Checking Computations of Formal Method Tools
- A Secondary Toolchain for PROB

John Witulski and Michael Leuschel

Institut fiir Informatik, Heinrich-Heine Universitat Diisseldorf
Universitatsstr. 1, D-40225 Diisseldorf
{witulski, leuschel}@cs.uni-duesseldorf.de

Abstract. We present the implementation of PYB, a predicate- and
expression-checker for the B language. The tool is to be used for a sec-
ondary tool chain for data validation and data generation, with PrROB
being used in the primary tool chain. Indeed, PYB is an independent
cleanroom-implementation which is used to double-check solutions gen-
erated by PROB, an animator and model-checker for B specifications.
One of the major goals is to use PROB together with PYB to generate
reliable outputs for high-integrity safety critical applications. Although
PYB is still work in progress, the ProB/pyB toolchain has already been
successfully tested on various industrial B machines and data validation
tasks.

1 Introduction

1.1 Motivation

The success of formal methods in practice depends on fast, scalable but also
reliable tools. Indeed, a bug inside a tool can have disastrous consequences in
the context of safety critical software.

One solution to this problem is to prove the correctness of the tool itself.
However, many tools used in the context of formal methods consist of tens or
hundreds of thousands of lines of code which haver evolved over long periods
of time. Reimplementing these tools to be correct by construction or verifying
these tools formally a posteriori is often impractical.

An alternate solution to increase the trust in the output of the tool by using
a double chain, i.e. validating the output of the main tool by a second, indepen-
dently developed tool. In some cases, the second tool can also be much simpler, as
its purpose is just checking an output, not producing it in the first place. This is
the solution we have pursued in this paper for the PROB tool [LB03,PL10], which
is an animator, model checker and constraint solver for the B-method [Abr96].

More concretely, our long term goal is to enable PROB also to be used as
a tool of class T3 within the norm EN 50128, i.e., moving from a tool of class
T2 that “supports the test or verification of the design or executable code, where
errors in the tool can fail to reveal defects but cannot directly create errors in
the executable software” [CEN11] to a tool that “generates outputs which can

B 3 Counte!
Formal Main example
B Model Tool or
\—/ Witness
Double
Chain

Fig. 1. Double Chain

directly or indirectly contribute to the executable code (including data) of the
safety related system” [CEN11].

1.2 Approach

The idea of a double chain is to double-check every result or output (e.g. the value
of a predicate) calculated by the main tool a second time using an independently
developed secondary toolchain (see Figure 1). For instance, after a tool like PROB
checks the invariant for some state of a B model, a tool like PYB will check it
again. The main tool can provide some additional information to make the task
of the secondary toolchain simpler (e.g., provide witness values for existential
quantifiers).

If the results of the two toolchains disagree, then an error is raised by the
secondary toolchain and the issue will have to be investigated manually (as there
must be a bug either in the main or in the secondary toolchain). If the results of
the two toolchains are identical we can have increased confidence in the validity
of the result. The hope is that, in case the main tool (PROB) contains a bug,
it is very unlikely that an independently developed tool will exhibit the same
bug for the same input. As such, PYB is a clean-room implementation which
only shares the parser with PROB. While the kernel and interpreter of PROB
is written in Prolog, PYB is written in Python, a dynamic imperative language.
Exactly like PROB, PYB covers the B language as specified by the ClearSy B
language reference manual [Cle09].

1.3 Outline

In Section 2, we provide a short summery of PYB’s main features, while in Sec-
tion 3 we give an overview of PYB’s implementation. We provide our experience
in developing PYB in Section 4, which we hope will be useful for readers inter-
ested in embarking upon a similar path than ours. In Section 5 we present one

case study and some empirical results of our tools. We conclude with related and
future work in Section 6.

2 Main Features of PyB

PYB’s role is to double check PROB’s results in the context of data-validation.
As such, it has to be able to

1. evaluate B expressions over sets, relations, functions and sequences. It also
supports set comprehensions and lambda abstractions.

2. evaluate B predicates with universal and existential quantifiers,

3. execute B substitutions (certain data validation are encoded as sequences of
operations).

