figure 4. The weakest precondition for g pre-
ceding h is [x := x+ 2]x = 1 which yields x = −1. This contradicts the invariant
x > 0 and thus h can never be executed after g took place. In the context of the
invariant, x = −1 is equivalent to false.

The simplification of the predicates is an important step in our method, deriv-
ing an enabling predicate P (v, t, s) from the weakest precondition [S(t, v)]H(v, s).
Recall, that we simplify the predicate [S(t, v)]H(v, s) in the context of the in-
variant I(v) (and the guard G(v, t))

I(v) ∧G(v, t)⇒ (P (v, t, s)⇔ [S(t, v)]H(v, s))

invariant x > 0

event g event h

begin when x = 1

x := x + 2 end

end

Fig. 4. Simplification

A very important requirement in our setting is that the simplifier never in-
creases the number of conjuncts. We have to keep the input for our enable and
flow graph constructions small to prevent exponential blowup. Our simplifier
shall find out if a conjunct is equivalent to true or false. In the first case the con-
junct can be removed from the predicate in the second case the whole predicate
is equivalent to false.

We have implemented a prototype simplifier in Prolog that uses a relatively
simple approach. This prototype was used to carry out our case studies. The
method does not rely on this implementation, we can replace it by more powerful
simplification tools in the future.

5 Using the Enable Graph for Model Checking

The enable graph contains valuable information for a model checker. In this
section we describe how it can be used within ProB. When checking the con-
sistency of an Event-B model, ProB traverses the state space of the model
starting from the initialization and checks the model’s invariant for each state it
encounters. The cost for checking a state is the sum of the cost of evaluating the
invariant for the state and the calculation of the successors. Finding successor
states requires to find solutions for the guards of each event. A solution means
that the event is applicable and we can find some parameter values. ProB then
applies the actions to the current state using the parameter values resulting in
some successor states. In some cases the enable graph can be used to predict
the outcome of the guard evaluation. The special case of an enabling predicate
P = false is very important. It means that no matter how we invoke g we can
omit the evaluation of the guard of h because it will be false after observing g.
In other words it is a proof that the property h is disabled holds in any state
that is reachable using g.

When encountering a new state s via event e, we look up e in the enable
graph. We can safely skip evaluation of the guards of all events f that have an
edge (e,f) which is labeled with false in the Enabled Graph. We can even go
a step further if we have multiple ways to reach s. When considering an event
to calculate successor states we can arbitrary choose one of the incoming events
and use the information from the enable graph. For instance, if we have four
events a, b, c and d and we know that a disables c and b disables d. Furthermore
we encounter a state s via a but do not yet calculate the successors. Later we
encounter s again, this time via b. When calculating the successors we can skip
both, c and d.

The reason is that we have a proof for c is disabled because the state was
reachable using event a and a proof that d is disabled because the state was
reachable using event b. Thus the conjunction c and d are disabled is also true.

Because we use the invariant when simplifying the enabling predicate (see
Section 4), the invariant must hold in the previous state in order to use the flow
information. However we believe this is reasonable because most of the time we
are hunting bugs and thus we stop at a state that violates the invariant. The
implementation must take this into account and in case of an invariant violation
it must not use the information gained by flow analysis. Also it needs to check
not only the invariant but also the theorems if they are used in the simplifier.

6 Enable Graph Case Study

In this section, we will apply the concept to a model of the extended GCD
algorithm taken from [7] using our prototype. The model consists of a refinement
chain, where the last model consists of two loops. The first loop builds a stack
of divisions. The second loop calculates the result from this stack. The last
refinement level contains five events excluding the initialization. The events up
and dn are the loop bodies, the events upini, dnini initialize the loops and gcd
is the end of the computation. The event init is the INITIALISATION of the
model.

event read(event) write(event)

init ∅ {a, b, d, u, v, up, f, s, t, q, r, uk, vk, dn, dk}
upini {up} {up, f, s, t, q, r}
up {up, r, f, dn} {f, s, t, r, q}
gcd {up, f, dn} {d, u, v}
dnini {up, dn, r, f} {dn, dk, uk, vk}
dn {dn, f} {uk, vk, f}

Table 2. Read and write sets

The first step is to extract the read and write sets for each event; the result is
shown in Table 2. Then we construct the enable graph. We calculate the weakest
precondition for each pair of independent events and simplified them. Both steps
were done manually but they were not very difficult. For instance, the most
complicated weakest precondition was [Sup]Gdnini. In the presentation below
we left out all parts of the guard and substitution that do not contain shared
identifiers, e.g., the guard contains up = TRUE but the substitution does not
modify up. The next step is calculating the weakest precondition mechanically,
finally we simplify the relational override using the rule (r �− a 7→ b)(a) = b.

