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Abstract. The common formal methods workflow consists of formalis-
ing a model followed by applying model checking and proof techniques.
Once an appropriate level of certainty is reached, code generators are
used in order to gain executable code.
In this paper, we propose a different approach: instead of generating
code from formal models, it is also possible to embed a model checker or
animator into applications in order to use the formal models themselves
at runtime. We present the enabling technology ProB 2.0, a Java API to
the ProB animator and model checker. We describe several case studies
that use ProB 2.0 to interact with a formal specification at runtime.

1 Introduction

When designing safety-critical software, the use of formal methods is highly rec-
ommended [13] to ensure correctness. This is often done by combining (manual
and automatic) proof with model checking.

Once a formal model has been found to be correct, it is required to translate
the model into a traditional programming language. Low-level formalisms are
usually close enough that code can be generated easily. When using high-level
formalisms though, the model has to be gradually refined to an implementation
level so that it only uses a restricted version of the specification language, dis-
allowing high-level constructs which require, e.g., constraint solving techniques
or unconstrained memory for execution. The alternative to code generation is
manual implementation, which is known to be error-prone.

In this paper, we investigate another approach: we assume that a high-level
specification is written to be executable, in the sense that a tool like an animator
or model checker is able to compute all state transitions. Can we then imple-
ment a program interfacing with, e.g., a model checker that also simulates the
environment and executes the model by choosing a traversing transition?

This paper is a mixture of a position, tool and application paper: in the follow-
ing, we briefly introduce two high-level specification languages, B and Event-B,
as well as ProB, an animator and model checker for these languages. Afterwards,



we present the enabling technology ProB 2.0, a Java API for interaction with
ProB in Section 2. Following, we evaluate our approach by implementing and
discussing several new case studies based on ProB 2.0 in Section 3, summarising
its use in existing industrial applications and insights gained from implementa-
tion work. Finally, we argue for using formal models as runtime artefacts and
discuss similar approaches in Section 4.

1.1 B, Event-B and ProB

Both B [3] and its successor, Event-B [2], are state-based specification languages
that allow for high levels of abstraction. They are based on Zermelo-Fraenkel
set theory with the axiom of choice [17,18], using sets for data modelling. Fur-
ther, they make use of generalised substitution for state modifications, and of
refinement calculus [4,5] to describe models at different levels of abstraction [9].

The highest level of abstraction includes, besides set theory, formulation of
quantified formulae over arbitrary domains, functional composition and lambda
expressions, as well as non-deterministic assignments1.

In the following, we describe several projects that make use of ProB [33],
an animator and model checker for both B and Event-B. Its core is developed
mainly in SICStus Prolog [11], with some parts being implemented in C and
Java, and makes use of co-routines and SICStus’ CLP(FD) library [10]. Besides
B, ProB offers support for several other formalisms as well, including TLA+ [30]
(via translation to B [22]), Z [42,38], CSP [25,8] and more. Hence, the approach
discussed in this article is immediately applicable to languages other than B and
Event-B.

2 ProB 2.0

As ProB is written in Prolog, which admittedly is neither the most popular
nor the easiest language to pick up, it is hard for formal method experts to
use anything but the default animation and model checking capabilities. Thus,
a main design goal of ProB 2.0 was to offer access to the API of ProB via
a scripting language that allows easy embedding of domain specific languages
(DSLs). For this, we picked and embraced Groovy, a dynamic programming
language running on the JVM, which is (almost) a superset of Java. ProB 2.0
is available on GitHub2.

A general overview of ProB 2.0 is given in Fig. 1. For each B model that is
interacted with, an instance of the ProB-CLI (command line interface), which
actually loads the model, is started in socket-mode. This means that the ProB-
CLI listens on a socket for commands to execute whitelisted Prolog code. The
whitelist offers fine-grained access to ProB’s constraint solving, animation and
model checking capabilities as well as ProB’s preferences and machine compo-
nents.

