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Abstract. We provide an overview of the state-of-the-art in fairness-
aware machine learning and examine a wide variety of research articles
in the area. We survey different fairness notions, algorithms for pre-, in-,
and post-processing of the data and models, and provide an overview of
available frameworks.
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1 Introduction

In today’s world, artificial intelligence (AI) increasingly surrounds us in our day-
to-day lives. This is especially true for machine learning algorithms, which learn
their behaviours by recognising patterns in existent data and apply it to new
instances to make correct precisions quickly. This is desirable as it reduces the
factor of human error and speeds up various processes, taking less than a second
for a decision which would take a human worker multiple minutes.

For instance, a company can reliantly speed up its hiring process by algorith-
mically filtering through hundreds of applications, leaving a more manageable
amount for human review. The recidivism risk-scores for criminals can also be
computationally determined, reducing human error in this regard, leading to a
more reliant scoring system altogether. Another example might be the admis-
sion of students into universities, favouring those who have a higher chance of
graduating instead of dropping out. However, besides not using any sensitive
attribute like race, sex, age, or religion as input the algorithms might still learn
how to discriminate against them. This gives way for new legal implications, as
well as ethical problems.

The fairness-aware machine learning community only began to develop in the
last ten years, with the first publication to the best of our knowledge leading back
to Pedreschi et al. in 2008 [151]. Since then there is a steady grow of interest,
giving way to a multitude of different fairness notions, as well as algorithms for
preventing machine-learned bias in the first place.

In this survey paper, we will compile the current stand of research regarding
fairness-aware machine learning. This includes definitions of different fairness
notions and algorithms, as well as discussion of problems and sourced of machine
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discrimination. By bundling the information from different sources, this paper
serves as a rich entry-point for researchers new to the area, as well as an extensive
fairness bibliography, spanning also legal references and examples of employed
machine learning systems.

The remainder of this paper is structured as follows: the rest of this section
motivates fairness-aware algorithms on legal grounds, discusses various causes of
unfairness, and the resulting implications of discrimination in Sections 1.1 to 1.3
respectively. Section 2 goes over related work, i.e. other survey papers consider-
ing different parts of the whole research area. Section 3 establishes a common
ground for nomenclature used throughout the paper with Section 4 introducing
the necessary mathematical notation. Sections 5 to 8 list various definitions of
algorithmic fairness, as well as pre-, in-, and post-processing algorithms found
in an extensive literature review. In Section 9, different frameworks, toolkits, as
well as common databases used in literature are presented. The paper concludes
with some final remarks in Section 10.

1.1 Legal Motivation

Unequal opportunities are known of in employment rates [17, 121] or the mort-
gage market [17, 124]. As a countermeasure, various legislations are in place
to ensure the non-discrimination of minority groups. In the U.K., the Equality
Act [188] is in place since October 2010, consolidating the previous Sex Discrimi-
nation Act [185], the Race Relations Act [186], and the Disability Discrimination
Act [187]. In U.S.A., these legislations are regulated by the Civil Rights Act of
1968 [190], the Equal Pay Act of 1963 [189], and the Equal Credit Opportunity
Act of 1974 [191]. The European Union passed the Racial Equality Directive
2000 [66], the Employment Equality Framework Directive 2000 [67], and the
Equal Treatment Directive 2006 [68]. A further EU proposed directive for imple-
menting the Equal Treatment Directive was proposed and partially agreed on in
2009 [64], yet is still pending.1

Intuitively, employing AI systems driving the decision process in such cases
would give the benefit of being objective and hence free of any discrimination.
Unfortunately, this is not the case. Google Ads show less high-paying job offers
for females [52] while searching for black-identifying names results in ads sug-
gestive of an arrest [173]. Amazon provided same-day-delivery offers to certain
neighbourhoods, chosen by an algorithm which ultimately reinforced racial bias
and never offered same-day-delivery for neighbourhoods consisting mainly of
minority groups [105]. Commercial, image-based gender classifiers by Microsoft,
IBM, and Face++ all increasingly mispredict once the input individual is dark-
skinned or female, with an error rate for dark-skinned females (20.8%–34.7%)
significantly worse than those for light-skinned males (0.0%–0.3%) [36].

Further examples include gender bias in word embeddings [32], discrimina-
tion in assigning credit scores [48], bias in image search results [116], racial bias

1 As of October 2019.
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in recidivism prediction [7], or prejudice in New York City’s stop-and-frisk pol-
icy [81,82].

Note that these systems did not explicitly discriminate, e.g. the Amazon
system did not explicitly have access to race in its decision making process.
Although ignoring sensitive attributes like race, sex, age, or religion intuitively
should be sufficient for a fair classification, it was shown that such systems
make use of indirect discrimination [15,40,151,162]. The discriminatory attribute
is deduced from seemingly unrelated data, which is also known as disparate
impact [15]. Further, the algorithms are trained on historical data, which can
contain previous discrimination which is hence learned by the model [15,40]

The subject of employing machine learning algorithms in such cases hence-
forth introduces new legislative problems, as well as ethical problems. The Lead-
ership Conference on Civil and Human Rights published a set of five principles
to respect the value of equal opportunity and justice [125], following up with a
report on the current stand of social justice and technology [159]. A White House
Report to the Obama administration points toward the discrimination potential
of such techniques [177,178] with a consecutive report calling for equal opportu-
nity by design [179]. The European Union released a governance framework for
algorithmic transparency and accountability [65], giving policies for accountable
and transparent algorithms, as well as an in-depth overview on the subject.

Success Stories. Besides all the negative examples of discriminatory systems
mentioned above, there do exist examples in which fairness-aware machine learn-
ing was successfully employed.

In a study by Danner et al. [51] a risk assessment tool was used at selected
pretrial services agencies. These selected agencies were able to release more de-
fendants which were less risky on average compared to those agencies who did
not use the tool.

Ahlman and Kurtz [6] put a predictor by Berk et al. [24,26] into production
for randomised control trials of prisoners on probation. By querying the predic-
tor, the burden on parolees could efficiently be reduced while not increasing the
re-offence rates significantly.

Gender and race discrimination could further be overcome in face recogni-
tion [164] as well as image captioning [99].

1.2 Types and Causes of Discrimination

The fairness literature mainly concentrates on two types of discrimination [60,
70,76,202], namely disparate treatment and disparate impact. Feldman et al. [70]
and Dwork et al. [60] delivered good surveys on different aspects of each type,
which we will briefly summarise in this section.

Disparate Treatment. Disparate treatment describes the practise of treating
individuals differently based on their sensitive attributes like race, gender, age
or religion. It is intuitively the most direct form of discrimination.
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An approach to hide disparate treatment is reverse tokenism [60]. Tokenism
describes the act of admitting few individuals of minority groups (the tokens)
which serve as display for equal treatment. Reverse tokenism is the practice of
rejecting applicants of minority groups by having an actually qualified member
of the majority group which was also rejected. Thus claims of discrimination
against the minority group can be refuted by referencing to a more qualified
individual (the token) which was treated equally.

A form of disparate treatment is known as taste-based discrimination [19],
which describes an economic theory of labour-market discrimination. Here, an
employer actively discriminates against a minority group, either due to his per-
sonal tastes or due to his subordinates which would avoid any interaction with
a co-worker from a minority group.

Disparate Impact. We already outlined the idea of disparate impact as indi-
rect discrimination in Section 1.1. The difference to disparate treatment is that
the sensitive attributes are not used in the decision making process but minori-
ties still obtain different outcomes (the impact) from the majority group. This
is possible, e.g., due to correlations between the sensitive attributes and other
attributes which are not protected by any law.

One practice which corresponds to disparate impact is redlining [104]. Redlin-
ing refers initially to declining mortgage loans for residents of specific neighbour-
hoods, either directly or indirectly [27,62,98]. While one’s neighbourhood is not a
legally protected attribute, it is usually correlated with race or social status and
thus serves as a proxy for discrimination. Alternatively, reverse redlining de-
scribes the practice to actively target minority groups, e.g. for charging them
higher interest rates [35].

Predictive policing is the practice of statistically predicting crimes to identify
targets of police intervention [133]. However, this can lead to disparate impact
as well. Due to a historical bias of police forces focussing attention on certain
neighbourhoods [82], more crimes are recorded there simply by increased police
presence. As the crime rate there is perceived as statistically higher, more at-
tention is put on those neighbourhoods by predictive policing, again leading to
an increased track record [133]. This relates to the notion of the self-fulfilling
prophecy [60]. Here, decisions are intentionally based upon building a bad track
record for a minority group, i.e. by admitting explicitly unqualified individuals.
Due to corresponding poor performance potential prejudice can be amplified and
serves as historical justification for future discrimination. This is also known as
statistical discrimination [8], which is the second big theory on the cause of
labour-market discrimination (contrasting taste-based discrimination).

1.3 Causes for Machine Bias

As the examples in Section 1.1 have proved, AI systems are well capable of
discrimination despite being possibly perceived as impartial and objective [15,
40,177]. In this section, we will give a brief overview of how machine bias can be
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introduced to such systems. For a more thorough assembly and discussion, we
point the reader to the excellent works of Calders and Žliobaitė [40] as well as
Barocas and Selbst [15], upon which this section is based.

Data Collection The training data can contain an inherent bias which in turn
leads to a discriminatory model.2

One kind of unfair training data is due to incorrect distribution of the ground
truths. These ground truths can either be objective or subjective [40]. Examples
for objective ground truths include whether a credit was repaid, or whether a
criminal did reoffend, i.e. outcomes which can objectively be determined without
any influence of personal opinion. Subjective ground truths on the other hand
are dependent on the individual creator and assignment might differ depending
on the assigner. Examples include whether an applicant was hired or a student
was admitted to university. Note that only subjective ground truths can be incor-
rect [40]. Objective ground truths however still do not imply a discrimination-free
dataset, as shown by the predictive policing practice presented in Section 1.2.

The collection of data over historical records is always at risk of carrying
biases. Besides subjectively assigned ground truths the dataset itself can vary
in quality. On one hand, the data collected by companies might contain several
mistakes [195]. The collection process can easily be biased in the first place, as
shown by Turner and Skidmore [184]. On the other hand, minority groups can
simply not be well represented in the data due to varying access to digitalisation
or otherwise different exposure to the employed data collection technique [126].
This is correlated with the notion of negative legacy [113] where prior discrimi-
nation resulted in less gathered data samples of a minority group as respective
individuals were automatically denied due to disparate treatment. It is known
that machine learning performance on data with sample-bias may lead to in-
accurate results [201]. This all can cause statistical biases which the machine
learning model eventually reinforces.

Selecting the Features. Related to how the data is collected is the question
of what data is collected. This is known as feature selection.

One already discussed problem is disparate impact or redlining, where the
outcome of a prediction model is determined over a proxy variable [182], i.e. a
variable which is directly dependent on the sensitive attribute. However, incom-
plete information also introduces problems to the system. That is, not all infor-
mation necessary for a correct prediction is taken into account as feature and
remains unobserved, either due to oversight, lack of domain knowledge, privacy
reasons, or simply that the information is difficult to observe to begin with [40].
This lack of correctly selected features might only affect specific subgroups of
the population, leading to less accurate predictions only for their individuals
while the majority does not experience this issue. However, in certain cases the
acquisition of more precise features can come at a rather expensive costs for only
a marginal increase in prediction accuracy [129].
2 This corresponds to the computer science proverb ‘garbage in, garbage out’.



Fairness-Aware Machine Learning 7

Wrong Assumptions. Having outlined possible reasons for discriminatory
datasets, such as sample-bias or missing features, there is a set of assump-
tions usually made regarding these datasets which however are not necessarily
true [40].

The first assumption is that the dataset is representative of the whole popu-
lation. Considering the data collection problems above, specifically the sample-
bias, this is easily refuted. A related assumption is that the data is representative
of the future samples the resulting classifier will be used upon. Hoadley [101] em-
phasises that a dataset is only ever a capture of the current population. Due to
population drift, future observation might differ (significantly) than those over
which the current dataset was conducted [96]. For instance, economic changes
could greatly influence consumer behaviour, thus rendering corresponding old
datasets inadequate.

Masking. Another problem to consider is the question of who provided the
data. Having a set of unintentional ways to induce bias into a dataset also comes
with the same set of intentional practices to achieve quite this.

Intentionally applying the above practices for masking the embedding of
prejudice into the dataset leads consequently to biased machine learning predic-
tors [15]. This corresponds to the self-fulfilling prophecy discussed above [60].

As Barocas and Selbst [15] point out, data mining can help decision makers
in detecting reliable proxy variables “to distinguish and disadvantage members
of protected classes” intentionally. However, it is already difficult to prove most
cases of, e.g., employment discrimination, hence “employers motivated by con-
scious prejudice would have little to gain by pursuing these complex and costly
mechanisms”. Barocas and Selbst conclude that unintentional discrimination is
the more pressing concern.

2 Related Work

This article is by no means the first attempt to conduct a survey over the fair
machine learning literature. Other authors already tackled different parts of the
field before us and did a great job in their ambitions and serve as a great entry
point into the field. In this section we will present their works and place it in
contrast to ours.

Romei and Ruggieri [160] conducted a broad multidisciplinary survey on
discrimination analysis. Surveying core concepts, problems, methods, and more
from the perspectives of legal, statistical, economical and computational grounds,
the authors gathered a great resource for different fields and delivered a broad,
multidisciplinary bibliography. Focus are the applied approaches for discrimi-
nation analysis, which the authors divided into four categories: observational,
quasi-experimental, experimental, and knowledge discovery studies. In contrast
to our survey, we did not attempt to create a multidisciplinary resource, but
rather a resource specifically for fair machine-learning researchers, although our
overview of fairness notions in Section 5 makes an attempt to be comprehensible
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by a more general audience. Romei and Ruggieri focused mainly on methods
to analyse discrimination in a datamining sense, whereas we focus mainly on
algorithms for bias prevention.