It has been integrated into PROB’s Tcl-Tk version, and can be called automati-
cally to double check the results of PROB. Other features of the tool are a REPL
(read-eval-print-loop) and its interactive animation mode. These features are not
discussed, because they are of little relevance in the context of the double chain.

3 Architecture of PyB

The next section will introduce some implementation details of PYB. Figure 2
shows a module overview.

3.1 Parsing and Typing

PYB is an independent clean-room implementation, except for its Java parser.
This Java parser was written by Fabian Fritz in 2008 and is also used by PROB.
PYB uses its parser to recognise B-constructs like predicates and expressions.
These constructs are translated to an intermediate representation: an abstract
syntax Tree (AST) made of Java objects. These Java objects are now translated
to Python objects via an AST-visitor, an addition to the Java code. This visitor
is the only part of PYB which is written in Java.

The AST-visitor emits a string of Python code. The dynamic features of
Python enable the execution of this Python code emitted by the Java visitor.

Listing one (Figure 3) shows the Python code created by the Java-visitor for
the simple predicate 1+ 1 = z. The AST objects are numbered from 0 to 5. The
last one is the root of the tree. All these Python objects are derived from one
node class. Code like this can be evaluated by the interpreter and is the main
input for most PYB methods.

Before the interpretation starts, the AST must pass a type checker, which uses
a Hindley-Milner style unification algorithm. After a successful pass of the type

Fig. 2. Module Overview
Name Summery
animation_clui.py console interface for animation mode

main animation calculation,

imation. . s
animation-py together with the substitution method

ast_nodes.py Python classes representing AST-nodes
bexceptions.py custom exception objects

bmachine.py a class representing one B-machine
boperation.py a class representing one B-machine opertation
bstate.py a class representing one B-machine state
btypes.py type objects

config.py main config file

constrainsolver.py |B-wrapper to use a third-pary constraint solving code
definition_handler.py |main definition handling code

enumeration.py enumeration methods for sets, functions, relations and more
environment.py B-state managing code
external_functions.py|implementation of external functions

fake_sets.py implementation of large and infinite sets

helpers.py miscellaneous helper functions

main interpreter code. Predicate/expression evaluation code.

interp.py Substitution execution code

parsing.py helper functions to execute Python AST-code
pretty_printer.py pretty printer for b predicates and expressions

pyB.py main module.

quick_eval.py helper functions to enable evaluation without enumeration
repl.py read-eval-print-loop code

statespace.py implementation of the state space

typing.py main type checking code

checking code, a type is added to every identifier node (in this example x). Type
information is of course also important for enumeration of values, e.g., during the
evaluation of quantified predicates. The unification based algorithm makes PYB
compatible with PROB, and it is more powerful than the type checking of other
tools such as Atelier-B (because the order of the predicates is less important). For
example, the predicate x=y+1 is well typed for PYB and PROB whereas Atelier-B
requires the addition of typing information: x: INTEGER & y:INTEGER & x=y+1.

Between the parsing and type checking phase may be a phase where B def-
initions (macros) need to be substituted. Possible external function calls — a
particular feature of PROB which allows linking external code with B specifica-
tions — are also resolved at this time.

3.2 Implementation of B’s data types

The most important data type of B is the set. In B there exist built-in sets for
boolean, natural or integer numbers. Relations are sets of tuples. Functions and

Fig. 3. python code for the predicate 1+1=x

id0O=AIntegerExpression (1)
idl=AlntegerExpression (1)
id2=AAddExpression ()

id2 . children .append (id0)
id2.children .append(id1l)
id3=AldentifierExpression (”x”)
idd=AEqualPredicate ()

id4 . children .append(id2)
id4 . children .append(id3)
idb=APredicateParseUnit ()
id5 . children .append(id4)
root = idH

sequences are just special cases of relations. All B-operations like power set or
the cartesian product are only producing more complex sets.

While booleans and integers are represented by their python built-in coun-
terparts, most data types are represented in PYB by the python built-in type:
frozenset!. Frozensets are immutable objects which already implement all basic
set operations like union, intersection, inclusion, membership etc.