1 Cf. https://www3.hhu.de/stups/prob/index.php/Summary_of_B_Syntax
2 https://github.com/bendisposto/prob2
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Fig. 1: Overview of the ProB Ecosystem

Each command on the whitelist has a corresponding implementation in ProB
2.0. This offers an API that is fairly low-level and intended for ProB and ProB
2.0 developers. It is complemented by a high-level API that is built on top and
abstracts away from ProB’s internals in Prolog. The high-level API allows easy
animation of the model, exploration of the state space, solving custom constraints
over the variables in the state space, or registration of listeners subscribed to
custom formulae which are notified once a new state is reached.

The State Space acts as the central interface to the ProB-CLI. It is a repre-
sentation of the underlying labelled transition system. Exploring the state space
by executing operations adds transitions and newly encountered states. It allows
animation of the model, evaluation of predicates in arbitrary states, extraction
of states that match a given predicate, and, in general, execution of arbitrary
ProB 2.0 commands.

The Model is an in-memory version of the loaded B machine. ProB 2.0 offers
convenient access to the contents of the specification. This includes invariants,
variables, operations and their preconditions, etc. Upon that, it is possible to
expand on loaded machines by adding further invariants or operations, resulting
in a dynamically altered version with stricter semantics [14].

The Trace keeps track of the path throughout the state space starting from the
initialisation of the machine. Traces behave like a browser history in the sense
that they are append-only, but it is possible to “go back in time” and start a
new fork. Executing an operation during animation automatically appends the
successor state to the currently active trace.

The State objects are linked to their corresponding state space. They store
outgoing transitions as well as map abstractions of variables and formulas to
abstractions of values. For example, it is possible to retrieve the value of a given
state variable but also to add expressions and predicates which are automatically
evaluated in every state and are kept track of.
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Value Translation is required to give a meaningful representation to the values
of state variables. By default, ProB provides a string representation of each
value to ProB 2.0. However, they can be translated into Java data structures as
well: For example, B integers are translated into BigIntegers, B sets correspond
to Java sets and sequences to Java lists. Naturally, this translation does not
work for infinite sets. To avoid duplication of the entire state space in ProB
and ProB 2.0, only up to 100 states are cached in Java. If a non-cached state
is required, it is retrieved via a handle (a unique state ID) from the ProB-CLI.

Trace Synchronisation is a tool that is provided by ProB 2.0. It allows coupling
of multiple traces, even on different machines. One example is that a refined ma-
chine is synchronised with a more abstract version upon the shared operations, in
order to ensure that it is a valid refinement. Another example is synchronisation
of two entirely different machines that are two components in a system.

3 Examples

In this section, we describe different use cases based on several examples. The
first couple of examples we discuss are student projects implementing two well-
known games: Pac-Man and Chess. Additionally, the approach found use in two
more complex projects, namely a timetable planner for university courses, and
a safety critical, industrial application for the ETCS Hybrid Level 3 concept.

In all four examples we use the state that is translated into Java data struc-
tures in order to provide an (interactive) visualisation.

3.1 Real-Time Animation: Pac-Man

Our first example application is based on a formal model of Pac-Man3.

The formal model itself is written in Event-B. It specifies all valid positions on
the board that the Pac-Man and the ghosts can be in. There are state transitions
that describe valid moves, though in the model itself ghosts are allowed to turn
around. The model also manages the duration and targets of super pills (so that
ghosts may be eaten, but only once per pill), and encounters of the Pac-Man with
pills and ghosts. Finally, it keeps tracks of the Pac-Man’s lives and deadlocks the
game once none of Pac-Man’s lives are left. It is possible to play a turn-based
version of Pac-Man in the animator.

Note that the model is non-deterministic in the sense that there are multiple
available operations, one for each direction the Pac-Man and each ghost may
move.

Additional to the model, we implemented a plugin in ProB 2.0 that allows to
play the game via traditional controls instead of executing transitions by clicking
in the operation view. On the press of an arrow key, the following actions happen:

3 Available at: https://github.com/pkoerner/EventBPacman-Plugin
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Fig. 2: Architecture of a Pac-Man Game Based on a Formal Model

– In the current state, it is evaluated whether the Pac-Man may move into that
direction and the operation to move him is executed if allowed. Operations
that result in eating a pill are preferred. This yields a new Trace object.