Gajane and Pechenizkiy [76] aimed to formalise different fairness notions. Di-
viding fairness into six categories, they give a formal definition from the fairness
literature and further unify these with corresponding notions of the social sci-
ences literature. Thereby they provide excellent discussion about the respective
social limitations in applicability of the notions onto given problem domains. Our
overview of fairness notions in Section 5 is partially influenced by their work,
although we provide a greater list of different notions.

Žliobaitė [212] conducted a survey on the measurement of indirect discrim-
ination. He considered 20 different measures, divided into four categories: sta-
tistical tests, absolute measures, conditional measures, and structural measures.
Hereby he considered tests which were not previously used for discrimination
measurements in the fairness literature. After giving a review and analysis of the
measures in question the author concludes in recommendations for researchers
and practitioners, encouraging the use of normalised difference and discourage
the use of ratio based measures due to challenges in their interpretation. This
contrasts our work as we do not provide a general guidance framework but an
extensive overview of the field itself.

Verma and Rubin [194] conducted also a survey over different fairness notions.
Their goal was to contrast the surveyed measurements in their rationales and
to show how the same problem setting can be considered either as fair or unfair
depending on the chosen notion. For this, the authors trained a linear regression
classifier on the German Credit dataset and evaluated whether the classifier
satisfied each individual fairness criterion. In total, their survey was conducted
over 20 different notions of fairness. Our Section 5 was greatly influenced by
their work. However, instead of training a classifier and stating which fairnesses
were achieved, we present separate examples to each notion aiming for increased
comprehensibility by visualisation. We further expand their list to 26 notions.

Friedler et al. [75] presented a comparative study conducted over a set of
discrimination-aware algorithms (see Sections 6 to 8) in which they analysed
achieved performance on five real-world datasets. The performance is evaluated
on default accuracy measures of the machine learning literature, as well as on
eight notions of fairness. The authors took four algorithms of the fairness litera-
ture into account (two naïve bayes, disparate impact remover, prejudice remove
regularizer, and avoiding disparate mistreatment, as well as common machine
learning algorithms from literature as baseline approaches. Note that they only
considered pre- and in-processing approaches. The work of Friedler et al. con-
trasts ours as we do not aim to give a performance evaluation of existing algo-
rithms, but rather to describe their algorithms and set them into context with
related ones. This allows us to capture a broader range of algorithms as we do
not bestow ourselves with the burden of unified implementation and training
procedures.
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The book ‘Fairness in machine learning’ by Barocas et al. [14] appears to be
a promising addition to the fairness literature, aiming for much the same goals
as this article.3 Unfortunately, it is still a work in progress with most of the
essential chapters remaining yet to be released. As the authors explicitly solicit
for feedback “[i]n the spirit of open review”, we think it is important for the
community to actively increase visibility on their project. Eventually the book
could contribute in the same meaningful manner to the fairness community, as
the Deep Learning book [84] did to the deep learning community.

3 Necessary Nomenclature

Before Section 5 introduces various fairness notions, some common ground re-
garding proper nomenclature might be of need. In the following, Sections 3.1
and 3.2 will define the terminology of machine learning and of fairness problems
respectively.

3.1 Machine Learning Nomenclature

Generally speaking, a machine learning algorithm processes a set of input data,
the training set, and aims to distinguish patterns inside those data. Given new
data, it can detect those found patterns in the samples and map them onto
corresponding predictions. Those predictions might be a classification, where
input is assigned an assumed outcome class, or regression, where a continuous
value is assigned.

Training Data and Samples. Training Data is a collection of data samples which
are used to train the machine learning algorithm for its eventual prediction
task. Regarding fairness and discrimination such a data set usually refers to a
population of humans, with each individual’s personal attributes defining a data
sample.

Classifier. A machine learning predictor which assigns a class to each data sam-
ple is known as a classifier. Classification happens over a finite set of distinct
classes. In the scope of fairness, this article is mainly concerned with binary clas-
sification, e.g. predicting between only two distinct classes. For instance, assume
a binary classifier that is used to decide about the credit worth of an individual.
The two classes in use would be ‘approve credit’ or ‘deny credit’.

Positive and Negative Class. As binary classification is used for automated deci-
sion making, the output classes correspond to one positive class (the yes-decision,
‘approve credit’) and to one negative one (the no-decision, ‘deny credit’).

3 This judgement is based on a comparison of their announced outline of chapters with
our section outline.
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Fig. 1. Overview of Classification

Prediction and Ground Truth. This machine learning nomenclature differentiates
between what an individual belongs to and what the classifier predicts. Assuming
a classifier is used to determine whether an individual is given a credit or not.
The individual could be creditworthy (ground truth) but the classifier could still
reject the credit application, as it classifies the individual to not be creditworthy
(prediction). In the learning algorithms considered later on, for each individual
in the training data the corresponding ground truth is known.

True and False Positives. A true positive (TP) is a sample which was correctly
classified to belong to the positive class, i.e. the ground truth corresponds to the
positive class as well. If the ground truth would actually have been the negative
class, then it is called a false positive (FP). For instance, a non-creditworthy
individual which still has their credit approved would be a false positive.

True and False Negatives. Analogous to true and false positives, a true negative
(TN) is a sample which was correctly classified to belong to the negative class
according to its ground truth. A false negative (FN) corresponds to a negatively
classified sample which actually should have been positive respectively. For in-
stance, a creditworthy individual which still has their credit approved would be
a false negative.

3.2 Fairness Nomenclature

A fair classifier should guarantee that the predictions assigning the favourable
outcome to individuals of the privileged and unprivileged groups do not discrim-
inate over the protected attribute.
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Protected Attribute. A property of an individual that must not influence the
decision process of the machine learning algorithm is called a protected attribute.
Typical examples include sex, race, religion, age, or caste. In a decision scenario,
there can be multiple protected attributes.

Privileged and Unprivileged Group. Given a binary protected attribute like sex
(male, female)4, the individuals over which decisions are made are divided into
two demographic groups: sex = male and sex = female.

Assuming discrimination against one group (i.e. females), the other group
experiences a favourable treatment. The latter group is referenced to as the
privileged group, whereas the group experiencing discrimination is known as the
unprivileged group.

Favourable and Unfavourable Outcome. In a binary classification scenario, the
positive class corresponds to the favourable outcome the individuals wish to
achieve, whereas the negative class corresponds to an unfavourable outcome
respectively.

Qualified and Unqualified Individuals. Regardless of the protected attributes
of an individual, the individual might be qualified for the favourable outcome
or not. This corresponds to the ground truth whether an individual should be
classified as belonging to the positive class or not. For instance, a creditworthy
individual which still has their credit approved would be a false negative. For
instance, an individual which is approved for a credit (favourable outcome) might
actually be non-creditworthy (hence, unqualified).
4 This example does not account for non-binary genders, but only the determined sex
at birth.



12 J. Dunkelau et al.

4 Mathematical Notation

As usual, we denote by P (A | B) = P (A∩B)/P (B) the conditional probability
of the event A happening given that B occurs.

In the following, assume a finite dataset of n individuals D in which each
individual is defined as a triple (X,Y, Z):

– X are all attributes used for predictions regarding the data sample.
– Y is the corresponding ground-truth of the sample.
– Z is a binary protected attribute, Z ∈ {0, 1}, which might be included in X

and hence used by the predictor.

The privileged group will be denoted with Z = 1, whereas Z = 0 corresponds
to the unprivileged group. The favourable and unfavourable outcomes correspond
to Y = 1 and Y = 0 accordingly.

For a sample in Figure 2, we would have:

– Y=1 for green samples with a solid outline,
– Y=0 for red samples with no outline,
– Z=1 for rounded rectangles,
– Z=0 for trapezoids,
– the attributes X are not visible in the figure.

A (possibly unfair) classifier is a mapping h : X −→ [0, 1], yielding a score
S = h(X) which corresponds to the predicted probability of an individual to
belong to the positive class. For a given threshold σ the individual is predicted
to belong to the positive class Y = 1 iff h(X) > σ.

The final prediction based on the threshold is denoted as Ŷ with

Ŷ = 1⇔ h(X) > σ .

In the rest of the article we assume binary classifiers and always talk about
a given fixed classifier.

Hence,
P (Ŷ = 1 | Z = 1)

represents the probability that the favourable outcome will be predicted for
individuals from the privileged group, whereas

P (Y = 0 | Z = 0, Ŷ = 1)

represents the probability that a positively classified individual from the unpriv-
ileged group is actually unqualified. Positive examples for these two cases are
illustrated in Figure 3.

To keep notation short, let

Pi(E) := P (E | Z = i) i ∈ {0, 1}

and more generally, let

Pi(E | C) := P (E | C,Z = i) i ∈ {0, 1}
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Classifier

x1=3
x2=7

X = <3,7>
Z=1
Y=1

Favourable
Outcomeh(X)=1

Unfavourable
Outcome

h(X)=0
x1=2
x2=5

X = <2,5>
Z=0
Y=0

x1=2
x2=5

x1=3
x2=7

Fig. 3. Two example classifications

define the probability of event E conditional to C given an individual’s protected
attribute to be Z = i. For instance,

P0(Ŷ = 0 | Y = 1) = P (Ŷ = 0 | Y = 1, Z = 0)

is the probability of an individual in the unprivileged group to be mispredicted
for the unfavourable outcome, despite being qualified.

In the following Sections 5 to 8, we present notions and algorithms found in
the fairness literature. In an attempt to provide a unified, consistent notation,
the notation and variable naming might slightly differ from the original papers.

5 Notions of Fairness

For achieving a fair predictor, a metric on how to measure fairness is needed
first. Depending on the use case, however, what is to be perceived as fair differs.
This leads to multiple different notions of fairness, some of which were already
compiled separately by Gajane and Pechenizkiy [76] Verma and Rubin [194], as
well as Friedler et al. [75].

In line with Verma and Rubin [194], we will list the various fairness notions
together with their formal definitions. Besides those notions already compiled by
Verma and Rubin, the list of notions is expanded where applicable. Further, our
summary provides visual, minimal examples for the given, parity-based notions.
The example visualisations are defined in Table 1.

In line with Gajane and Pechenizkiy [76], we split the different notions into
seven categories:

1. unawareness (Section 5.1),
2. group fairness (Section 5.2),
3. predictive parity (Section 5.3),
4. calibration (Section 5.4),
5. individual fairness (Section 5.5),
6. preference-based fairness (Section 5.6), and
7. causality (Section 5.7).
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Image Qualified? Privileged?

3 3 3

7 7 3

3 3 7

7 7 7

Table 1. Summary of example illustrations.

Further, we will provide some discussion present in the literature regarding the
choice of fairness metrics in Section 5.8

5.1 Unawareness

Fairness through unawareness [87,122] is fulfilled when Z /∈ X, that is when the
protected attributes are not used by the predictor.

This fairness notion avoids disparate treatment [15, 202] as described in Sec-
tion 1.2 Formally, a binary classifier avoids disparate treatment [202] if:

P (Ŷ = y | X = x) = P (Ŷ = y | X = x, Z = z) , (1)

i.e. the knowledge of Z does not alter the outcome.
As already discussed, removing the protected attribute from the decision pro-

cess is insufficient for training a non-discriminating predictor, as other features
can serve as proxies for the protected attribute [15,40,151,202].

5.2 Group fairness

Group fairness [60] (a.k.a. statistical parity [49,60,208], demographic parity [75,
122], equal acceptance rate [210], mean difference [212], benchmarking [168],
affirmative action [141]) requires the probability for an individual to be as-
signed the favourable outcome to be equal across the privileged and unprivileged
groups [76]:

P1(Ŷ = 1) = P0(Ŷ = 1) . (2)

In practice, Eq. (2) (as well as all parity-based fairness notions) can be relaxed
by defining the notion of ε-fairness: let ε > 0, we say a parity based fairness
notion is ε-fair iff

|P1(Ŷ = 1)− P0(Ŷ = 1)| < ε . (3)

By considering the ratio between groups instead of their absolute difference,
group fairness relates to the 80% rule of U.S. employment law [30]. This rule
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favourable outcome unfavourable outcome fair?

3 3 7 7 3 7 7 3 3 3 3

3 3 7 3 3 7 7 3 3 7 7

Fig. 4. Example on Group Fairness.

states that the employment rate between the privileged and unprivileged group
must not differ more than 20%.

A problem of group fairness is that it can be easily reached by a randomised
classifier on the unprivileged group. Given a trained predictor, one can measure
the acceptance rate of the privileged group P1(Ŷ = 1), then simply assign the
favourable outcome to unprivileged individuals at random with respect to the
measured acceptance rate [60].

Conditional Statistical Parity. Conditional statistical parity [49,60,112] ex-
pands upon group fairness by taking a set of legitimate factors L ⊂ X into
account, over which a decision needs to be equal regardless of the protected
attribute:

P1(Ŷ = 1 | L = l) = P0(Ŷ = 1 | L = l) . (4)

Normalised Difference. The normalised difference [210,212] is the normalised
difference of acceptance rates (group fairness). Let

dmax = min

(
P (Ŷ = 1)

P (Z = 1)
,
P (Ŷ = 0)

P (Z = 0)

)
.

The normalised difference is defined as

δ =
P1(Ŷ = 1)− P0(Ŷ = 1)

dmax
(5)

with δ = 0 indicating complete fairness and δ = 1 indicating maximum discrim-
ination.