gcd

init

true

false
false

false

false

upini

false

dn=false &
a mod b != 0 dn = true

dn=false &
a mod b = 0

false

up

t(f) mod r(f) != 0

false

t(f) mod r(f) = 0

false

false dnini false

f > 0

false

f-1 = 0

falsedn

f-1 > 0

f = 0

Fig. 5. Enable graph of the extended GCD example

[Sup]Gdnini = [f := f + 1, r �− {f + 1 7→ f(t) mod r(f)}] (r(f) = 0)
= (r �− {f + 1 7→ t(f) mod r(f)})(f + 1) = 0

= t(f) mod r(f) = 0

The other simplification were much easier, for example, replacing dn =
TRUE ∧ dn = FALSE by false. The constructed graph is shown in Figure 5.

The enable graph can be used by the model checker to reduce the number of
guard evaluations. Let us examine one particular run of the algorithm for fixed
input numbers. The run will start with init and upini then contain a certain
number of up events, say n. This will be followed by dnini and then exactly n
dn events and will finish with one gcd event. In all, the calculation takes 2n + 4
steps. After each step, the model checker needs to evaluate 5 event guards (one
for each event, except for the guard of the initialization which does not need to
be evaluated) yielding 10n+20 guard evaluations in total. Using the information
of the enable graph we only need a total of 4n+4 guard evaluations. For example,
after observing up, we only need to check the guards of up and dnini: they are
the only outgoing edges of up in Fig. 5 which are not labelled by false.

7 Flow Construction

Beside the direct use in ProB, the enable graph can be used to construct a
flow. A flow is an abstraction of the model’s state space where an abstract state
represents a set of concrete states. Each abstract state is characterized by a set
of events, representing all those concrete states where those (and only those)
events are enabled.

A flow describes the implicit algorithmic structure of an Event-B model.
This information is valuable for a number of different applications, such as code
generation, test-case generation, model comprehension and also model checking.
In Section 8 we illustrate how we can gain and exploit knowledge about a model
using the flow graph. We also briefly discuss how to generate code based on the
flow.

The flow graph is a graph where the vertices are labeled with sets of events,
i.e., the set of enabled events. The edges are labeled with an event and a predicate
composed from the enable predicates for this event. The construction of the flow
graph takes the enable graph as its input. Starting from the state where only the
initialization event is enabled the algorithm unfolds the enable graph. We will
describe the unfolding in a simple example, an algorithm is shown in Figure 7
and 8.

Figure 6 shows a simple flow graph construction. On the left side the enable
graph for the events init, a and b are shown. The graph reveals that b always
disables itself while it does not change the enabledness of a. The event a keeps
itself enabled if and only if P holds and it enables b if and only if Q holds. The
init event enables a and disables b.

We start the unfolding in the state labeled with {init}. In this case we do
not have a choice but to execute init. From the enable graph on the left hand
side we know that after init occurs a is the only enabled event. Therefore we
have to execute a. We know that if P is true then a will be enabled afterwards
and analogously if Q holds then b will be enabled. Combining all combination
of P and Q and their negations, we get the new states {}, {b} and {a, b}. If we
continue, we finally get the graph shown on the right hand side. If more than
one event is enabled, we add edges for each event separately. We can combine
edges by disjunction of the predicates. In our case we did that for the transition
from {a, b} to {a} which can be used by either executing b or a.

The algorithm in Figure 8 calculates for a given event e the successors in the
flow graph by combining all possible configurations. The algorithm also uses a
list of independent events that are enabled in the current state and therefore
they are also enabled in any new state. The algorithm in Figure 7 produces the
flow graph starting form the state {init}.

Generating the Flow Graph can be infeasible because the graph can blow up
exponentially in the numbers of events. However, in cases where constructing
the flow graph is feasible, we gain a lot of information about the algorithmic
structure and we can generate code if the model is deterministic enough. We
will discuss applicability and restrictions of the methods in section 9.

a

ba

P Q

b

b

false {a}

{}

{b}

{a,b}

(a,¬P∧¬Q)

(a,¬P∧Q)

(a,P∧Q)

(a,P∧¬Q)

(a,P∧¬Q)
∨

(b,true)

(a,¬P∧Q)

(a,¬P∧¬Q)
(b,true)init

a b

falsetrue

{init}

(init,true)

Fig. 6. Simple Flow Graph Construction

todo := {{init}}
done := ∅
flow := ∅
while todo 6= emptyset do

choose node from todo
foreach e ∈ node do

keep := node ∩ independent(e)
atoms := expand(e, keep)
todo := (todo ∪ ran(atoms))
flow := flow ∪ {node 7→ atoms}

od
done := done ∪ {node}
todo := todo− done

od

Fig. 7. Algorithm for constructing a Flow Graph

8 Flow Graph Case Study

If we apply the flow construction to the example graph shown in figure 5 we get
the flow graph shown in Figure 10. Compared to the structured model developed
by Hallerstede in [7] shown in 9 we see a very similar shape.