– For each ghost, it is evaluated whether enough time has passed to leave the
monster pen. If so, the transition to move the ghost in a direction mandated
by a heuristic is executed. New Trace objects are generated for each ghost
and are extended by the next movement operation.

– It is verified whether the Pac-Man or some of the ghosts have to jump to
the other side of the board via the tunnel. If the operation is enabled, it is
executed.

– If available, operations that catch a ghost or the Pac-Man are executed.
– The GUI inspects the current state of the Trace and updates based on the

new state values. The positions of the ghosts and the Pac-Man, the remaining
pills, the score and the amount of remaining lives are extracted from the
animation state.

For this kind of application, as the calculation of the next-state function
is very fast, we did not encounter any performance issues when executing the
model. We found that, even though the visualisation is in Java, depending on
the operating system and JDK implementation, the game can run smoothly or
just below acceptable performance4. Yet, we find it especially note-worthy that
it is indeed possible to create real-time applications that depend on user input
based on formal models, as at least five events per tick are executed, one to move
the Pac-Man and four to move the ghosts. Plain animation in ProB could not
capture this, instead it would turn Pac-Man into a turn-based game.

4 On a Mac, it runs smoothly. On more powerful Linux PCs, it runs with stutters. We
suspect that the socket communication is slower depending on the OS.
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Main Contribution: Real-Time Animation The Pac-Man case study shows
that our approach is feasible for real-time applications as long as the computation
of successor states is reasonably complex. The application is able to timely react
to user input, directly embedding the formal model in the application does not
lead to a noticeable performance decline.

Lessons Learned: Non-Determinism The case study made obvious that it
is hard to get the amount of non-determinism right. The formal model itself
has to incorporate certain aspects non-deterministically, e.g. we have to take
into account every key the player might press. Simultaneously, the model has
to be as deterministic as possible. As at least the ghosts are to be moved au-
tomatically, the computer controlled aspects of Pac-Man have to be modelled
deterministically in order to avoid ambiguity and to avoid having to implement
how to decide between different options.

3.2 Predicting the Future: Chess

In the chess example5, we have two use cases. Firstly, we want two (human)
players to be able to play against each other. Secondly, a (simple) chess AI
should be available to play against.

As with Pac-Man, we use the formal specification in order to specify the rules
of the game. The model offers all valid moves as enabled actions, checkmate is
encoded as an invariant violation. Then, we can use the vanilla ProB animator
to play chess (preferably with an additional visualisation of the current state).

The more interesting part is that an AI is hard to specify but somewhat easy
to implement. Thus, the AI was written in Java using ProB 2.0: we implemented
a Minimax algorithm with alpha-beta pruning [27]. The calculated tree has the
current state at its root and its children are the successor states representing
all valid turns by the AI. Their children again are their corresponding successor
states where each state represents a turn by the human player and so forth. For
termination, we limit the depth of the state space that should be explored, i.e. the
amount of turns the AI is able to look ahead. Hence, this depth determines the
AI’s strength.

The Java side hereby is responsible for two things. It decides which child
states need to be expanded and picks the most beneficial action for the AI
opponent based on the explored game tree. Fig. 3 visualises the execution. After
the user’s turn, the state space is explored, uncovering all possible courses the
game could take. Then, the best action is chosen and the current chess state is
updated accordingly. Note that the calculation of successor states happens on
ProB side, as the game logic is fully implemented in B.

In order to assign a weight to each state, we use a more sophisticated eval-
uation function that only depends on a single state. It incorporates both the
amount of pieces on the board and their positions and is also specified in B.

5 Available at: https://github.com/pkoerner/b-chess-example
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Fig. 3: Architecture of Chess Based on a Formal Model

Then, after checking states until a given depth, the turn suggested by Minimax
is picked for the opponent. This strategy is very similar to bounded model check-
ing [6], though execution is kept explicit instead of resorting to symbolic means.
However, regarding this chess implementation we are not particularly concerned
with violated invariants other than for identifying a checkmate state (which the
AI accounts for). Instead, all possible outcomes are generated via execution of
the model. Afterwards, a trace is chosen based on its Minimax value, eventually
leading to an action that guarantees the most favourable outcome.