Relations are implemented as frozensets of tuple objects, which are also
python built-ins. For example a B-function which maps the numbers 1 to 3
to its square numbers 7 f = %z.(x > 0 & x < 4|z * x)” is represented on the
python level as frozenset([(1,1),(2,4),(3,9)]). Objects like this can be created
during the interpretation of B.

3.3 Interpretation of B

Expressions and predicates are evaluated by the interpreter module. The main
evaluation method has two parameters: the AST root or the root of a subtree
and an environment. The method call returns a value, if the tree represents a
predicate, it returns true or false.

The interpreter recursively performs a depth-first walk on the tree while
evaluating different code for every object class. The environment holds the state-
space of the B-machine. Every state is a stack of hash maps holding the current
values of the identifiers. Every new scope (e.g. a quantified predicate) creates a
new frame on this stack. This is a standard approach of interpreter implemen-
tation.

! http://docs.python.org/2.4/lib/types-set.html

Fig. 4. excerpt of the interpret method (indentation of last case changed for readability)

elif isinstance(node, AAddExpression):
exprl = interpret (node.children [0], env)
expr2 = interpret (node. children[1], env)
return exprl + expr2
elif isinstance(node, AMinusOrSetSubtractExpression)
or isinstance(node, ASetSubtractionExpression):

exprl = interpret (node.children [0], env)
expr2 = interpret (node.children[1], env)
return exprl — expr2

Figure 4 shows two of over hundred cases inside the “interpret” method. The
evaluation depends on the type of the visited AST-node. The first case is that
of a simple addition. The interpreter recursively visits its subtrees and adds the
values of the calculated subexpressions. The second case is similar to the first
one with only one exception: if the expressions exprl and expr2 are numbers a
simple integer subtraction will calculated, but if they are frozensets then a set
subtraction will take place. The overladed minus-operator, is natively defined on
frozensets in Python. That means a method of the built-in frozenset object is
executed.

3.4 Animation of B

Substitutions are handled similar to the evaluation of predicates. The main dif-
ference are two aspects: First, the evaluation does not return a value, but true or
false if a sequence of substitutions was successfully executed. Second, the evalu-
ation produces a new B state. This state is derived from a copy of the current
state and will be added to the state-space. Later it can become the current state
(in case of interactive animation if the user chooses this operation).

Sometimes a sequence of substitutions inside a B-operation consists of non-
deterministic substitutions. These substitutions can be seen as choice point with
different execution branches. PYB explores every branch by backtracking to this
choice point. A new state is returned for every possible execution branch.

All visited states are saved. This enables PYB to backtrack on the state level.

This is an important feature needed for interactive animation and possible model
checking by PYB in the future.

3.5 Difficult Aspects of B

Checking a PROB solution can be very complex. The B formulas may contain
quantified predicates, set comprehensions or lambda expressions. The solutions

computed for variables or parameters can be very large sets.

PYB evaluates the B constructs by a brute force approach. It generates all
possible values and checks if they fulfil the constraints. For example, PYB checks
an existentially quantified predicate by checking all values of the type of the
quantified variables. If no value is found, the predicate is false.

Of course this approach has to fail if the set of possible values is very large or
infinite. Then a symbolic representation or constraint solving can be the solution
to this dilemma. PYB generates special set classes instead of frozen sets if a set
becomes very large or infinite. This is not fully implemented at the current
development level. Also PYB uses a external constraint solver to constrain the
set of possible solutions. This usage of constraint solving will be extended in the
future too.

3.6 Linking with ProB

Verification of States Below we use an example of a complex B-Machine
(cruise control model) with a simple state. Figure 5 shows PROB in its animation-
mode for this example. At some point the user can save the B-State to a file
(Figure 6). Eventually PYB reads this file and outputs if a safety property was
violated in this state. Currently this process is automated via a Python script
but will be fully included into the official PROB release in the future.