However, the automatic flow analysis helped us to discover an interesting
property. The flow graph contains a state that corresponds to concrete states
where no event is enabled, i.e., states where the system deadlocks. Thus the
model contains a potential deadlock. Inspection showed that the deadlock ac-
tually does not occur. The reason why the flow graph contains the deadlock
state is a guard that is too strong. The guards of dn and gcd only cover f ≥ 0.
The invariant implicitly prevents the system from deadlocking by restricting the
values of f .

In Figure 10 we can see that it is possible to automatically generate sequential
code from a flow graph. The events up and dn can be translated into while loops

Given: enable graph as EG : (Events× Events) 7→ Predicate
def expand(e, keep) =

true pred := {f 7→ true|(e 7→ f) ∈ dom(EG) ∧ EG(e 7→ f) = true}
maybe pred := {f 7→ p|(e 7→ f) ∈ dom(EG) ∧ EG(e 7→ f) = p ∧ p 6= false}
result := ∅
foreach s ⊆ node do

targets := dom(true pred) ∪ dom(s) ∪ keep
predicate :=

V
ran(s) ∧ ¬(

W
ran(s�−maybe pred)

result := result ∪ {predicate 7→ targets}
od

return result
end def

Fig. 8. Algorithm for expanding the Enable Graph (i.e., computing successor configu-
rations)

up

upini

dn

dnini gcd

Fig. 9. Structural model from [7]

and upini and dnini are if − then− else statements. In the particular case the
termination of the computation was encoded into the gcd event.

9 Applicability and Restrictions

An important question is when to apply a method and maybe even more impor-
tant when not to apply it. It is clear that flow analysis is probably not applicable
if the model does not contain an algorithmic structure. In the worst case for flow
construction, any combination of events can be enabled in some state, leading
to 2card(Events) states, where card(Events) is the number of events. However
in case of software developments it is very likely that eventually the model will
contain events that are clustered, i.e, at each point during the computation a
hopefully small set of events is enabled. We conjecture that the more concrete a
model is, the better are results from simplification.

Constructing the enable graph is relatively efficient; it requires to calculate
O(card(Events)2) enabling predicates. In case of software specifications gener-
ating the enable graph and using the information gained for guard reduction
is probably worth trying. We can also influence the graph interactively. For in-
stance, suppose the enable graph contains an edge labeled with card(x) > 0.
Suppose we know that after the first event x = ∅ but the simplifier was too
weak to figure it out, i.e., the empty set is written down in a difficult way, let’s
say x := S∩T where S and T are disjoint. By specifying (and proving) a theorem
that helps the simplifier, e.g., x = ∅, we can interactively improve the graph.

{dnini}{init}

{}

{upini}

{up} {dn}

{gcd}

true

a mod b ≠ 0

a mod b = 0

t(f) mod r(f) ≠ 0

t(f)
mod r(f)

 = 0

true

f > 0

f = 0

f < 0

f-1 > 0

f -1 = 0

f -1 < 0

Fig. 10. Example for a relation between abstract and concrete states

We believe that expressing these theorems does not only improve the graph but
also our understanding of a model because we explicitly formalize properties of
the model that are not obvious (at least not for the automatic simplifier).

Constructing the flow graph is much more fragile; it can blow up very fast. It
is crucial to inspect the enable graph and try to reduce the size of the predicates
as much as possible. However our experience is that Event-B models of software
at a sufficient low level of refinement typically have some notion of an abstract
program counter that implicitly control the flow in a model. These abstract
program counters are not very complicated and therefore it is likely that they
are exploited by the simplifier.

10 Related and Future Work

Inferring Flow Information Model checking itself explores the state space of a
model, and as such infers very fine-grained flow information. For Event-B, the
ProB model checker [9, 10] can be used for that purpose. However, it is quite rare
that the complete state space of a model can be explored. When it is possible,
the state space can be very large and flow information difficult to extract. Still,
the work in [11] provides various algorithms to visualize the state space in a
condensed form. The signature merge algorithm from [11] merges all states with
the same signature, and as such will produce a picture very similar to the flow
graph. However, the arcs are not labelled by predicates and the construction
requires prior traversal of the state space.