This case study offers worse results than Pac-Man. Due to the state space
explosion caused by the sheer amount of possible moves, generating all successor
states as deep as required by a strong chess engine is infeasible. An implementa-
tion in, e.g., plain C or Java is orders of magnitudes faster. Modern chess engines
usually make use of additional heuristics, and opening and end game databases
in order to improve performance. Using our approach following a somewhat naive
implementation, only a small part of the state space from a given board position
can be generated in reasonable time, which results in the AI being a rather weak
opponent.

Main Contribution: Game-driven Model Exploration In this case study,
we replaced the common exploration strategies of ProB (breadth-first, depth-
first and random) by an exploration strategy based on the current state of a
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game. The Minimax algorithm is used to drive the model checker, with the aim
of expanding the most promising states, rather than exhaustively analysing the
state space. Hence, we were able to implement a heuristic-based model checking
approach.

Although ProB offers support for directed model checking [32] with a cus-
tom heuristic function already, our game-driven model exploration offers a huge
advantage. Specifying an exploration heuristic in B is limited to the closed world
of the calculated state. For each state the heuristic provides a value after which
it is sorted into a priority queue. It is not possible to argue about the heuristic
values of, e.g., sister nodes in the search tree. By animating the model externally
in ProB 2.0 however, we are able to do exactly that: comparing heuristic values
of different nodes to decide which states do not need to be explored further by
alpha-beta pruning.

Lessons Learned: Model Complexity Fully encoding all possible moves on
a chessboard has lead to a model that is very complex and features a very large
state space. Even though our traversal strategy avoids exhaustively expand-
ing it, debugging and partial exploration were extremely difficult. Furthermore,
the high complexity prevented our proof efforts. Further investigation into a
refinement-based implementation of chess might help to overcome the difficul-
ties.

3.3 ProB as a Constraint Solver: PlüS

PlüS6 is an application for planning university timetables [40,41]. The goal is to
show that it is possible for students to finish their studies in legal standard time
for all courses or combinations of major and minor subjects. If a course or a
combination is found to be infeasible, the smallest conflicting set of classes and
timeframes should be provided such that it can be fixed manually. This process
is started from the current timetables. Complete re-generation of timetables is
avoided due to informal agreements, e.g., lecturers prefer given timeslots or are
unavailable on certain days.

A database stores information about all courses, e.g., for which subject they
can be attributed, whether they are mandatory or if other courses are required
to be completed beforehand. From this database, a B model is compiled. This is
included in another B machine that allows checking for feasibility of a subject,
move lectures etc. from one time-slot to another and to calculate the unsatisfiable
core if applicable.

The formal model is the foundation for a GUI in JavaFX. The initial state is
the initial timetable setup. Each course and combination can be checked individ-
ually, which triggers the state transition that checks feasibility. If the B model
returns that there are conflicts, they are highlighted in the GUI. Then, the user
can move courses to different timeslots and re-calculate. This is done via drag-
and-drop and, again, triggers the corresponding operation in the B machine.

6 Available at: https://plues.github.io/en/index/
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If a course works out with the current scheduling, the state variable that rep-
resents the timetable is used to generate PDF files containing a default timetable
that can be given to students so they know in what semester they should attend
which courses.

In this application, the interaction with ProB is hidden from the user, i.e.,
they do not need to know about formal methods, states and transitions. It is
currently used by the University of Düsseldorf.

Main Contribution: Improving the B Eco-System PlüS was one of the
earlier projects that used ProB 2.0 extensively in the way presented. In particu-
lar, the value translator that translates B values into Java data structures, which
is used in the other case studies, was created during the development of PlüS.
Furthermore, certain shortcomings of B were identified: if-then-else statements
are only available for substitutions, but not in the predicate and expression sub-
language. Similarly, it is not possible to use let-like syntax to locally capture
values for any identifier. These have been addressed in newer versions of ProB,
which extend the syntax of B in these ways.