Verification of State-changes Another application of PYB as second toolchain
is not the verification of states, but the execution of operations (i.e the applica-
tion of substitutions). In this approach, it is not of interest if a calculated state
satisfies a safety condition, but rather which operations are enabled at a specific
state and if the ’execution’ of an operation leads to the same state calculated by
other tools like PROB’

In this case, the second toolchain is not used to check if a safe or faulty state
is really safe or faulty, but if the states (that violate the safety properties of a
model) are really reachable.

Figure 7 shows the console output of an interactive animation of a simple
scheduler B model.

4 Development Experience of PyB

4.1 Timeline and Effort

The developmet of PYB started late 2011 and continued until today. At ap-
proximately 10 hours work per week on average, the current tool is a result of

H.NeNe) ProB 1.3.5-final: [Cruise_finitel.mch]

| vehicleCanKeepSpeed:BOOL

| wehicleTryKeepSpeed: BOOL

SpeedAboveMax: BOOL

VehicleTryKeepTimeGap: 300L @

CruiseSpeedhtMax:BOOL

NumberOfSetCruise :NATURAL

NumberofSetCruise:0..1 & /* added by mal */

ObstaclePresent:B0OL

ObstacleDistance:ODset

ObstacleRelativespeed:RSset
ObstacleStatusJustChanged:500L
CCInitialisationInProgress:BOOL
CruiseSpeedChangeInProgress :200L

/* Consistency */

(CruiseActive = => VehicleAtCruiseSpeed =)
(CruiseActive = => vehicleCanKeepSpeed =)
(CruiseActive = => VehicleTryKeepSpeed =)
((NumberofSetCruise = 0) <=> (CruiseActive = N
(CruiseActive = => vehicleTryKeepTimeGap =)
(CruiseActive = => CruiseSpeedAtMax =)
(CruiseActive = => ObstacleDistance = Obnone)
(CruiseActive = => ObstacleStatusJustChanged =)
(CruiseActive = =» CCInitialisationInProgress = y
(CruiseActive = => CruiseSpeedChangeInProgress =)
(ObstaclePresent = => VehicleTryKeepTimeGap =)
(ObstaclePresent = => ObstacleDistance = ODnone) T
‘ B
Ln 604, Col 3
| F
||| state Properties | = Enabled Operations + History
|[VehicleAtCruiseSpeed = TRUE CruiseBecomesNotAllowed TCC\HilialiSaliuﬂFi"iShEd
‘ ‘ehicleCanKeepSpeed = FALSE SetCruiseSpeed | SetCruiseSpeed
‘ehicleTryKeepSpeed = TRUE 'SETC'UIEESJEE(! \ CruiseBecomesAllowed
SpeedAboveMax = FALSE \ SetCruiseSpeed) INITIALISATION{FALSE,FALSE,FALSE,FALS|
‘ 'shicleTryKeepTimeGap = FALSE | SetCruiseSpeed |
NumberOfSetCruise = 1 | [CCInitialisationFinished |
‘CruiseSpeedAtMax = FALSE | [CClInitialisationDelayFinished |
ObstacleDistance = ODnone | [CruiseOff u
‘ ObstacleStatusjustChanged = TRUE } [ExternalForcesBecomesNormal
CClnitialisationInProgress = TRUE HVehicleLeavesCruiseSpeed
CruiseSpeedChangelnProgress = FALSE ||| [VehicleExceedsMaxCruiseSpeed
ObstaclePresent = FALSE '*OJs[;cIeAcpears'."."her(r,: seActive
ObstacleRelativeSpeed = RSnone 4 [ObstacleAppearsWhenCruiseActive
v —— — <

Fig. 5. ProB animating a B-Machine: The B-Machine code, the B-State (values and
constants), enabled operations, history

approximately 1,000 hours of work. It consists of over 7400 lines of code and
12000 lines of test-code.

Difficult parts of the implementation where type checking and the execution
of nondeterministic substitutions. Especially the type checking implementation
via unification consumed some time to assure compatibility with PROB. As
usual small bugs caused by missing specification details inside the implementa-
tions consumed a lot of time.

Development was done using a version-control system. The progress of the
project can be tracked via the commit-messages? of the git repository. Figure 8
shows the project time line.