5.3 Predictive Parity

Group fairness is evaluated only on the prediction outcome alone. This can be
expanded by also taking into account the ground truth of the samples. Pre-
dictive parity [46] (a.k.a. outcome test [168]) requires equal precision for all
demographic groups. Precision hereby is the positive predictive value (PPV),
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favourable outcome unfavourable outcome fair?

3 3 7 7 3 7 7 3 3 3 3

3 3 7 3 3 7 7 7 3 3 7

Fig. 5. Example on Normalised Difference.

that is the probability of a positive classified sample to be a true positive:
PPV = TP

TP+FP [172,194]. This results in the following parity to hold

P1(Y = 1 | Ŷ = 1) = P0(Y = 1 | Ŷ = 1) . (6)

In short, individuals for which the favourable outcome was predicted need to
have equal probability to actually belong to the positive class in both groups.

favourable outcome unfavourable outcome fair?

3 3 7 7 3 7 7 7 3 7 3 3

3 3 7 7 3 7 7 3 7 3 7

Fig. 6. Example on Predictive Parity.

Predictive Equality. Instead of comparing the PPV, it is also possible to
compare the false positive rate (FPR), i.e. the rate of actual negative samples to
be assigned the favourable outcome: FPR = FP

FP+TN . This approach is known
as predictive equality [49] (a.k.a. false positive error rate balance [46]).

In short, the probability for unqualified individuals to be classified for the
favourable outcome needs to be equal in both groups. This formalises to

P1(Ŷ = 1 | Y = 0) = P0(Ŷ = 1 | Y = 0) . (7)

Equality of Opportunity. The notion of equality of opportunity [97, 122]
(a.k.a. false negative error rate balance [46]) complements predictive equality.
Instead of expecting equal FPRs, equal false negative rates (FNR) are required:
FNR = FN

FN+TP . This means, the probability for qualified individuals to be
classified for the unfavourable outcome has to be equal in both groups:

P1(Ŷ = 0 | Y = 1) = P0(Ŷ = 0 | Y = 1) . (8)
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favourable outcome unfavourable outcome fair?

3 3 7 7 7 7 7 3 7 3 3

3 3 7 3 7 7 7 3 7 3 7

Fig. 7. Example on Predictive equality.

favourable outcome unfavourable outcome fair?

3 3 3 7 7 3 7 3 7 3 3

3 3 3 7 7 7 7 3 7 3 7

Fig. 8. Example on Equality of Opportunity.

Equalised Odds. Requiring both, predictive equality and equality of oppor-
tunity to hold leads to the definition of equalised odds [97] (a.k.a. disparate
mistreatment [202], conditional procedure accuracy equality [25]). As the equal-
ity of FNRs is equivalent to the equality of true positive rates (TPR) [194],
equalised odds can be formalised as

P1(Ŷ = 1 | Y = i) = P0(Ŷ = 1 | Y = i), i ∈ 0, 1 . (9)

Note that in cases where the prevalence of qualified individuals is not equal
in all groups, a classifier can only satisfy both, predictive parity and equalised
odds once it achieves perfect predictions [46,120,202]. Hence, in domains where
the prevalences differ between groups or a perfect predictor is impossible, only
one fairness notion can be satisfied at any time.

favourable outcome unfavourable outcome fair?

3 3 3 7 7 3 7 3 7 3 3

3 3 3 7 7 7 7 3 7 3 7

Fig. 9. Example on Equalised Odds.
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Conditional Use Accuracy Equality. The requirement for a classifier to
not only satisfy predictive parity (i.e. equal PPVs for both groups), but also to
have equal negative prediction values (NPV) across groups, defines the condi-
tional use accuracy equality [25]. NPV is defined as TN

TN+FN , which leads to the
formalisation of this fairness notion as

P1(Y = Ŷ | Ŷ = i) = P0(Y = Ŷ | Ŷ = i), i ∈ 0, 1 . (10)

In short, this notion is satisfied if the true positive rates and the true negative
rates each are equal for both groups. Note that this does not require the PPV
to be equal to the NPV.

favourable outcome unfavourable outcome fair?

3 3 3 7 7 7 7 7 3 3 3

3 3 3 7 7 7 7 3 3 3 7

Fig. 10. Example on Conditional Use Accuracy Equality.

Overall Accuracy Equality. Expecting equal prediction accuracy on both
groups leads to overall accuracy equality [25]:

P1(Y = Ŷ ) = P0(Y = Ŷ ) . (11)

As the name suggests, the accuracy [172] over both groups needs to be equal.
In contrast to conditional use accuracy equality, this notion combines the focus
on true positives and true negatives.

favourable outcome unfavourable outcome fair?

3 3 3 7 7 7 7 3 3 3 3

3 3 3 7 7 7 7 3 3 7 7

Fig. 11. Example on Overall Accuracy Equality.
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Treatment Equality. Treatment equality [25] is satisfied if the ratio of false
positives and false negatives is equal among groups:

FN1

FP1
=
FN0

FP0
or equivalently

FP1

FN1
=
FP0

FN0
. (12)

The term ‘treatment’ hereby used to convey that such rations can be used
as policy lever [25]. If the classifier produces more false negatives than false
positives for the privileged group, this means more unqualified individuals receive
the favourable outcome than the other way around. Given that the unprivileged
group has an even ratio, the misclassified privileged individuals receive an unfair
advantage.

favourable outcome unfavourable outcome fair?

3 3 3 7 7 7 7 7 7 7 3 3 3

3 3 3 7 7 7 7 3 3 7 7

Fig. 12. Example on Treatment Equality.

5.4 Calibration

Calibration [46] (a.k.a. matching conditional frequencies [97], test-fairness [194])
is a notion which is accompanied by a score S, which is the predicted probability
for an individual X to be qualified (i.e. the probability to have the favourable
outcome assigned): S = P (Ŷ = 1 | X).

A classifier is said to be calibrated if

P1(Y = 1 | S = s) = P0(Y = 1 | S = s) , ∀s ∈ [0, 1] . (13)

That is, the probabilities for individuals with the same score to actually be
qualified has to be equal for each score value.

Well-calibration. Well-calibration [120] (a.k.a. perfect calibration [153]) ex-
tends the previous notion by further requiring those probabilities to be equal to
S:

P1(Y = 1 | S = s) = s = P0(Y = 1 | S = s) , ∀s ∈ [0, 1] . (14)

The aim of this notion is to ensure that if a set of individuals has a certain
probability of having the favourable outcome assigned, then approximately the
same percentage of individuals is indeed qualified [194].
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Balance for negative class. The balance for negative class notion [120] re-
quires equal average scores between the set of unqualified individuals in both
groups. Thus, no group’s unqualified individuals have a statistical advantage
over those of the other group to be misclassified for the favourable outcome.

Verma and Rubin [194] formalised this notion as

E1(S | Y = 0) = E0(S | Y = 0) . (15)

Balance for positive class. Similar to the previous notion, balance for the
positive class [120] is satisfied if both groups have an equal average score among
their qualified individuals. This ensures that no group is in disadvantage by
resulting in more false negatives.

It formalises equal to Eq. (15) [194]:

E1(S | Y = 1) = E0(S | Y = 1) . (16)

5.5 Individual Fairness

As the statistical measures seen so far in Sections 5.2 to 5.4 are mostly concerned
with fairness over demographic groups, the features X inhibited by each indi-
vidual are largely ignored [194]. Assume a classifier for which holds i.e. P1(Ŷ =
1) = P0(Ŷ = 1) = 0.7. However, whereas the privileged group is classified as
expected, the unprivileged group is assigned the favourable outcome at random
with a 7

10 chance. Eq. (2) is still satisfied and hence the classifier is fair under the
notion of group fairness, but equally qualified individuals are treated differently
depending on group [194]

To counter this, the notion of individual fairness [60,76,122,135] (a.k.a. fair-
ness through awareness [60]) is based on metrics above the individuals them-
selves, formulating a (D, d)-Lipschitz property.

Let D be a distance metric over the room of possible classifications, and let d
be a distance metric over individuals. Then, a classifier is said to fulfil individual
fairness if

D(h(xi), h(xj)) ≤ d(xi, xj) ∀xi, xj (17)
where xi, xj denote individuals. That is, the distance of predicted outcomes must
not be greater than the distance between the respective individuals in the first
place was. In other words: similar individuals need to be similarly classified.

This notion is similar to that of monotone classification [58] in which addi-
tional to the training data a function is given for which the predictions need to
be monotone.

Dwork et al. [60] have shown, that a predictor satisfying individual fairness
also satisfies group fairness with certain bias.

Causal discrimination. The notion of causal discrimination [77] requires in-
dividuals from different demographic groups with otherwise equal attributes to
receive equal outcome:

xi = xj ∧ zi 6= zj =⇒ h(xi) = h(xj) , (18)
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with zk being the protected and xk being the unprotected attributes of individ-
ual k. Though similar to the notion of conditional statistical parity (cf. Eq. (4))
with L = X, this notion is not defined over probabilities. Hence, each pair of
individuals with equal attributes receives the same outcome, whereas in condi-
tional statistical parity it is sufficient when the same percentage of individuals
with equal legitimate attributes receives the favourable outcome.

5.6 Preference-Based Fairness

Zafar et al. [202] relax the notions of disparate treatment and disparate impact
by proposing two notions of preference-based fairnesses. Those notions, as they
state, are rooted on the economic and game theoretic concepts of fair division and
envy-freeness [28,143,193]. The difference to group-based fairnesses as introduces
above (Sections 5.2 and 5.3) is that the demographic groups do not need to
experience the same treatment but merely need to prefer their received treatment
over the treatment they would have received in another group.

Given a classifier h which yields prediction Ŷ , the group benefit Bz of the
subset of individuals with shared protected attribute z is defined as [202]

Bz(h) := E(Ŷ = 1 | Z = z) . (19)

That is the fraction of favourable outcomes for individuals with protected at-
tribute z.

Preferred Treatment. Let hz denote a group-conditional classifier, i.e. h =
{hz}z∈Z . Preferred treatment [202] is satisfied if

Bz(hz) ≥ Bz(hz′) ∀z, z′ ∈ Z . (20)

In other words, each group receives a better outcome on average by their given
treatment as opposed to as treated as another group.

Note, that if h satisfies fairness through unawareness, i.e. ha = h ∀a, then h
also satisfies preferred treatment.

Preferred Impact. Let h′ be a classifier which avoids disparate impact (i.e. it
satisfies group fairness). A classifier h offers preferred impact [202] over h′ if

Bz(h) ≥ Bz(h′) ∀z, z′ ∈ Z . (21)

Thus each group receives at least as often the favourable outcome over h as it
would have over h′, maintaining the core fairness achievable by h′ [202].

5.7 Causality

This family of fairness notions assumes a given causal graph. A causal graph is a
directed, acyclic graph representation having the features of X as vertices [118,
122, 142, 149]. Let G = (V,E) be a causal graph, then two vertices vi, vj ∈ V
have a directed edge (vi, vj) ∈ E between them if a direct causal relationship
exists between them, i.e. vj is (potentially) a direct cause of vi [142].
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Counterfactual Fairness. A classifier is counterfactually fair [122] if for all
individuals the outcome is equal to the outcome of its counterfactual individual
(i.e. the same individual with flipped protected attribute). That is, Z is not a
cause for Ŷ in any instance, i.e. there is no path (Z, . . . , Ŷ ) in G.

This can be formalised as

Pz(Ŷz = Y | X = x) = Pz(Ŷz′ = Y | X = x) ∀z, z′ ∈ Z (22)

where Ŷz is the prediction yielded by the classifier if Z = z.
Note the relation between counterfactual fairness and individual fairness:

counterfactual imply a notion of similarity. Kusner et al. [122] state that indi-
vidual fairness “can be defined by treating equally two individuals with the same
[set of attributes] in a way that is also counterfactually fair.”

No Unresolved Discrimination. Unresolved discrimination [118] is avoided
if there exists no path (Z, v1, . . . , vn, Ŷ ) in G, except via a resolving variable
vi, i ∈ {1, . . . , n}.

A resolving variable is a variable which is dependent on Z, but in a manner
which is understood and accepted as non-discriminatory [118].

As resolved paths Z, . . . , Ŷ are allowed, this notion is a relaxation on coun-
terfactual fairness.

No Potential Proxy Discrimination. This notion is dual to that of unre-
solved discrimination [118]. A proxy [182] is a descendant of Z which should not
affect the prediction. It is meant to be a “clearly defined observable quantity that
is significantly correlated [with Z]”, as stated by Kilbertus et al. [118].

Potential proxy discrimination [118] is observed when there exists a path
(Z, v1, . . . , vn, Ŷ ) in G which is blocked by a proxy variable vi, i ∈ {1, . . . , n}.

No Proxy Discrimination. This notion is a refinement of the previous one.
Let P be a proxy for Z. While potential proxy discrimination can be avoided
by simply designing a classifier to be unaware of P , a classifier h(X,P ) can
be carefully tuned to cancel the influence of P on X [118]. This is known as
intervention on P [149], denoted as do(P = p), replacing P by putting point
mass on value p [118].

Now, a classifier exhibits no proxy discrimination based on P if [118]

P (Ŷ | do(P = p)) = P (Ŷ | do(P = p′)) ∀p, p′ . (23)

Remark that if there exists no such path over P in G, fairness through un-
awareness satisfies no proxy discrimination [118].

Fair Inference. The notion of fair inference [142] proposes to select a set of
paths in G which are classified as legitimate paths. Which paths to choose is
hereby a domain-specific problem. Along legitimate paths the protected attribute
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is treated as having its active value Z = z, whereas it is treated as baseline value
Z = z′ on any non-legitimate path.

The idea stems from splitting the average causal effect of Z on Ŷ into path-
specific effects [150], which can be formulated as nested counterfactuals [167]. As
long as Ŷ is a descendant of Z only by legitimate paths, the outcome is deemed
as fair.