Lastly, it is hard to express function-like constructs that calculate values
that can be used in predicates. B offers definitions, which offer a macro system
similar to the C-preprocessor with all its shortcomings, e.g. shadowing of variable
identifiers, which are unacceptable in a formal language. Currently, we work on
a language extension for ProB that allows a more sophisticated construct to
implement pure functions.

Lessons Learned: Model Interaction Interacting with the model can be
quite cumbersome: in particular, feeding information from scratch into the model
can be slow or very complex. Instead, it is easier to generate a large model
containing all information.

Initially, the idea was to work on pure predicates without a state machine in
order to find scheduling conflicts. However, the aforementioned shortcomings in
the language resulted in large predicates with many repetitions that were hard
to debug. We found that incorporating the information into a state machine with
given operations for manipulation of the schedule is more sensible. Additionally,
this offers a simple undo-feature by reverting the trace to an earlier state.

3.4 Real Time Animation: ETCS Hybrid Level 3 Concept

We also used ProB 2.0 in an industrial project, for a demonstrator of the ETCS
(European Train Control System) HL3 (hybrid level 3) principles. HL3 is a
novel approach to increase the capacity of the railway infrastructure, by allowing
multiple trains to occupy the same track section. This is achieved by dividing
the track sections into virtual subsections (VSS). While the status of the track
sections is determined by existing wayside infrastructure (axle counters or track
circuits), the status of the VSS is computed from train position reports.
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Fig. 4: Screenshot from a video of Deutsche Bahn https://www.youtube.com/

watch?v=FjKnugbmrP4 showing a formal Event-B model in action

In this application, the formal model was used as a component at runtime
to control real trains in real time. This can be seen in Figure 4, where in the
lower center one can see the ProB 2.0 visualisation of the formal model. The
visualisation shows that two trains occupy the same occupied track section, but
occupy disjoint virtual subsections. The ETCS hybrid level 3 principles were
independently used as a case study for ABZ 2018 [23]. Due to page constraints,
we can only give a high-level overview here. More details can be found in [23].

VBF
(B)

Input
(via File)

IXL
(C)

RBC
(C)

OMS
(C)

Train
Information

Signals
Points

Modified Signals
Points

Virtual Track
Sections

Fig. 5: Architecture of the HL3 Prototype

When considering railroad tracks, they are usually divided in subsections.
On the boundaries, usually there are sensors like axle counters in order to de-
termine whether a train is occupying the corresponding subsection. The main
idea is that by using a Virtual Block Function (VBF), the capacity of existing
railroad networks can be increased. The VBF subdivides the tracks into virtual
subsections without having to install further sensors or other hardware onto the
tracks. As main part of the demonstration, the VBF was written as a B model,
managing the status of said virtual subsections.

For the overall demonstrator, the VBF was interfaced with other hardware
components:
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– an interlocking (IXL) which manages the signals and the status of the track
sections,

– a Thales Radio Block Centre (RBC) which communicates with the trains
and grants movement authorities

– and an Operation and Maintenance Server (OMS).

These three components feed information into the model via ProB 2.0 in
order to drive the formal model.

The model itself is non-deterministic. Based on the inputs from the external
sources, the corresponding operation is chosen. After updating the state of the
model, the successor state is passed to a consumer in Java that in turn sends in-
formation to the IXL, OMS and RBC. The VBF application, comprising ProB,
ProB 2.0 and the B formal model, performs well enough on a regular notebook
computer for a real-life demonstration involving the management of actual trains
on their VSS.

Though we cannot disclose the model and the application itself, the overall
architecture of the VBF demonstrator is very similar to the Pac-Man example.
The Pac-Man board can be seen equivalent to the railtrack topology, and the
Pac-Man behaves similar to trains, as they move based on external input. Instead
of only visualising the model state to the user, additionally the application reacts
to it and communicates with other components.