4.2 Testing and Validation

PYB has been developed using test-driven development (TDD). The process of
TDD is as follows:

1. Test-code is written for an unimplemented new feature. This code is called
test-case.

% https://github.com/hhu-stups/pyB/commits/

/* Variables x/

#PREDICATE

CruiseAllowed = FALSE

CruiseActive = FALSE
VehicleAtCruiseSpeed = FALSE
VehicleCanKeepSpeed = FALSE
VehicleTryKeepSpeed = FALSE
SpeedAboveMax = FALSE
VehicleTryKeepTimeGap = FALSE
NumberOfSetCruise = 0
CruiseSpeedAtMax = FALSE
ObstacleDistance = ODnone
ObstacleStatusJustChanged = FALSE
CClnitialisationInProgress = FALSE
CruiseSpeedChangelnProgress = FALSE
ObstaclePresent = TRUE
ObstacleRelativeSpeed = RSequal

prrrrrerrrrerrreer

Fig. 6. A simple input example of PyB: This file contains all values and constants of
a B-State, The first line #PREDICATE was added for parsing reasons

2. The first run (execution) of the test-case fails. I.e all assertions inside this
test-case are false. This prevents the programmer from implementing an
already implemented feature.

3. The feature is implemented and the test passes: All assertions of the test-case
are true.

4. The code is refactored.

5. All previous written test-cases also pass. This ensures that the new imple-
mentation has not destroyed any previous functionality.

This process is automated to some degree. Because the tool was implemented
by only one programmer, the distributed aspects and advantages of TDD are
omitted in this overview. In early development-stages ASTs where constructed
explicit by creating tree-nodes as input to the interpreter. Examples of assertions
where simple arithmetic or boolean properties. When the development of the tool
proceeds, the test-case become more complex.

After the successful usage of the Java parser, ASTs were created automat-
ically by the parsing-module. Inputs also become more complex. Starting with
easy inputs like ‘x=y+42¢‘, the tests quickly also includes sets, functions and
relations. All this easy tests are still present and passed by PYB

At the current development new test-cases are full B-machines. Assertions
are not longer made just on single predicates, but made up of whole B-machine
states. Examples of assertions are true or false properties/ assertions/ invariants
after the B-machine initialization, enabled or disabled operations inside a specific
state or after some animation steps and of course the test if PYB gets the same
result as PROB.

John-Witulskis-MacBook-Pro:pyB johnwitulski$ python pyB.py examples/scheduler.mch
[8]: INITIALISATION(active={} ready={} waiting={}
[1]: leave pyB

Tnput (8-1):0
scheduler - Invariant: True

active={} waiting={} processl=processl process3=process3 process2=process2 ready={} PID={processl, process3, process2}

[8]: new(pp=proc.
[1]: new(pp=process
[2]: new(pp=process2
[3]: undo

[4]: leave pyB

Input (8-4):0
scheduler - Invariant: True

pp=None PID={processl, process3, process2} active={} waiting={processl} processl=processl process3=process3 process2=process2 ready={}

[8]: del(pp=processl
[1]: new(pp=process3
[2]: new(pp=process2
[3]: ready(rr=processl
[4]: undo

[5]: leave pyB

Input (8-5):3
scheduler - Invariant: True

pp=None rr=None PID={processl, process3, process2} active={processi} waiting={} processl=processl process3=process3 process2=process2 ready={}

[8]: new(pp=process3
[1]: new(pp=process2
[2]: swap()

[3]: undo

[4]: leave pyB

Fig. 7. Console output of PyB while animation a B-model. PyB prints the current
state, the status of the invariant and the enabeld operations

Of course TDD can not guarantee the same reliability than a formal proof
of PYB. But it still makes PYB more reliable and it is a much better approach
than testing the tool afterwards: TDD reveals errors inside an implementation
very soon.

5 Case Studies and Empirical Evaluation

5.1 Alstom Case Study

The case study consists of 6 industrial B-machines provided by Alstom. Every
machine was model-checked with PROB. Two machines where faulty. They de-
fined a partial surjection to an infinite set and initialized it with the empty set.
After the correction to a partial function the machine still contains a deadlocked
state.