5.8 Note on the Selection of Fairness Metrics

The notion of total fairness, which corresponds to satisfying all fairness con-
ditions, is unfortunately shown to be impossible For unequal distribution of
groups in the population it was shown that group fairness (Eq. (2)), equalised
odds (Eq. (9)), and conditional use accuracy equality (Eq. (10)) are mutu-
ally exclusive [25, 46, 74, 212]. Also, group fairness, equalised odds, and cali-
bration (Eq. (13)) as well as group fairness and predictive parity contradict each
other [46,153,212] given unequal base rates.

This leads to the problem of deciding which fairness measures are desirable.
Žliobaitė [212] recommends defaulting to normalised difference while discourag-
ing the use of ratio-based measures due to interpretability issues. He further finds
the use of core measures standalone is insufficient as fairness cirteria. Core mea-
sures are hereby measures which are unconditional over the whole population,
group fairness for instance. These are, given unequal distribution of qualification
throughout the groups, not applicable to the problem [212] and should be set
into a conditional context (i.e. segmenting the population beforehand).

Saleiro et al. give for their Aequitas tool [165] a fairness tree, guiding a user
through the decision process of finding a suitable fairness notion to follow.5
The notions considered are group fairness, disparate impact, predictive parity,
predictive equality, false omission rate parity, and equality of opportunity. More
information to Aequitas and the fairness tree is listed in Section 9.2.

Another discussion is the long-term impact onto the populations depending
on choice of fairness notion. Mouzannar et al. [141] consider affirmative action,
which corresponds to either reducing the positive prediction rates of the privi-
leged group or increasing that of the unprivileged group. Specifically, they anal-
ysed the conditions under which society equalises for both policies, i.e. achieving
equal qualification rates among groups. For instance, consider the case of a com-
pany hiring equal rates of qualified individuals among groups, say 20% each.
Given that 40% of the privileged and 10% of the unprivileged groups are indeed
qualified, this results in hiring 8% and 2% of individuals in those groups respec-
tively. This is fair unter predictive parity. However, more privileged individuals
were hired than unprivileged, giving them better paying jobs and hence more
resources to provide to their children. Hence, the number of qualified individuals
in the privileged group can grow stronger in the next generation than in the
unprivileged group, increasing the initial gap between them further. Paaßen et
al. [147] provide a theoretical approach, which shows that only the enforcement

5 http://dsapp.uchicago.edu/aequitas/

http://dsapp.uchicago.edu/aequitas/
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of group fairness actually results in an equilibrium rather than increasing the
gap between groups.

Other discussion is concerned with whether the research should rather fo-
cus on sub-group fairness [10, 47, 148]. As a predictor which achieves a fairness
criterion over the whole population still can show significant differences in clas-
sification results on certain subgroups, there always exists a fraction of individ-
uals for whom the predictions can be perceived as unfair [47]. Chouldechova and
G’Sell [47] hence, have proposed a model which can automatically find such sub-
groups on which the fairness measure differs. Such techniques allow for further
discrimination analysis beyond the scope of the overall performance.

6 Pre-Processing: Discrimination-free Training Data

The method of pre-processing is the approach of removing the bias from the
training data such that the predictor does not have to account for discrimina-
tion. Instead, during training only fair examples are shown, resulting in a fair
classifier. Depending on the pre-processing technique, this has to be applied to
each individual in the final production system as well.

In the following, we divided several pre-processing techniques from literature
into three categories:

– relabelling (Section 6.1),
– resampling (Section 6.2), and
– fair representations (Section 6.3).

6.1 Relabelling

Relabelling approaches aim to alter the ground truth values in the training set
such that it satisfies the fairness notion.

Massaging. The pre-processing technique of massaging the data [38, 107, 109]
takes a number of individuals in the training data and changes their ground
truth values. This allows any classifying machine learning algorithm (Bayesian
networks, support vector machines, . . . ) to learn on a fair dataset, aiming to
fulfil group fairness (Section 5.2).

For this, a ranker R is employed which ranks the individuals by their proba-
bility to receive the favourable outcome. The more likely the favourable outcome
is, the higher the individual will rank.

Let ε = P1(Y = 1) − P0(Y = 1) denote the measured discrimination of
the training data (cf. group fairness, Section 5.2). The number M of required
modifications is calculated as [107]

M = ε× |D1| × |D0|
|D1|+ |D0|

. (24)
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where

D1 = {X | Z = 1} and
D0 = {X | Z = 0}

denote the sets of privileged and unprivileged individuals respectively.
The massaging happens on the sets pr = {X ∈ D0 | Y = 0} and dem = {X ∈

D1 | Y = 1} by sorting both sets w.r.t. their ranks: pr descending and dem as-
cending. Labels of the top-M individuals in both sets gets flipped (i.e. massaged),
which are respectively the M individuals closest to the decision border.

6.2 Resampling

Resampling methods impact the sampling rate of the training data by either
dropping or doubling specific samples or altering their relative impact at training
time.

Reweighing. The authors of the massaging technique also introduced the
method of reweighing [38,109].

As massaging is rather intrusive as it alters the dataset, this alternative keeps
the dataset intact but associates to each individualX with Y = y, Z = z a weight
WX = W (y, z) with

W (y, z) =
|{X | Z = z}| × |{X | Y = y}|
|D| × |{X | Z = z ∧ Y = y}|

. (25)

The weighed dataset can now be used for learning a fair classifier. Note that
there are only four different weights, depending on whether the individual is
privileged or not and qualified or not.

Drawback of this method is the need of a classifier, which is able to incorpo-
rate the weights.

Preferential Sampling. The authors of reweighing additionally proposed pref-
erential sampling [108, 109] to counter the need of a learner that is able to
incorporate the individual’s weights. Following the same idea as used in massag-
ing that individuals close to the decision border are more likely to suffer from
expected discrimination, again a ranker is employed to determine individuals
closest to the border.

The data is divided into four subsets D0
0,D1

0,D0
1, and D1

1, where

Dz = {(X,Y, Z) | Z = z} ,
Dy = {(X,Y, Z) | Y = y} , and
Dyz = Dz ∩ Dy = {(X,Y, Z) | Y = y ∧ Z = z}
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for y, z ∈ {0, 1}. For instance, D1
0 is the set of all unprivileged, qualified individ-

uals. For each of these sets, the expected cardinality is calculated by [108]

Cyz =
|Dz| × |Dy|
|D|

(26)

and the sets are sorted according to their ranks: D1
0,D1

1 ascending, D0
0,D0

1 de-
scending. Each of the four sets is then adjusted to match their respective Cyz
values by either deleting the top elements or iteratively duplicating them. The
duplication step puts the respective top element and it’s copy to the bottom of
the list before the next sample is duplicated.

Finally, the pre-processed dataset is the union of the modified sets Dyz .

6.3 Fair Representations

The approach of finding fair representations is related to the notion of represen-
tation learning [22]. For a biased dataset D an alternative, cleaned dataset D̃
is constructed which obscures the original bias but still is as similar as possible
to the original data D. McNamara et al. [137] discuss the costs and benefits of
fair representations, showing that “any use of the cleaned data will not be too
unfair”.

Optimized Pre-Processing. The aim of optimized pre-processing [41] is to
transform the dataset D = {(Xi, Zi, Yi)}i into {(X̃i, Ỹi)}i by finding an appro-
priate, randomised mapping pX̃,Ỹ |X,Y,Z . This is achieved by solving the optimi-
sation problem

min
pX̃,Ỹ |X,Y,Z

∆
(
pX̃,Ỹ , pX,Y

)
s.t. D

(
pỸ |Z(y | z), pYT (y)

)
≤ εy,z and

E
(
δ((x, y), (X̃, Ỹ )) | Z = z,X = x, Y = y

)
≤ cz,x,y∀(x, y, z) ∈ D ,

pX̃,Ỹ |X,Y,Z is a valid distribution
(27)

where D(·, ·) is some distance metric, δ(·, ·) is a distortion metric, and ∆(·, ·)
is a given dissimilarity measure between probability distributions. Given that
∆ is (quasi)convex and D is quasiconvex in their first respective arguments,
the optimisation problem in Eq. (27) itself is (quasi)convex [41]. Hence, it can
be solved optimally. The thresholds εy,z and cx,y,z are to be chosen by the user.
Hereby, individual fairness is promoted due to the distortion control values cx,y,z
being defined pointwise, hence they can depend on X,Y, Z if so desired.

Disparate Impact Remover. Contrary to optimized preprocessing, the dis-
parate impact remover [70] is based on only changing the features X instead of
also the ground-truth Y of individuals for achieving group fairness.
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The goal is to transform a dataset D which contains disparate impact into a
repaired dataset D̃. This is done by mapping each (X,Y, Z) ∈ D to an associated
triple (X̃, Y, Z) ∈ D̃.

Let X = (X(1), . . . , X(m)). For k = 1, . . . ,m let ξ = X(k). Let ξz = P (ξ | Z =
z) denote the marginal distribution on ξ conditioned on Z, let Fz : ξz −→ [0, 1],
and let F−1

z : [0, 1] −→ ξz. Fz is a cumulative distribution function over the
values for ξ, whereas F−1

z is the associated quantile function [70]. For instance,
F−1
z ( 1

2 ) is the value x with Pz(ξ = x) = 1
2 .

The needed transformation ξ 7→ ξ̃ is done by

ξ̃ = median∀z′F−1
z′ (Fz(ξ)) . (28)

Variational Fair Autoencoder. By treating Z as a nuisance variable the pre-
processing problem becomes a problem of domain adaption [127,131]. Removing
the domain Z leads hereby to improved fairness, aiming for a latent representa-
tion X̃ of X which is minimally informative about Z yet maximally informative
about Y .

In this regard, Louizos et al. propose their method of employing a varia-
tional fair autoencoder [131], based on deep variational autoencoders [119,157].
This model encourages separation between X̃ and Z by using factorised pri-
ors P (X̃)P (Z) and avoiding keeping dependencies in the variational posterior
q(X̃ | X,Z) by employing a maximum mean discrepancy term [86].

In prior work, Li et al. propose a similar method called learning unbiased
features [127], employing a single autoencoder, also with maximum mean dis-
crepancy term. The variational fair autoencoder however is semi-supervised and
conducted with two deep neural networks [84,161] building a two-layer pipeline.
The first network takes X,Z as input, yielding an encoding X̃ ′ which is invariant
to Z. The second expects X̃ ′, Y as input and yields the final encoding X̃ which
has information to its corresponding ground-truth injected.

6.4 Further Algorithms

Further algorithms, which we did not summarise above, include rule protec-
tion [92, 93], adversarial learned fair representations [61], fairness through op-
timal transport theory [16], k-NN for discrimination prevention [135], situation
testing [21], statistical framework for fair predictive algorithms [134], contin-
uous framework for fairness [91], sensitive information remover [106], fairness
through awareness [60], provably fair representations [136], neural styling for
interpretable representations [154], and encrypted sensitive attributes [117].

7 In-Processing: Discrimination-aware Learners

In-processing techniques consider the training of a fair classifier on a possibly
discriminatory dataset. This includes ensembles, novel or adjusted algorithms,
or adding a regularization term to the loss function.
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We categorised five common categories of in-processing methods:

– adjusted learning algorithms (Section 7.1),
– adapted loss functions (Section 7.2),
– adversarial approaches (Section 7.3),
– optimisation subject to fairness constraints (Section 7.4), and
– compositional approaches (Section 7.5).

7.1 Adjusted Learning Algorithms

Algorithms in this category describe changes onto common machine learning
algorithms which ensure fairness-awareness.

Two Naïve Bayes Early work by Calders and Verwer [39] proposed to train
a naïve Bayes classifier for each protected attribute and balance them in or-
der to achieve group fairness. The models Mz for z ∈ {0, 1} are trained on
Dz = {(X,Y, Z) ∈ D | Z = z} only and the overall outcome is determined for
an individual by the outcome of the model corresponding to the individual’s
respective protected attribute.

Let X consist of m features X = 〈X(1), . . . , X(m)〉. As the overall model
depends on Z, the model can be formalised as

P (X,Y, Z) = P (Y | Z)

m∏
i=1

P (X(i) | Y, Z) (29)

which is equal to the two different naïve Bayes models for the values of Z [39].
Hereby, the probability P (Y | Z) is modified as in the authors’ post-processing
approach ‘modifying naïve Bayes’ in Section 8.

The authors argue that removing Z from the feature set results in too big
of a loss in accuracy, hence keeping the protected attribute for classification
is sensible. This however is unsuitable where any decision making use of the
protected attribute is forbidden by law (cf. Section 1.1).

Naïve Bayes with Latent Variable. A more complex approach than the
balanced bayes ensemble, also proposed by Calders and Verwer [39], is to model
the actual class labels L the dataset would have had if it had been discrimination
free to begin with. This is done by treating L as latent variable under two
assumptions:

1. L is independend from Z.
2. Y is determined by discriminating over L using Z uniformly at random.

To determine L, the authors propose a variation of the expectation maximation
algorithm (EM) [53] which utilises prior knowledge. In the E-step of EM, the
expected values for L are computed. However, as relabelling individuals with
Z = 0, Y = 1 or Z = 1, Y = 0 would only increase discrimination [39] they
will stay fixed with L = Y . Further, the distribution P (Y | L,Z) can be pre-
computed as distribution which ensures group fairness as in Eq. (2).
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Discrimination Aware Decision Tree Construction. Another interesting
approach is proposed by Kamiran et al. [110] which alters the splitting heuristic
used for learning decision trees [33,155].