Main Contribution: Application Based on Model Alone The ETCS case
study fully relies on an embedded model rather than on code generation. By
doing so, it has proven our approach to be both feasible and efficient in a real-
world application. The overall development time was low when compared to
manual or automated code generation. In addition, the formal model was very
close to the HL3 natural language requirements. Changes to the requirements
and model could be quickly carried out. Indeed, the use of our demonstrator
has uncovered over 40 issues in the original HL3 principles paper, which were
corrected in the official document along with our formal model. Of course, a
fully refinement-based approach ending with code generation would be able to
prove the system correctness and hence deliver a higher level of certainty than
our approach does. However, we believe that for prototypes and demonstrators,
a model-checked and well-tested specification that is directly executed can beat
non-formal software development by a wide margin in terms of development time
and costs.

Lessons Learned: Full-Stack Debugging Workflow One important benefit
of our approach was that we could store the formal model’s behaviour in log files
and later replay these traces in the ProB animator. This allowed us to analyse
suspect behaviours, fix the HL3 specification and model, and then check that
the corrected model solved the uncovered issues by replaying the trace again.
I.e., we automatically got record and replay capabilities of debuggers as in [35].
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4 Discussion and Related Work

When thinking of executing formal specifications, one usually has animation or
code generation (cf. [20,44]) in mind. Yet, we will first discuss whether the ap-
proach itself makes sense: in the past, there has been thorough discussion [24,19,21]
whether specifications should be executable in the first place.

4.1 Soundness of Approach

Some argue [24] that formal specifications should not be executable for several
reasons:

– Proof is more important than (finite) execution,
– Forms of usable specifications are restricted,
– Executable specifications tend to be over-specified,
– Execution is inefficient.

We deliberately go against this judgement and use a formal specification
language, B, that has powerful tooling such as animators, model checkers, PO
generators, etc.

This does not mean that we disagree with these arguments; firstly, we find
formal proof to be very important. However, we have observed that for most
formal specifications, which are more involved and are written to be executable,
it is very hard and cumbersome to discharge any proof obligation. On the other
hand, models written to be proven usually are not executable either. Yet, proof
should always be complemented by animation in order to verify that not only
the model is consistent in itself, but also describes the desired behaviour.

Secondly, B is a language that is very high-level and allows writing non-
executable specifications (as one could encode a non-decidable problem in a sin-
gle state transition). Instead, we embrace specifications an animator can handle
and execute.

Thirdly, over-specification does not seem to be an issue for our use case. An
example from [24] is a sorting algorithm. In B, this can be calculated by the
constraint solver by purely specifying the property what it means for a sequence
to be sorted. An example for a valid B predicate that can be solved by ProB
in order to yield a sorted sequence is given in Fig. 6. Note that no concrete
implementation is specified, as the problem is solved in a declarative manner.

In the typical workflow of the B-Method, a concrete implementation happens
during refinement. Thus, the writer of the specification is usually able to choose
the level of abstraction herself.

The last argument concerning performance is carefully reviewed for each of
our case studies individually in Section 3 and overall in Section 5.

Being able to execute specifications also gives rise to techniques such as
animation and model checking. Both of them have proven to be vital during
creation and debugging of a formal specification, as errors can be caught early
on.
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input = [12,−3, 42, 7] ∧ (input sequence)

output ∈ 1..size(input)→ ran(input) ∧ (type of output)

∀e ∈ ran(input) · (card(inputB {e}) = card(outputB {e}))) ∧ (keep elements)

∀i · 1 ≤ i < size(input) =⇒ output(i) ≤ output(i + 1) (ordering)

Fig. 6: Sorting Predicate

4.2 Animation

As mentioned above, animation of a formal specification is an important means
to quickly find errors by executing certain scenarios. This can either be done
manually or even replaying a given trace in an automated manner. Executing
a longer trace by hand and verifying each encountered state is correct is very
cumbersome and might be aided by state visualisations.

In contrast to the approach we presented earlier, the user interacts with
the formal model directly. This also means that all events have been chosen by
hand, even ones that should be picked by the environment. In our examples,
that includes movement of the ghosts in Pac-Man, moving the chess pieces of
the enemy and providing the input of signals, points, etc.

Another approach [37] executes several example runs on probabilistic models.
Yet, it is not possible to let an environment interact with the model itself. On
the other hand, this approach encourages non-deterministic models.