The procedure of the double-checking was performed as follows:

Every machine was animated n-times with PROB. After every animation-step
the state of the machine (only constants and variables) where written to a file.
The data was loaded by PYB. PYB evaluated the properties and invariant of the
machine and returned the result.

After the configuration of some tool properties (maximum size of integer-
sets), PYB successfully checked 3 of 6 B-machines by double checking of 32 to 42
states of the machines in 5 minutes per machine. One B machine doesn’t work
with PYB because of the missing support of external functions like append (on
B strings). The remaining machines fail at the same point as PROB (described
above). The animation with PYB alone (without PROB’s information) of all
machines fails.

Fig. 8. Project time line

Date

milestone

August 2011

project start

September 2011

evaluation of simple arithmetic, set-predicates, functions and relations

October 2011

type-checking of simple arithmetic, set-predicates, functions and relations

November 2011

type-checking with simple unifications and
replaced interpreter state by an more complex environment

December 2011

typing and evaluation of more complex constructs.
Added a simple (brute force) enumerator. First parsing of whole B-machines

January 2012

first evaluation of simple B-machine assertions

February 2012

implementation of more complex functions like closure and UNION.
First evaluation of simple B-machine PROPERTIES-,
CONSTANT- and DEFINITTION-clauses

March 2012

implementation of IF-THEN, CHOICE and SELECT-substitutions

April 2012

implementation of lookup of SEEN or INCLUDE B-machines

September 2012

implemented quick eval functions to speed up tool performance

October 2012

first successful usage of an extern constraint solver

November 2012

first introduction of state-space.

December 2012

successful animation of simple B-machines.

January 2013

implementation of a small B-REPL

February 2013

successful usage of ProB solutions

March 2013 successful run of alstom case-study

April 2013 complex animation-refactoring to enable nondeterministic substitutions
May 2013 animation of SEEN or INCLUDED B-machines/operations

June 2013 documentation of tool-features and implementation details

July 2013 implementation of complex nondeterministic substitutions

August 2013

implementation of nondeterministic set_up_constants and init phase.
Added pretty printer for predicates.

September 2013

typing and execution of external functions

October 2013

usage of more complex ProB solutions

November 2013

added symbolic representation for large and infinite sets

December 2013

some systerel (industrial B-machines) successfully checked with pyB/ProB

5.2 Performance Evaluation

PYB is still in

an early development phase. It may be possible to speed up

checking by replacing data transfer by a socket communication (about 40% of
the runtime) with PROB or refactoring the tool using object dispatching instead
of the expensive Python “isinstance” built-in. Also using the pypy just-in-time
compiler technology on PYB seams promising

Also the generation of large sets induces a serious performance issue. The

evaluation of a

cartesian product of two sets or the calculation of the power set

of a set of 19 elements needs more than 7 seconds. The calculation of the power
set of 22 elements already needs more than 440 seconds. Some performance is-

sues can only be solved by better constraint solving.

6 Related and Future Work

6.1 Related Work

PredicateB and PredicateB++ are similar tools to pyB. In contrast to pyB
they only evaluate predicates and need additional software like ovado® [LBL12]
or the DVT tool to validate data like B-states. Predicate B (written in Java)
and PredicateB++ (in C++) were created by the company ClearSy in 2005
and 2008. They have been successfully used by Brama [Ser(07] inside the Rodin
Platform [ABHO06]. Another, recent tool is the JEB animator [YJS12] written in
JavaScript. Systerel + Ovado [BDP12]

Outside of the B community, there is of course considerable work on proving
tools correct. We just want to mention the grand challenge of the verifying
compiler [Hoa03] and the work on the Compcert verified compiler (e.g., [TLOS]).

6.2 Future Work

The most important issue that has to be solved, to guarantee the correct checking
of solutions generated by other tools (like PROB), is the handling of large or
infinite sets and the implementation of better constraint-solving. Even if all
variables and constants of a state are known (calculated by an other tool), there
may be (quantified) predicates for which checking could cause the generation of
large sets.