Generally, the decision tree induction iteratively splits the dataset D based
on the attribute leading to the highest information gain until only leafes in
which all datapoints share the same ground-truth remain. Assume a split which
divides te data into k different datasplits D1, . . . ,D. The information gain over
the ground-truth is defined as

IGY = HY (D)−
k∑
i=1

|Di|
|D|

HY (D〉) (30)

where HY denotes the entropy with respect to the ground-truth. By accounting
for the entropy HZ over the protected attribute, the discrimination gain can be
measured by

IGZ = HZ(D)−
k∑
i=1

|Di|
|D|

HZ(D〉) . (31)

For determining the most suitable split during training time, three differ-
ent combinations of IGY , IGZ are possible: IGY − IGZ to only allow non-
discriminatory splits, IGY /IGZ to make a trade-off between accuracy and fair-
ness, and IGY + IGZ to increases both, accuracy and unfairness. Although the
third heuristic actually increases discrimination in the tree, the authors state
that it leads to good results in combination with their proposed post-processing
technique of discrimination aware decision tree relabelling [110] (Section 8).

7.2 Adapted Loss Function

Algorithms described here may depend on certain machine learning algorithms,
yet leave their training procedure unchanged. Instead of altering the algorithm,
the loss function is adapted to account for fairness, either by swapping the whole
loss function altogether or by adding a regularization term.

Prejudice Remover Regularizer. Kamishima et al. [113, 114] trained a lo-
gistic regression model [50] with a regularizer term which aims to reduce the
prejudice learned by the model. Prejudice is hereby divided into direct and indi-
rect prejudice. Direct prejudice [151] occurs when the outcome is correlated with
the protected attribute. Indirect prejudice (a.k.a. indirect discrimination [151])
occurs when the outcome is not directly related with the protected attribute,
but correlation can be observed given X.

To measure prejudice, Kamishima et al. defined the (indirect) prejudice index
(PI) [113,114]

PI =
∑
Y,Z

P (Y, Z) ln
P (Y,Z)

P (Y )P (Z)
. (32)



30 J. Dunkelau et al.

Let Θ denote the parameters of the prediction model h. Building upon
Eq. (32) the prejudice removing regularization term

RPR(D, Θ) =
∑

(x,z)∈D

∑
y∈{0,1}

h(x;Θ) ln
P (Ŷ = y | Z = z)

P (Ŷ = y)
(33)

is formed [113]. The authors further propose a general framework that utilises
two regularizer terms. One to ensure fairness, e.g. Eq. (33), and one standard
regularizer to reduce overfitting, e.g. L2 regularization ‖Θ‖22 [102].

Learning Fair Representations. Zemel et al. propose an approach for learn-
ing fair representations [208]. This method actually resembles a mix of pre- and
in-processing, as the input data is mapped into a intermediate representation
over which the decision takes place. As it is possible for this algorithm to learn
an appropriate distance function, it is actually well-suited for achieving individ-
ual fairness (Section 5.5)

The intermediate representation is that of K learned prototypes. A vector vk
is associated to each prototype, which lies in the same feature space as X. Let C
denote the multinomial random variable representing one of the prototypes. The
division of individuals to prototypes is to satisfy statistical parity (cf. Eq. (2))

P1(C = k) = P0(C = k) . (34)

Due to the prototypes lying in the same space as X, they induce a natural
probabilistic mapping via the softmax function σ [208]

P (C = k | X = x) =
exp(−d(x, vk))∑K
j=1 exp(−d(x, vj))

= σ(d(x, v))k (35)

where d(·, ·) is a distance measure (e.g. Euclidean distance). This mapping to
prototypes is hence defined as discriminative clustering models in which each
prototype acts as a cluster on its own [208].

The learning system for the prototypes should minimise the loss function

L = ACLC +AXLX +AY LY (36)

which is minimised by L-BFGS [146]. AC , AX , AY are hereby hyperparameters.
LC , LX , LY are defined as

LC =

K∑
k=1

|E(C = k | Z = 1)− E(C = k | Z = 0)| , (37)

LX =
∑

(x,y,z)∈D

(
x−

K∑
k=1

pk(x)vk

)2

, (38)

LY =
∑

(x,y,z)∈D

−y log(pk(x)wk)− (1− y) log(1− pk(x)wk) (39)
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with pk(x) = P (C = k | X = x) the probability for x to correspond to prototype
k and wk ∈ [0, 1] being the probabilistic outcome prediction for prototype k.
LC , LX , LY ensure statistical parity, a fitting mapping of X to C-space, and an
as accurate as possible prediction for the prototypes respectively.

Letm denote the amount of feature dimensions inX, i.e. x = 〈x(1), . . . , x(m)〉.
Each feature dimension can be individually weighted by a parameter αi, acting
as inverse precision value in the distance function of Eq. (35)

d(x, vk, α) =

m∑
i=1

αi(x
(i) − v(i)

k )2 . (40)

By optimizing α, {vk}k, {wk}k jointly, the model learns its own distance function
for individual fairness (Section 5.5). By utilising different weights αz for each de-
mographic group, this distance metric also addresses the inversion problem [60],
where features are of different impact with respect to the classification of the
two groups.

7.3 Adversarial Approaches

Adversarial training [85] consists of employing two models which play against
each other. On one side, a model is trained to accurately predict the ground
truth, whereas a second model predicts the protected attribute by considering
the first model’s prediction.

Adversarially Learning Fair Representations. Beutel et al. [29] propose
an adversarial training to prevent biased latent representations closely related
to the work of Edwards et al. [61] that allows to achieve the fairness notions of
equality of opportunity as in Eq. (8).

This method makes use of two neural networks with a shared hidden layer
g(X). Assume a subset E = (XE , ZE , YE) ⊆ D from which Z can be observed.
The goal of the predictor model h(g(X)) is to correctly predict Y whereas the
goal of the discriminator a(g(XE)) is to correctly predict Z. The overall model’s
objective is defined over two loss functions, one for h and a respectively

min

 ∑
(x,y,z)∈D

LY (h(g(x)), y) +
∑

(x,y,z)∈E

LZ(a(Jλ(g(x))), z)

 (41)

whereby Jλ is an identity function with negative gradient, i.e. Jλ(g(XE)) =

g(XE) and dJλ
dXE

= −λdg(XE)
dXE

. Without Jλ, g(·) would be encouraged to predict
Z [29]. The λ parameter determines the trade-off between accuracy and fairness.

Beutel et al. observe that “remarkably small datasets” E are already effective
for more fair representations, and that further a balanced distribution over Z in
E yield more fair results [29].
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Adversarial Debiasing. Similar to the previous method of adversarially learn-
ing fair representations, the method of adversarial debiasing [209] by Zhang et
al. also makes use of adversarial training. However, their framework follows a
different architecture and allows for one the notions of group fairness, equalised
odds, and equality of opportunity (Eqs. (2), (8) and (9)).

The approach employs two distinct models, the predictor h(X) and the
adversary a(·). Depending on the fairness to achieve, the input given to a(·)
changes. For group fairness, only the prediction score S = h(X) serves as in-
put. For equalised odd, both the prediction score S and the ground truth Y
are given. Given a target class y, restricting the input of the adversary to
Dy = {(X,Y, Z) | Y = y} achieves equality of opportunity. Again, the goal
of the adversary is to predict Z correctly.

Assuming the loss functions LP (ŷ, y) for the predictor and LA(ẑ, z) for the
adversary, and the model parameters W and U for predictor and adversary re-
spectively. U is updated according to the gradient∇ULA W is updated according
to

∇WLP − proj∇WLA∇WLP − α∇WLA (42)

with α being a tunable hyperparameter and projνx = 0ifν = 0.
Remark that this approach is model agnostic, as long as the model is training

using a gradient based method [209]. Further, the authors suggest using a simple
adversary, whereas the predictor might be arbitrarily complex.

7.4 Optimisation Subject to Fairness Constraints

This set of algorithms leaves the loss function unaltered and instead treats the
loss optimisation as a constrained optimisation problem, having the fairness
criterion as a constraint.

Avoiding Disparate Mistreatment. In their paper, Zafar et al [202] not
only propose the notion of disparate mistreatment (a.k.a. equalised odds) (see
Eq. (9)) but also propose a method of achieving a classifier which is free of
disparate mistreatment [202, 203]. Given a decision boundary-based classifier,
goal is to minimise loss subject to posed fairness constraints.

Let Θ denote the parameters of such a classifier, and let dΘ(x) denote the
signed distance of x to the respective decision boundary (e.g. dΘ(x) = ΘTx for
linear models). The authors propose to measure disparate mistreatment via a
tractable proxy over the covariance between z and dΘ(x) for mislabelled indi-
viduals (x, y, z) ∈ D with

Cov(z, gΘ(y, x)) ≈ 1

n

∑
(x,y,z)∈D

(z − z̄)gΘ(y, x) (43)

where gΘ(y, x) = min(0, ydΘ(x)) [202] and z̄ denotes the arithmetic mean over
(zi)

n
i=1. This follows the approach of the disparate impact proxy proposed
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in [203]. Hence, the constraints to the loss function formulate as

min L(Θ)

s.t.
1

n

∑
(x,y,z)∈D

(z − z̄)gΘ(y, x) ≤ c ,

1

n

∑
(x,y,z)∈D

(z − z̄)gΘ(y, x) ≥ −c ,

(44)

where c ∈ R+ is the covariance threshold, trading fairness for accuracy. The
closer c is to zero, the higher the fairness, but the larger the potential loss in
accuracy [203].

This can be converted into a disciplined convex-concave program [166] which
can be solved efficiently for a convex loss L(Θ):

min L(Θ)

s.t.
−|D1|
n

∑
(x,y)∈D0

gΘ(y, x) +
−|D0|
n

∑
(x,y)∈D1

gΘ(y, x) ≤ c ,

−|D1|
n

∑
(x,y)∈D0

gΘ(y, x) +
−|D0|
n

∑
(x,y)∈D1

gΘ(y, x) ≥ −c .

(45)

Note that for Z /∈ X this not only avoids disparate mistreatment, but also
disparate treatment as well. Remark that this approach is restricted to convex
margin-based classifiers [203].

Accuracy Constraints. Contrary to their previous approach of avoiding dis-
parate mistreatment, Zafar et al. additionally propose a method which, rather
than maximising accuracy under fairness constraints, aims to maximise fairness
under accuracy constraints [203].

This formulates as

min
1

n

∑
(x,y,z)∈D

(z − z̄)ΘTx

s.t. L(Θ) ≤ (1 + γ)L(Θ∗)

(46)

where L(Θ∗) denotes the optimal loss of the respective unconstrained classifier
and γ specifies the maximum additional loss to be accepted. For instance, γ = 0
ensures maximally achievable fairness by retaining optimal loss.

Given a loss which is additive over the data points, i.e. L(Θ) =
∑n
i=1 Li(Θ

∗)
where Li is the individual loss of the ith individual, it is possible to fine-grain
the constraints with individual γi to be

min
1

n

∑
(x,y,z)∈D

(z − z̄)ΘTx

s.t. Li(Θ) ≤ (1 + γi)Li(Θ
∗) ∀i .

(47)
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Setting γi = 0 for individuals with ground-truthyi = 1 ensures that the proba-
bility for qualified individuals to be assigned the favourable outcome is at least
as high as without the constraints.

Reduction Approach. Agarwal et al. provide an algorithm which allows and
fairness definition, as long as it can be formalised via linear inequalities on con-
ditional moments [4]. That is, for fairness notions which can be represented as

Mµ(h) ≤ c, (48)

where M ∈ R|K|×|J | is a matrix and c ∈ R|K| is a vector describing linear
constraints indexed by k ∈ K Further, µ(h) ∈ R|J | is a vector of conditional
moments having the form

µj(H) = E(gj(X,Y, Z, h(X)) | Ej) for j ∈ J . (49)

As an example, the authors formulate group fairness in terms of Eqs. (48)
and (49) with J = Z×{∗}, Ez = {Z = z}, E∗ = {True}, and gj(X,Y, Z, h(X)) =
h(X)∀j, hence µj(h) = E(h(X)), leading to

µz(h)− µ∗(h) ≤ 0

−µz(h) + µ∗(h) ≤ 0

and with K = Z × {+,−} finally to M(z,+),z′ = 1{z′ = z}, M(z,+),∗ = −1,
M(z,−),z′ = −1{z′ = z}, M(z,−),∗ = 1, and c = 0.

Let H denote a family of classifiers and let Q be a randomised classifier
which makes predictions by first sampling a h from H and then returning h(x).
The reduction approach [4] interprets the classification problem as saddle point
problem by posing an additional L1 norm constraint onto it and considering also
its dual

min
Q

max
λ,‖λ‖1≤B

L(Q,λ) (50)

max
λ,‖λ‖1≤B

min
Q

L(Q,λ) (51)

with L(Q,λ) = err(Q)+λT(Mµ(Q)−c) where lambda ∈ R|K|+ is a Lagrange mul-
tiplier. The problems is solved by the standard scheme of Freund and Schapire [73],
which finds an equilibrium in a zero-sum game. Input to the algorithm hereby
is the training data D, the fairness constraint expressed by gj , Ej ,M, c, bound
B, learning rate η, and a minimum accuracy ν. If a deterministic classifier is
preferred, the found saddle point yields a suitable set of candidates.

7.5 Compositional Approaches

Algorithms in this category train a set of models with one classifier per group in
Z. Thus the subgroup accuracy is kept height while the overall classifier achieves
fair results.
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Decoupled Classifiers. Under the assumption that it is ‘legal and ethical’, as
the authors put it, Dwork et al. propose the use of decoupled classifiers [59].

Reasoning that a single classifier might lead to too much of an accuracy trade-
off over certain groups, the proposal is to use decoupled classification systems.
This means to train a separate classifier for each group.