Specifying Flow Information There is quite a lot of related work, where flow
information is provided explicitly by the modeler (rather than being deduced

automatically, as in our paper). For example, several works use CSP to specify
the sequencing of operations of B machines [14, 3, 5] or of Z specifications [6, 12,
13, 2].

In the context of Event-B, there are mainly three other approaches that are
related to our flow analysis. Hallerstede introduced in [7] a new approach to
support refinement in Event-B that contains information about the structure
of a component. Also Butler showed in [4] how structural information can be
kept during refinement of a component. Both approaches have the advantage to
incorporate the information about structure into the method, resulting in better
precision. However both methods require the developer to use the methods from
the beginning while automatic flow analysis can be applied to existing projects.
In particular automatic flow analysis can actually be used to discover proper-
ties of a model such as liveness and feasibility of events. Hallerstede’s structural
refinement approach does not fully replace our automatic flow analysis. Both
methods overlap to some extent, but we think that they can be combined, such
that the automatic flow analysis uses structural information to ease the gener-
ation of the flow graph. In return, our method can suggest candidates for the
intermediate predicates used during structural refinement.

The third approach is yet unpublished but implemented as a plug-in for
Rodin [8]. It allows the developer to express flow properties for a model and to
verify them using proofs.

Future Work The next step is to fully integrate our method into the next release
of ProB, and use it to improve the model checking procedure and help the user
in analyzing or comprehending models. We also plan to use the technique to
develop a new algorithm for test-case generation. In [15] we have introduced a
first test-case generation algorithm for Event-B, tailored towards event coverage.
One issue is that quite often it is very difficult to cover certain events. Here the
flow analysis will hopefully help guide the model checker towards enabling those
difficult events. We will also evaluate simplification tools that could be used
within ProB to calculate good enabling predicates.

Conclusion In summary, we have developed techniques to infer algorithmic struc-
ture from a formal specification. From an Event-B model, we have derived the
enable graph, which contains information about independence and dependence
of events. This graph can be used for model comprehension and to improve
model checking. We have described a more sophisticated flow analysis, which
derives a flow graph from an Event-B model. It can again be used for model
comprehension, model checking but also for code generation.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. D. A. Basin, E.-R. Olderog, and P. E. Sevinç. Specifying and analyzing security
automata using csp-oz. In F. Bao and S. Miller, editors, ASIACCS, pages 70–81.
ACM, 2007.

3. M. Butler. csp2B: A practical approach to combining CSP and B. Formal Aspects
of Computing, 12:182–198, 2000.

4. M. Butler. Decomposition structures for event-b. In M. Leuschel and H. Wehrheim,
editors, IFM, volume 5423 of Lecture Notes in Computer Science. Springer, 2009.

5. M. Butler and M. Leuschel. Combining CSP and B for specification and property
verification. In Proceedings of Formal Methods 2005, LNCS 3582, pages 221–236,
Newcastle upon Tyne, 2005. Springer-Verlag.

6. C. Fischer. Combining object-z and csp. In A. Wolisz, I. Schieferdecker, and
A. Rennoch, editors, FBT, volume 315 of GMD-Studien, pages 119–128. GMD-
Forschungszentrum Informationstechnik GmbH, 1997.

7. S. Hallerstede. Structured Event-B Models and Proofs. In ABZ 2010, LNCS.
Springer-Verlag, 2010.

8. A. Iliasov. Flows Plug-In for Rodin.
http://wiki.event-b.org/index.php/Flows#Flows plugin.

9. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

10. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185–203, 2008.

11. M. Leuschel and E. Turner. Visualizing larger states spaces in ProB. In H. Tre-
harne, S. King, M. Henson, and S. Schneider, editors, Proceedings ZB’2005, LNCS
3455, pages 6–23. Springer-Verlag, April 2005.

12. B. P. Mahony and J. S. Dong. Blending object-z and timed csp: An introduction
to tcoz. In ICSE, pages 95–104, 1998.

13. G. Smith and J. Derrick. Specification, refinement and verification of concurrent
systems-an integration of object-z and csp. Formal Methods in System Design,
18(3):249–284, 2001.

14. H. Treharne and S. Schneider. How to drive a B machine. In J. P. Bowen, S. Dunne,
A. Galloway, and S. King, editors, ZB’2000, LNCS 1878, pages 188–208. Springer,
2000.

15. S. Wieczorek, V. Kozyura, A. Roth, M. Leuschel, J. Bendisposto, D. Plagge, and
I. Schieferdecker. Applying Model Checking to Generate Model-based Integration
Tests from Choreography Models. In Proceedings TESTCOM/FATES 2009, page
to appear. Springer-Verlag, 2009.