At the current development state there are critical performance issues. Some
of them will be solved by a more efficient implementation of the tool. Other
problems are a result of the choice of Python as implementation language. These
problem can be solved by refactoring the tool to R-Python, a statically typeable
subset of Python which can be translated to c¢ using the pypy technology. Per-
formance can also be increased by the use of a better constraint-solver.

A completely different aspect of this research is to see how fast can this
tool be by using the pypy just-in-time compiler technology. The tool is not far
away from becoming a full model-checker when a constraint-solver is successfully
integrated in this project. Also the tool is able to animate B-machines. This will
be useful to check if the animation of PROB is correct, i.e if the same states are
enabled and the same deadlocks are found.

6.3 Conclusion

PYB has been successfully used to validate data generated by PROB for many
simple B machines and some more complex, industrial B machines. Once all
performance issues are solved, we will have a reliable, independently developed,
double chain for model checking and data validation for B models.

3 More Informations about Ovado and PredicateB at http://www.data-validation.fr/

References

[ABHO6] Jean-Raymond Abrial, Michael Butler, and Stefan Hallerstede. An open

[Abr96]
[BDP12]

[CEN11]

[Cle09]
[Hoa03]

[LBO03]

[LBOS]

[LBL12]

extensible tool environment for Event-B. In Zhiming Liu and Jifeng He,
editors, Proceedings ICFEM’06, LNCS 4260, pages 588-605. Springer-Verlag,
2006.

Jean-Raymond Abrial. The B-Book. Cambridge University Press, 1996.
Frédéric Badeau and Marielle Doche-Petit. Formal data validation with
event-b. CoRR, abs/1210.7039, 2012. Proceedings of DS-Event-B 2012,
Kyoto.

CENELEC. Railway applications — communication, signalling and processing
systems — software for railway control and protection systems. Technical
Report EN50128, European Standard, 2011.

ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France,
2009. Available at http://wuw.atelierb.eu/.

C. A. R. Hoare. The verifying compiler: A grand challenge for computing
research. J.ACM, 50(1):63-69, January 2003.

Michael Leuschel and Michael Butler. ProB: A model checker for B. In Kei-
jiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal
Methods, LNCS 2805, pages 855-874. Springer-Verlag, 2003.

Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset
for the B method. STTT, 10(2):185-203, 2008.

Thierry Lecomte, Lilian Burdy, and Michael Leuschel. Formally checking
large data sets in the railways. CoRR, abs/1210.6815, 2012. Proceedings of
DS-Event-B 2012, Kyoto.

[LFFP09] Michael Leuschel, Jérome Falampin, Fabian Fritz, and Daniel Plagge. Au-

tomated property verification for large scale B models. In A. Cavalcanti
and D. Dams, editors, Proceedings FM 2009, LNCS 5850, pages 708-723.
Springer-Verlag, 2009.

[LFFP11] Michael Leuschel, Jérome Falampin, Fabian Fritz, and Daniel Plagge. Au-

[PL10]

[Ser07]

[TLOS8]

[YJS12]

tomated property verification for large scale b models with ProB. Formal
Asp. Comput., 23(6):683-709, 2011.

Daniel Plagge and Michael Leuschel. Seven at a stroke: LTL model checking
for high-level specifications in B, Z, CSP, and more. STTT, 11:9-21, 2010.

Thierry Servat. Brama: A new graphic animation tool for B models. In
Jacques Julliand and Olga Kouchnarenko, editors, Proceedings B’2007, LNCS
4355, pages 274-276. Springer-Verlag, 2007.

Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation
validators: A case study on instruction scheduling optimizations. In 385th
symposium Principles of Programming Languages, pages 17-27. ACM Press,
January 2008.

Faqing Yang, Jean-Pierre Jacquot, and Jeanine Souquiéres. The case for
using simulation to validate event-b specifications. In Karl R. P. H. Leung
and Pornsiri Muenchaisri, editors, APSEC, pages 85-90. IEEE, 2012.