The framework starts by obtaining a set of classifiers Cz = {C(1)
z , . . . , C

(k)
z }

for each group z ∈ Z, in which the C
(j)
z differ in the number of positively

classified individuals from the group z. The decoupled training step outputs a
single element of C0 × . . . × C|Z| (C0 × C1 for a binary protected attribute)
yielding one classifier per group by minimising a joint loss function. The joint
loss needs to penalise unfairness as well as model the explicit trade-off between
accuracy and fairness.

Let the profile of a decoupled classifier denote the vector 〈p1, . . . , p|Z|〉 with
pz, z ∈ Z denoting the number of positively classified individuals of group z.
The authors observe that the most accurate classifier for a given profile also
minimises false positives and false negatives. Hence, joint loss determines the
profile to choose.

Note that as long as the loss is weakly monotone, any off-the-shelf classifier
can be used for determining a decoupled solution.

7.6 Further Algorithms

Further in-processing techniques include integrating different counterfactual as-
sumptions [163], confidence based approach [72], unfairness penaliser [18], em-
pirical risk minimization under fairness constraints [55], and meta-algorithm for
fair classification [43].

8 Post-Processing: Correcting Biased Classifiers

Post-processing techniques work by taking a trained classifier which is possibly
biased and correcting this bias dependent on the protected attribute. While this
is not always legally feasible (cf. Section 1.1) it is shown that subgroup specific
thresholding leads to the fairest yet accurate results [49,138].

We categorised the presented algorithm into

– output correction (Section 8.1),
– input correction (Section 8.2), and
– classifier correction (Section 8.3).

8.1 Output correction

Techniques in this category alter the predicted outputs, either by changing the
prediction threshold or deterministic labels.
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Discrimination Aware Decision Tree Relabelling As an alternative to
their discrimination aware decision tree construction algorithm, Kamiran et
al. further propose the method of decision tree relabelling [110]. Typically, in
a decision tree T the predictions are done via majority votes in the leafs. This
approach however flips the labels of certain leaves to achieve a less discriminative
prediction.

Consider the following contingency tables for the dataset D and a leaf l
respectively, taken from Kamiran et al. [110]:

D Y = 0 Y = 1

Ŷ → 0/1 0/1
Z = 1 A0/A1 B0/B1 z
Z = 0 C0/C1 D0/D1 z̄

N0/N1 P0/P1

Leaf l Y = 0 Y = 1
Z = 1 a b z
Z = 0 c d z̄

n p

The accuracy and discrimination of the decision tree T before the label of l is
changed can be calculated by

accT = N0 + P1

discT =
C1 +D1

z̄
− A2 +B2

z

Let the impact of relabelling leaf l on accuracy and discrimination be defined as

∆accl =

{
n− p p > n

p− n p < n

∆discl =

{
a+b
z −

c+d
z̄ p > n

−a+b
z + c+d

z̄ p < n

Note that ∆accl is always negative. Given a set of leaves L, define

rem_disc(L) = discT +
∑
l∈L

∆discl .

The proposed algorithm now aims to find the minimal subset of leafs L ⊆ L
which need to be relabelled to achieve a discrimination smaller than ε ∈ [0, 1].
This is done by defining I = {l ∈ L | ∆discl < 0}, which is the set of all leafs
which reduce the discrimination upon relabelling, and then iteratively construct-
ing L. Hereby arg maxl∈I\L(∆discl)/∆accl is added to the initially empty set L
as long as rem_disc(L) > ε.

Note that this relabelling problem is equivalent to the NP problem KNAP-
SACK [110] and actually NP-complete.

Reject Option Based Classification. This approach alters the prediction of
samples for which h(x) = P (Y | X) is close to the decision boundary, usually
0.5 in binary classification, by introducing a rejection option [111].
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For θ with 0.5 < θ < 1 let [1 − θ, θ] be the interval further denoted as the
critical region. As an example, for θ = 0.7 the critical region would be [0.3, 0.7].

If the prediction score h(x) lies in the critical region, the actual prediction is
dependent on Z: unprivileged individuals receive the favourable outcome ŷ = 1
whereas privileged individuals receive the unfavourable outcome ŷ = 0. For
prediction scores outside the critical region, predictions remain unchanged. That
is, for h(x) ∈ [0, 1− θ[ the prediction is ŷ = 0, and for h(x) ∈]θ, 1] it is ŷ = 1.

This can be interpreted as a cost-based prediction method [111], as the loss
for misclassifying a qualified unprivileged individual is θ/(1 − θ) times as high
as the loss of misclassifying an unqualified individual.

Correcting Rule-based Classifiers. Concerning themselves with association
rule learning [5], Pedreschi et al. give a correction framework of classification
rules of the form r = A,B → C [152] in rule-based classifiers such as CPAR [200].
This corresponds to r = X,Z → Y in our introduced notation from Section 4,
meaning Y is a consequence of (X,Z).

In rule-based classification, the predicted class for an individual x, z is deter-
mined by

h(x, z) = arg max
y∈Y

|{(X,Y, Z) ∈ D | X = x, Y = y, Z = z}|
|{(X,Y, Z) ∈ D | X = x, Z = z}|

,

which is the class with the highest confidence given the training data D.
Define ax,z = |{(X,Y, Z) ∈ D1

z | X = x}| as the number of qualified individ-
uals with X = x, Z = z, and nx,z = |{(X,Y, Z) ∈ D1 | X = x}| as the number
of qualified individuals with X = x, disregarding their protected attribute. The
confidence for the rule X,Z → Y is then given by px,z→y with

px,z→1 = ax,z/nx,z ,
px,z→0 = 1− px,z→1 .

(52)

Let f denote an approximative fairness measure and let a ∈ R be a fixed
threshold. The classification rule r = X,Z → Y is said to be a-discriminatory
with respect to f [151,152] if f(r) ≥ a.

To rectify an a-discriminatory rule-based classifier, the authors adapt the
confidences px,0→y from Eq. (52) to

p′x,0→1 = (ax,0 +∆)/nx,0 ,

p′x,0→0 = 1− p′x,0→1

(53)

with ∆ ∈ Z such that |∆| is the minimum integer resulting in f(r) < a.
Note that this is only for correcting direct discrimination [151,152]. However,

the authors further give a correction method for indirect discrimination [151,152],
which we omit here.
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Plugin Approach. Menon and Williamson propose a plugin approach for cor-
recting outputs of a classifier by thresholding of the class probability function
on an instance-basis [138]. This approach assumes the classification problem to
be cost-sensitive.

Two logistic regression models are trained, ηA, ηF . Hereby, ηY is trained on
X,Y and estimates the probability of x ∈ X to be qualified for the favourable
outcome ηA(x) = P (Y = 1 | X = y), i.e. ηA = h. The second model, ηF (x)
estimates P (Z = 1 | X = x), i.e. the probability an individual belongs to
the privileged group. Note that his definition of ηF is meant to achieve group
fairness. If η′F (x) = P (Z = 1 | X = x, Y = 1) is estimated instead, equality of
opportunity is the target fairness instead.

Given two cost parameters cA, cF , define s : x 7→ ηA(x)− cA−λ(ηF (x)− cF )
with the tradeoff parameter λ.

The final classification happens by h(x) = Hα(s(x)), where Hα for α ∈ [0, 1]
is the modified Heaviside step function Hα(s) = 1{s>0} + α1{s=0}.

Discrimination-Aware Ensemble. Another approach presented by Kamiran
et al. is that of the discrimination-aware ensemble [111]. Here, an ensemble of
classifiers h(1), . . . , h(k) is corrected in their predictions by altering decisions
made in the disagreement region.

Let ŷ(i) denote the prediction made by the i-th classifier h(i). If all classifiers
agree in their predictions, i.e. ŷ(i) = ŷ(j)∀i, j ∈ {1, . . . , k}, then this unanimous
prediction is used as final prediction ŷ. If otherwise at least one classifier dis-
agrees, i.e. ∃i, j ∈ {1, . . . , k} · ŷ(i) 6= ŷ(j), then the prediction is made as in the
case of the critical region for reject option based classification [111]: unprivileged
individuals receive the favourable outcome ŷ = 1 whereas privileged individuals
receive the unfavourable outcome ŷ = 0.

The disagreement of the ensemble over a data set D can be measured by

disag(D) =
|{(X,Y, Z) ∈ D | ∃i, j · ŷ(i) 6= ŷ(j)}|

|D|
.

The authors remark that the accuracy drops as the disagreement increases. The
discrimination of the ensemble can ultimately be controlled by the selection of
its member classifiers [111].

8.2 Input correction

These approaches are related to pre-processing from Section 6, but add a pre-
processing layer in front of an already trained algorithm.

Gradient Feature Auditing. The gradient feature auditing method proposed
by Adler et al. [3] works by obscuring the (indirect) influences of Z on X(i) and
finding a minimal perturbation of X over which the classifier h yields more fair
predictions.
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The ε-obscure version of X with respect to feature i is denoted as X\εXi, if
X(i) cannot be predicted from X\εXi. That is

BER(X\εXi, X
(i), f) > ε ∀f : X \X(i) → X(i) (54)

where BER denotes the balanced error rate of f (a.k.a. half total error rate [175]).
By considering the difference in accuracy of on h(X) and h(X\εXi), the (indi-
rect) influence of feature i is measured.

The features are ordered by their (indirect) influences. To remove a fea-
ture i (e.g. Z) from X, compute X\εXi by applying the following obscur-
ing procedure to each feature j 6= i. For a numerical feature W = X(j) let
Wx = P (W | X(i) = x) and Fx(w) = P (W ≥ w | X(i) = x) denote the
marginal distribution and cumulative distribution conditioned on X(i) = i. Con-
sider the median distribution A, which has its cumulative distribution FA given
by F−1

A (u) = medianx∈X(i)F−1
x (u). It was already shown for the disparate im-

pact remover that a distribution W̃ which is minimally changed to mimic the
distribution of A maximally obscures X(j) [70].

8.3 Classifier correction

Algorithms in this category take a predictor and construct a related predictor
from it which yields fairer decisions.

Derived Predictor. Alongside proposing the notions of equality of opportunity
and equalised odds (Eqs. (8) and (9)), Hardt et al. presented a framework for
achieving those notions [97]. Given a possibly unfair predictor Ŷ , the goal is to
derive a predictor Ỹ which satisfies the respective fairness notion. This can be
calculated by only considering the joint distribution Ŷ , Z, Y .

For z ∈ Z, let

γz(Ŷ ) = (Pz(Ŷ = 0) | Y = 0, Pz(Ŷ = 1 | Y = 1)) (55)

denote the tuple of false and true positive rates for Ŷ and define the two-
dimensional convex polytope

Pz = convhull{(0, 0), γz(Ŷ ), γz(1− Ŷ ), (1, 1)} (56)

where convhull denotes the convex hull of the given set. Given a loss function L,
Ỹ can be derived via the optimisation problem

min
Ỹ

E(L(Ŷ , Y ))

s.t. γz(Ỹ ) ∈ Pz(Ŷ ) ∀z ∈ Z ,

γ0(Ỹ ) = γ1(Ỹ ) .

(57)

This ensures Ỹ to minimise loss whilst satisfying equalised odds. For achieving
equality of opportunity, the second condition weakens to only require equal true
positive rates over the groups [97].
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Calibration via Information Withholding. Pleiss et al. propose an algo-
rithm for achieving a relaxed version of equalised odds and calibration [153] by
adjusting the predictions of a classifier h made over the unprivileged group.

Let h be split into two classifiers h0, h1 with hz giving predictions over the
group with protected attribute Z = z.

Let gz(hz) define a cost function over the false positive and false negative
rates of hz

gz(hz) = azE(hz(X) | Y = 0) + bzE(1− hz(X) | Y = 1)

with az, bz ≥ 1 being group dependent constants of which at least one is non-zero.
We say a classifier h = (h0, h1) satisfies relaxed equalised odds with calibration
if g0(h0) = g1(h1). Hereby the notion of equalised odds is relaxed such that it
no longer contradicts the notion of calibration.

Assume h0, h1 with g1(h1) < g0(h0) < g1(hµ1) and a randomly sampled
subset E1 ⊆ D1. Let hµ1(x) = |{(X,Y, Z) ∈ E1 | Y = 1}|/|E1| denote the trivial
classifier which always returns the prediction score equal to the base positive
rate of E1. Define α = g0(h0)−g1(h1)

g1(hµ1 )−g1(h1) .
The corrected classification can now be constructed by setting

h̃1(x) =

{
hµ1(x) with probability α
h1(x) with probability 1− α

(58)

and hence achieving a calibrated classifier h0, h̃1 with g0(h0) = g1(h̃1).
The authors remark that, as the output of h̃1 is achieved by withholding

information over a randomly selected subset, the outcome becomes inequitable
within the group [153]. Due to the algorithm being optimal however, any other
algorithm would at least yield as many false positives or negatives as h0, h̃1 does.

8.4 Further Algorithms

Further post-processing algorithms include naïve bayes correction [39], learning
non-discriminatory predictors [198], fair causal reasoning [130], counterfactually
fair deconvolution [122], and deep weighted averaging classifiers [42].

9 Fairness Toolkits

Given the recent popularity of fairness-aware machine learning, it is no surprise
that there exists a number of tools which help developers to achieve and ensure
non-discriminatory systems. The most commonly used datasets in literature are
listed in Section 9.1. In Section 9.2 we will then list a number of tools and
frameworks.



Fairness-Aware Machine Learning 41

9.1 Datasets

ProPublica Recidivism. The ProPublica recidivism data set6 includes data
from the COMPAS risk assessment tool and was analysed by Angwin et al. [7]
to show COMPAS’ race bias. It contains 7214 individuals and encodes the sen-
sitive attributes race, sex, and age. The prediction cast outcome is whether an
individual was rearrested within two years of the first arrest.

A violent recidivism version exists where the outcome is a rearrest within
two years on basis of a violent crime.

German Credit. The German Credit Data [57] consist of 1000 samples span-
ning 20 features each. Containing features such as employment time, current
credits, or marital status it provides the prediction task to determine whether
an individual has good or bad credit risk. Sensitive attributes are sex and age.

Adult Income. The Adult Data (a.k.a. Census Income Dataset) [57] consists of
48842 samples. It’s 14 features include information such as relation ship status,
education level, or occupation, as well as the sensitive attributes race, sex, and
age. The associated prediction task is to classify whether an individual’s income
exceeds $50,000 annually.

Dutch Virtual Census. The Dutch Virtual Census data are released by the
Dutch Central Bureau for Statistics [44, 45] and consist of two sets, one from
2001,7 the other from 1971.8 The data contains 189,725 and 159,203 samples
respectively with the classification objective whether an individual has a presti-
gious occupation or not, providing the sensitive attribute sex.

As Kamiran et al. [110] pointed out, these two sets are unique in a way that
the sex discrimination has decreased from 1971 to 2001 as seen in the data.
Hence, a classifier can be trained on the 2001 data and then be evaluated on the
discriminatory 1971 data.

9.2 Frameworks

FairML. In his master’s thesis, Adebayo developed FairML [1,2], an end-to-end
toolbox for quantifying the relative significance of the feature dimensions of a
given model. FairML is written in Python and available on GitHub.9

It employs four different ranking algorithms with which the final combined
scores for each feature are determined. Those algorithms are the iterative orthog-
onal feature projection algorithm [1], minimum redundancy maximum relevance

6 https://www.propublica.org/datastore/dataset/compas-recidivism-risk-
score-data-and-analysis

7 https://microdata.worldbank.org/index.php/catalog/2102
8 https://microdata.worldbank.org/index.php/catalog/2101
9 https://github.com/adebayoj/fairml

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://microdata.worldbank.org/index.php/catalog/2102
https://microdata.worldbank.org/index.php/catalog/2101
https://github.com/adebayoj/fairml
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feature selection [54], the lasso regression algorithm [180], and the random forest
feature selection algorithm [34,132].

Having the relative significance of each feature eases reasoning about the
problem domain and validating potential discrimination of the audited system.

FairTest. FairTest is an implementation of the unwarranted associations frame-
work [181] which detects indirect discriminations present in an algorithm. It is
written in Python and available on GitHub.10

The framework identifies sets of features and resulting predictions of interest,
integrates further user or application requirements which might justify certain
kinds of indirect discrimination, estimates strength of unfairness over an appro-
priate metric, and tests for indirect discrimination over meaningful subpopula-
tions. The authors emphasise the repeatability of those steps for fairness-aware
debugging.

Themis. Themis [77] was developed by the Laboratory for Advanced Software
Engineering Research at the University of Massachusetts Amherst and is a tool
for testing software for discrimination. Themis is written in Python and available
on GitHub.11

The tool can be used in three different ways. Firstly, it can be used for gen-
erating a test suite to compute the discrimination scores for a set of features.
Secondly, it can compute all feature subsets against which the software discrim-
inates more than a specified threshold. Thirdly, given a test suite, the apparent
discrimination scores for a feature set are calculated. The discrimination scores
hereby consist of group discrimination scores, as well as causal discrimination
scores.

Themis-ML. Besides the similar names, Themis-ML [12] is unrelated to the
previously presented Themis testing tool. Themis-ML titles itself as fairness-
aware machine learning interface, giving access to a number fairness metrics and
algorithms from literature. It is written in Python and available on GitHub.12

The set of implemented measures consists of group fairness and normalised
difference.Further it provides the massaging [38] pre-processing technique, the
counterfactually fair deconvolution [122] in-processing algorithm, as well as the
post-processing of reject option based classification [111]. Additionally, it incor-
porates access to the German Credit as well as the Census Income Data sets.

Fairness Measures. Fairness Measures [206] is a tool for evaluating a dataset
on a selected fairness measure. It is implemented in Python, yet serves as a
command line tool expecting a CSV file and can be used language-independently

10 https://github.com/columbia/fairtest
11 https://github.com/LASER-UMASS/Themis
12 https://github.com/cosmicbboy/themis-ml

https://github.com/columbia/fairtest
https://github.com/LASER-UMASS/Themis
https://github.com/cosmicbboy/themis-ml
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for any project. It is available over http://www.fairness-measures.org and
also on GitHub.13

The implemented measures are taken from Žliobaitė’s 2017 survey [212] and
comprise statistical tests, absolute measures, conditional measures, and situation
measures.

Fairness Comparison. Friedler et al. provide with their Fairness Compari-
son [75] a strong benchmarking tool for different fairness-aware algorithms. It is
implemented in Python and available on GitHub.14

The benchmarker works by using a pre-processed version of a given dataset.
This does not already correspond to a pre-processing for achieving algorithmic
fairness, but rather ensures that most algorithms in the benchmark suit can
handle the input. On the pre-processed data the actual algorithms are run and
finally evaluated based on both, accuracy measures and fairness measures.

Aequitas. The Center for Data Science and Public Policy of the University of
Chicago published Aequitas [165], a bias and fairness audit toolkit and produces
detailed bias reports over the input data. It is usable as a Python library or as
a standalone command line utility and available on GitHub.15

The tool checks for six different fairness notions: group fairness, disparate im-
pact, predictive parity, predictive equality, false omission rate parity, and equality
of opportunity. The authors further provided a fairness tree, guiding the choice
of which notion to use via a decision tree. Given a set of notions to check for,
the tool outputs a bias report which captures which notions were violated and
to what extent on a per-subgroup base.

AIF360. IBM Research released AI Fairness 360 (AIF360) [20], an extensible
Python toolkit comprising multiple fairness-aware algorithms known from litera-
ture. It is available on GitHub16 and provides a website with interactive tutorials
and a gentle introduction to its concepts and capabilities.17

The algorithms it comprises are optimized pre-processing [41], the disparate
impact remover [70], the derived predictor [97], reweighing [109], reject option
based classification [111], the prejudice remover regularizer [113], calibration
via information withholding [153], learning fair representations [208] adversarial
debiasing [209], and the meta-algorithm for fair classification [43]. Further, it
contains more than 70 different metrics for individual fairness (i.e. euclidean dis-
tance, mahalanobis distance), group fairness (i.e. equal opportunity difference,
disparate impact), and also general classification measurements (i.e. true/false
positive/negative rates, precision, recall) which allow for further construction of
13 https://github.com/megantosh/fairness_measures_code
14 https://github.com/algofairness/fairness-comparison
15 https://github.com/dssg/aequitas
16 https://github.com/ibm/aif360
17 https://aif360.mybluemix.net

http://www.fairness-measures.org
https://github.com/megantosh/fairness_measures_code
https://github.com/algofairness/fairness-comparison
https://github.com/dssg/aequitas
https://github.com/ibm/aif360
https://aif360.mybluemix.net
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so far unimplemented fairness notions. Finally, it provides easy access to promi-
nent data sets, such as the Adult Data, German Credit Data, or the ProPublica
recidivism data set.

FairSearch. Zehlike et al. [207] published FairSearch, a tool for fairness in
ranked search results. It implements two previously published algorithms, FA*IR
[204] and DELTR [205], and is available as Python or Java library, as well as an
Elasticsearch plugin.18

This tool is concerned with the fairness of exposure in rankings [169]. As
users of such systems usually only glance at the first few results, an average
group exposure is needed for a fairer ranking. This can be achieved either by
FA*IR, a reranking algorithm, or DELTR, which is a learn-to-rank framework.
Both algorithms aim to optimise rankings subject to fairness criteria.

FAT Forensics. FAT Forensics [171] is a Python toolbox for inspecting fairness,
accountability, and transparency of all aspects of a machine learning system. It
was started as an academic collaboration between the University of Bristol and
the Thales Group, and is available on GitHub.19

FAT Forensics works throughout the whole machine learning pipeline, con-
sisting of data, models, and predictions. Besides only concerning itself with
fairness, it further implements algorithms regarding accountability and trans-
parency as well, giving reports on, i.e., neighbour-based density estimations re-
garding prediction robustness, inspection of counterfactual fairness, or finding
explanations for blackbox models via local interpretable model-agnostic expla-
nations [158].

10 Further Discussion and Final Remarks

In this survey, we surveyed a multitude of fairness notions as well as algorithms to
achieve bias-free prediction and classification. However, we considered but a part
of the corresponding literature and by no means claim to deliver an exhaustive
overview. By only considering the fairness-aware machine learning literature,
we knowingly left out three other, related aspects: accountability, transparency,
ethics.

In this section, we will to point to existing literature concerned with those
three aspects and finally will conclude with some final remarks about fairness-
aware machine learning.

10.1 Accountability and Transparency

While avoiding discrimination is the overall goal of the field, there are other im-
portant aspects to consider. The legal texts mentioned in Section 1.1 for example
18 https://github.com/fair-search
19 https://github.com/fat-forensics/fat-forensics

https://github.com/fair-search
https://github.com/fat-forensics/fat-forensics
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are also concerned with the question of accountability. If employers of discrim-
inatory systems can be held (legally) accountable, accountability serves as an
important tool towards ensuring a more responsible use of machine learning,
which ultimately leads already to an improvement of society [65,145]. On a sim-
ilar note, Taylor [174] makes a case for requiring data justice, based on the three
pillars of (in)visibility, (dis)engagement with technology, and anti-discrimination.

Transparency is an important factor for individuals affected by decisions of an
AI system. Transparency of a decision making process allows a user to actually
inspect and understand why a specific decision was made, which ultimately also
allows the developers of such systems to more easily check for discrimination.
This feature can also be a legal requirement. The European Union states in the
General Data Protection Regulation [69] (effective since 2018) that “[the user]
should have the right [. . . ] to obtain an explanation of the decision reached after
such assessment [. . . ]”, hence stating a right to explanation for the affected users.
In the U.S.A., the Equal Credit Opportunity Act [191] states the same right for
the credit system. Creditors must provide specific reasoning to the applicants
for why a credit action was taken. The European Union identifies accountability
and transparency as tools to reach fairer systems [65].

Unfortunately, in current practice many of the popular machine learning
algorithms such as neural networks [84] or random forests [34], provide only
blackboxes. This is on one hand a transparency issue, as the concrete process
of how the system derived a decision is unknown. On the other hand this also
impacts accountability, as it is harder to prove true discrimination inside an al-
gorithm (although statistical measures as listed in Section 5 can still be tested
for). There was and is a lot of research conducted concerned with symbolic
learning for interpretability such as neural-symbolic integration [11, 79, 95] or
explainable AI systems which can deliver an explanation for their decision pro-
cess [56,90,100,139,158,196].

Another addition to this topic is recourse by Ustun et al. [192], which denotes
the ability of an individual to change the output of a given, fixed classifier by
influencing the inputs. This can be understood as the ability of an individual
to adapt it’s profile (i.e., its feature vector) in such a way, that the favourable
outcome is guaranteed. While this does not imply transparency or accountabil-
ity and vice-versa the authors emphasise that this gives some kind of agency
to the individuals which hence could increase the perceived fairness of the algo-
rithms [31]

10.2 Ethics and the Use of Protected Attributes

While AI offers a broad range of different ethical problems (e.g. AI warfare [88],
AI and robot ethics [37,89,128], harms via unethical use [183], or accountability
of autonomous systems [63]), we restrict this section only to the ethical questions
regarding application of machine learning for decision processes over individuals.

Goodall [83] discusses whether an autonomous vehicle can be programmed
with a set of ethics to act by. As an example they consider a vehicle having
to decide whether to hit a pedestrian or swerve around and hence cause other
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kind of property damage. The vehicle’s system could factor in the estimated
financial cost of hitting the pedestrian and weight against the estimated property
damage. Assuming the vehicle does the first estimate over historical data of civil
settlements in the respective neighbourhood, this could lead to a higher crash risk
of pedestrians in poorer areas, where lower settlements might be more common.
The vehicle would then discriminate against social status. Keeping in mind that
the neighbourhood may be correlated with race, this can also lead to racial
discrimination.

In “The Authority of ‘Fair’ in Machine Learning” [170], Skirpan and Gorelick
discuss whether the employment of decision making systems is fair in the first
place and propose three guiding questions for developers to take into account,
and hence to take more responsibility for the implementation. The proposed
questions are whether it is fair to implement the decision system in the first
place, whether a fair technical approach exists, and whether it provides fair
results after it has been implemented. While the latter two questions correspond
to methods covered in Sections 5 to 8, the first question poses another problem
not yet covered: how do we determine whether the employment of an automated
decision system is fair in the first place?

This is related to the feature selection for the task at hand: are the features
upon which the decision shall be conducted a fair set? The answer to this begins
with whether protected attributes should be considered as features or not, which
still remains a topic of open discussion. As already pointed out, inclusion of the
protected attributes into the feature set might not always legally feasible. A
notable exception from the law is business necessity [15], i.e. an employer can
prove that a decision over a protected attribute is actually justified in context
of the business.

Dwork et al. [59] argue that consideration of the protected attribute “may
increase accuracy for all groups and may avoid biases”, yet constrain this to cases
in which inclusion is “legal and ethical”. This is in line with the results of Berk et
al. [23], which reported better overall results by taking race into account in their
experiments. Žliobaitė [212] argued that a model which considers the protected
attribute would not treat individuals with otherwise identical attributes similar
and hence would practice direct discrimination. However, he still emphasises
that utilising the protected attribute still aids in enforcing non-discrimination.

A generalisation of this to the fairness of the whole feature selection problem
is the notion of process fairness proposed by Grgić-Hlača et al. [87], where the
users are given some kind of agency over the employed features. Proposed are
three notions of process fairness: feature-apriori fairness, measuring the percent-
age of users which assume a given feature to be fair without further knowledge,
feature-accuracy fairness, measuring the percentage of users which assume a
given feature fair given the information that it increases accuracy, and feature-
disparity fairness, considering the percentage of users which assume a feature
to be fair even if it creates disparity in the prediction. Employing a study to
find a process-fair feature set before the predictor is implemented might lead to
predictors which are perceived as more fair in the eyes of affected individuals.
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Process fairness allows for affected individuals to decide themselves whether the
protected attribute (any attribute, really) is unfair or not.

Overall, ethics questions do not only concern the machine learning commu-
nity but software engineering as a whole. The IEEE Global Initiative on Ethics
of Autonomous and Intelligent Systems published their vision for an ethically
aligned design [176] in which they discuss general principles and methods towards
an ethically responsible use of AI systems for increasing human well-being. While
this includes topics of fairness, accountability, and transparency, the article spans
over topics such as human rights, data agency, or awareness of misuse as well.
Aydemir and Dalpiaz [9] proposed a set of seven research questions to formulate
a roadmap towards ethics-aware software engineering. The proposed research
includes characterising relevant ethics issues for software development and cor-
responding notations and models, as well as determining analysis and verification
approaches to show that software keeps to imposed ethics specifications.

10.3 Critiques and Perspectives on Current Practices

As already indicated above, one of the main concerns for training a fairness-
aware classifier is the data it is trained on. Friedler et al. [75] have shown in their
study that the eventual fairness of the trained systems is strongly dependent on
the initial data split, as demonstrated by their cross-validation approach. This
indicates that fairness methods “[are] more brittle than previously thought”, as
stated by them. In their conclusion, they provide three recommendations of
how to approach future contributions to the fairness research to increase quality
and close possible gaps. These recommendations are: emphasising pre-processing
requirements, i.e. providing multiple performance metrics if the training data
can be processed in different ways, avoiding proliferation of measures, i.e. new
notions should be introduced only if fundamentally different than existing ones,
and accounting for training instability, i.e. providing performances on multiple
training splits. Hence, they provide a means for more robust result replication
for readers of such papers, as well as a more unified ground of comparison of
provided performances between different papers.

A similar critique was given by Gebru et al. [80], who criticise the missing
documentation of datasets used in machine learning. They propose a unified ap-
proach to give crucial information, answering questions such as why a dataset was
created, by whom it was funded, whether pre-processing took place, or whether
affected individuals knew about assembly of their data into the set. Ambition
is also to have a protocol for potentially protected attributes or correlations a
dataset user should be aware of.

Žliobaitė [211] points out the need of a unified theory on how to assess fair-
ness, as it is hard to argue whether a system is fair or not, as it depends on
the choice of fairness conditions which partially contradict each other. A further
problem he considers is that most solutions are targeted at a specific fairness
notion tied to a specific set of machine learning algorithms. He thus proposes
three research tasks which build upon one another: consolidated algorithmic
fairness measures, empirical and theoretical analysis of how an algorithm can
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become discriminatory, and fairness-aware optimisation criteria. Another point
he emphasises is the need of interdisciplinary research. The machine learning
community’s primary goal is not to decide which attributes are to be predicted
but rather to implement a solution for non-discriminatory decision procedures
given a set of already determined predicted attributes. For the decision on pro-
tected attributes and in which areas it is to be employed, the expertise of the
law and social sciences is strictly necessary [211].

Similarly, Barocas et al. [13] list five areas of concern for a fairness-aware
research agenda: determining whether a model exhibits objectionable bias, in-
creasing awareness of the subject matter, improvements to transparency and
control of algorithmic decision procedures, studying fundamental sources of un-
fairness in the whole machine learning pipeline, and supporting interdisciplinary
scholarship.

Regarding the machine learning part, it appears that the common notion
will converge towards a unified process framework for fairness-aware predictors,
which enhances the common machine learning pipeline by further pre-processing
and evaluation steps. This presumably would span the monitoring and justifica-
tion of the initial data collection techniques, study-driven feature development,
application of a fairness-aware algorithm in the sense of Sections 6 to 8 and
rigorous evaluation thereof, a (preferably externally conducted) auditing of the
processes for achieving the predictor, a formal justification as of why these sys-
tems can be assumed to act in a non-discriminatory manner, as well as an ac-
companied documentation of the whole process s (which is preferably open to
the public). A formal definition of such a framework is of course non-trivial and
under our current understanding certain steps are even application dependent.
For instance, how much agency should be given to affected individuals during
feature development? While giving more agency to the people over how they will
finally be treated is overall a noble and desirable goal, the question arises how
fair or ethical this level of agency is for the overall population. How much agency
should a criminal have regarding his recidivism scores? How much agency should
an applicant hold over how credit actions are determined for them?

The Need for Proof. We conclude this survey by pointing into another direc-
tion, which should be considered in future research. While most fairness eval-
uations are based on the performance on a designated test-set, the problem
arises whether the test-set is a good representation of the eventual individuals
over which the predictions are conducted. If not, there are no strong guaran-
tees whether the system will act reliably fair in real-world scenarios. A formal
proof of system-fairness would need to be conducted to show real fairness of a
predictor, independent of training and test set.

McNamera et al. [136] presented an approach of provably fair representation
learning. However, while being a big step into the right direction and proving
that the inferred representation function indeed provides fair results, this proves
are still restricted on probability guarantees over the test set.
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Tramèr et al. [181] referred to unfairness in predictors as fairness bugs or
association bugs. In a sense, labelling discriminatory misbehaviour as bugs cap-
tures the problem quite well. It further allows us to look into other computer
science areas where the absence of bugs, i.e. the absence of programmatic misbe-
haviour, is crucial: safety-critical systems. Here, programs need to be rigorously
proven in a formal, mathematical manner, before they are put into production.
A means to do this are formal methods [78,197].

Proof of machine learning algorithms (with a focus of guaranteed safety)
is part of recent and current research. For instance, it is known that image
detection neural networks can be manipulated in their output by simply chang-
ing certain pixels in the input, unnoticeable for the human eye [140]. As re-
action, the community started to develop proof techniques to verify that the
expectable input space of neural networks is safe from such adversarial pertur-
bations [103, 115, 123, 199]. Proof-carrying code [71, 94, 144] is a mechanism in
which a piece of software is bundled with a formal proof which can be redone
by the host system for verification purposes. This could be used for the afore-
mentioned unified framework so that the prediction model ultimately is always
accompanied with its formal proof of non-discrimination. A similar idea was
presented by Ramadan et al. [156], who outlined a UML-based workflow which
allows for automated discrimination analysis.

If we relate discrimination to software bugs and fairness to software safety,
the intersection of the formal methods community and the fairness community
could actually give field to novel perspectives, algorithms, and applications which
ultimately can benefit not only both research groups, but also the individuals
affected by a more and more digital world, which we shape together to be safer
and fairer for everyone.

References

1. Adebayo, J., Kagal, L.: Iterative orthogonal feature projection for diagnosing bias
in black-box models. arXiv preprint arXiv:1611.04967 (2016)

2. Adebayo, J.A.: FairML: ToolBox for diagnosing bias in predictive modeling. Mas-
ter’s thesis, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cam-
bridge, MA 02139, United States (2016)

3. Adler, P., Falk, C., Friedler, S.A., Nix, T., Rybeck, G., Scheidegger, C., Smith,
B., Venkatasubramanian, S.: Auditing black-box models for indirect influence.
Knowledge and Information Systems 54(1), 95–122 (2018)

4. Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., Wallach, H.: A reductions
approach to fair classification. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 80, pp. 60–69. PMLR, Stockholmsmässan, Stockholm Sweden (10–
15 Jul 2018)

5. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules.
In: Proceedings of the 20th International Conference on Very Large Data Bases.
VLDB ’94, vol. 1215, pp. 487–499. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1994)



50 J. Dunkelau et al.

6. Ahlman, L.C., Kurtz, E.M.: The APPD randomized controlled trial in low risk
supervision: The effects on low risk supervision on rearrest. Philadelphia Adult
Probation and Parole Department (Oct 2008)

7. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: There’s software
used across the country to predict future criminals. and it’s biased against blacks.
(May 2016)

8. Arrow, K.: The theory of discrimination. Discrimination in Labor Markets 3(10),
3–33 (1973)

9. Aydemir, F.B., Dalpiaz, F.: A roadmap for ethics-aware software engineering. In:
Proceedings of the International Workshop on Software Fairness. pp. 15–21. ACM
(2018)

10. Ayres, I.: Outcome tests of racial disparities in police practices. Justice Research
and policy 4(1-2), 131–142 (2002)

11. Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration – a structured
survey. arXiv preprint cs/0511042 (2005)

12. Bantilan, N.: Themis-ml: A fairness-aware machine learning interface for end-to-
end discrimination discovery and mitigation. Journal of Technology in Human
Services 36(1), 15–30 (2018)

13. Barocas, S., Bradley, E., Honavar, V., Provost, F.: Big data, data science, and
civil rights. arXiv preprint arXiv:1706.03102 (2017)

14. Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning. fairml-
book.org (2019), http://www.fairmlbook.org

15. Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. L. Rev. 104, 671
(2016)

16. Barrio, E.D., Fabrice, G., Gordaliza, P., Loubes, J.M.: Obtaining fairness using
optimal transport theory. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings
of the 36th International Conference on Machine Learning. Proceedings of Ma-
chine Learning Research, vol. 97, pp. 2357–2365. PMLR, Long Beach, California,
USA (09–15 Jun 2019)

17. Barth, J.R., Cordes, J.J., Yezer, A.M.: Financial institution regulations, redlining
and mortgage markets. The regulation of financial institutions 21, 101–143 (1979)

18. Bechavod, Y., Ligett, K.: Penalizing unfairness in binary classification. arXiv
preprint arXiv:1707.00044 (2017)

19. Becker, G.S., et al.: The economics of discrimination. University of Chicago Press
Economics Books (1957)

20. Bellamy, R.K., Dey, K., Hind, M., Hoffman, S.C., Houde, S., Kannan, K., Lohia,
P., Martino, J., Mehta, S., Mojsilovic, A., et al.: AI Fairness 360: An extensible
toolkit for detecting, understanding, and mitigating unwanted algorithmic bias.
arXiv preprint arXiv:1810.01943 (2018)

21. Bendick, M.: Situation testing for employment discrimination in the United States
of America. Horizons stratégiques (3), 17–39 (2007)

22. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence
35(8), 1798–1828 (2013)

23. Berk, R.: The role of race in forecasts of violent crime. Race and Social Problems
1(4), 231 (Nov 2009)

24. Berk, R.: Criminal Justice Forecasts of Risk: A Machine Learning Approach.
Springer Science & Business Media (2012)

25. Berk, R., Heidari, H., Jabbari, S., Kearns, M., Roth, A.: Fairness in criminal
justice risk assessments: The state of the art. Sociological Methods & Research
(2018)

http://www.fairmlbook.org


Fairness-Aware Machine Learning 51

26. Berk, R., Sherman, L., Barnes, G., Kurtz, E., Ahlman, L.: Forecasting murder
within a population of probationers and parolees: a high stakes application of
statistical learning. Journal of the Royal Statistical Society: Series A (Statistics
in Society) 172(1), 191–211 (2009)

27. Berkovec, J.A., Canner, G.B., Gabriel, S.A., Hannan, T.H.: Race, redlining, and
residential mortgage loan performance. The Journal of Real Estate Finance and
Economics 9(3), 263–294 (1994)

28. Berliant, M., Thomson, W., Dunz, K.: On the fair division of a heterogeneous
commodity. Journal of Mathematical Economics 21(3), 201–216 (1992)

29. Beutel, A., Chen, J., Zhao, Z., Chi, E.H.: Data decisions and theoretical impli-
cations when adversarially learning fair representations. In: Proceedings of 2017
Workshop on Fairness, Accountability, and Transparency in Machine Learning.
FAT/ML (2017)

30. Biddle, D.: Adverse Impact and Test Validation. Gower Publishing, Ltd., 2 edn.
(2006)

31. Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., Shadbolt, N.: ‘it’s reduc-
ing a human being to a percentage’; perceptions of justice in algorithmic decisions.
In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Sys-
tems. p. 377. ACM (2018)

32. Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to
computer programmer as woman is to homemaker? debiasing word embeddings.
In: Advances in neural information processing systems. pp. 4349–4357 (2016)

33. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression
trees (1984)

34. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (Oct 2001)
35. Brescia, R.H.: Subprime communities: Reverse redlining, the fair housing act and

emerging issues in litigation regarding the subprime mortgage crisis. Albany Gov-
ernment Law Review 2, 164 (2009)

36. Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in
commercial gender classification. In: Proceedings of the 1st Conference on Fair-
ness, Accountability and Transparency. Proceedings of Machine Learning, vol. 81,
pp. 77–91. PMLR, New York, NY, USA (2018)

37. Burton, E., Goldsmith, J., Mattei, N.: Teaching AI ethics using science fiction.
In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence
(2015)

38. Calders, T., Kamiran, F., Pechenizkiy, M.: Building classifiers with independency
constraints. In: 2009 IEEE International Conference on Data Mining Workshops.
pp. 13–18. IEEE (2009)

39. Calders, T., Verwer, S.: Three naive bayes approaches for discrimination-free clas-
sification. Data Mining and Knowledge Discovery 21(2), 277–292 (2010)
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210. Žliobaitė, I.: On the relation between accuracy and fairness in binary classification.
In: The 2nd workshop on Fairness, Accountability, and Transparency in Machine
Learning (FATML) at ICML’15 (2015)
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