4.3 Visualisation

All the presented projects include a GUI which displays a visualisation of the
current state. State visualisation by itself is a useful tool to understand the
application state more easily and is often used during the development of a
model, debugging, and also to explain it to a domain expert.

BMotionWeb [29,28] is a tool for state visualisation based on web technolo-
gies. It also builds upon the ProB 2.0 API and allows simple interaction with
the model. The chess example from Section 3.2 uses this tool both for visual-
isation and embedding the script that controls the AI. A heavy disadvantage
however is the complex technology stack: BMotionWeb builds upon ProB 2.0
and uses Groovy, SVG, JavaScript and HTML5, where each component of the
stack may go wrong, rendering development very cumbersome.

State visualisation is not unique to the B formalisms: e.g., another tool that
allows visualisations based on web technologies is WebASM [45], which works on
top of CoreASM [16]. CoreASM is a tool that can be used to execute abstract
state machines (ASM).
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4.4 Code Generation

A more traditional approach is to generate (low-level) code based on the specifi-
cation. Translation tools usually cannot work on most constructs that high-level
formalisms have to offer, e.g. calculation of an appropriate parameter for an op-
eration, set comprehensions or solving quantifications usually require constraint
solving techniques which are infeasible to generate.

A popular implementation-level subset of B is named B0 [1,15], from which
translation into an imperative language is fairly straightforward. Many features
of the B language are missing though, including many operators on functions,
relations and sets as well as quantifications.

For B and Event-B, several code generators exist. One such code generator is
C4B which is integrated in Atelier B [15]. It allows generation of C code from the
implementation level subset of B (i.e. B0). However, refining a model of industrial
size down to B0 is a notably cumbersome task to do. Another code generator
that is capable to cope with a subset of B0 is b2llvm [7] that generates LLVM
code. A notable toolset Event-B is EB2ALL [34], which allows code generation
to several languages including C and Java.

Currently, we explore which level of abstraction is required to render it feasi-
ble to generate code from higher-level specifications [43]. Supporting more con-
structs from B that are not included in B0 might make an approach using code
generation more feasible. This work is aligned with EventB2Java [12,39] that
also translates higher-level constructs.

4.5 Other Approaches

Another formal specification language is part of the Vienna Development Method
(VDM) [26]. A well-known tool for VDM is Overture [31], which implements an
interpreter in Java. In [36], an extension to the VDM language and Overture
was presented. It allows execution of Java code from VDM specifications and, in
turn, to control the interpreter to evaluate expressions in the current state. The
goal is to add visualisation of the current state to the model and to integrate
models with legacy systems, as we did, e.g., in Section 3.4.

5 Conclusions

In this paper, we presented ProB 2.0, which offers a Java API to the ProB
model checker. ProB 2.0 renders it possible to write applications that interact
with a formal model at runtime, offering declarative programming, rapid pro-
totyping and easy debugging. Furthermore, we embedded formal models into
actual applications and investigated this approach via four different case stud-
ies. We also considered counterarguments regarding executable specifications and
re-evaluated them given the gained experiences.

Overall, we can draw the following conclusions:
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– We think that specifications can and should indeed be executable, as it allows
verification of an interpretation or an implementation against the specifica-
tion. Given a suitable high-level specification language, many counterargu-
ments such as over-specification do not hold. With a tool as presented in
Section 2 or in [36], it is possible and (often) viable to use that specification
as a library in an application, allowing embedment of declarative program-
ming into traditional, imperative programming languages.

– Development of complex components is significantly eased by the level of
abstractions a high-level specification language, such as B, can provide. In-
tegration with existing code, that may be written in other programming lan-
guages or running on different machines, is very powerful. In particular, when
re-iterating on the formal model, changes can immediately be re-evaluated
by a test scenario in the context of an entire application. Otherwise, an im-
plementation has to be changed as well, which allows introduction of new
bugs. Tool support such as model checking or animation proved to be invalu-
able to uncover errors early on which may otherwise have gone unnoticed
for a longer time.

– The main concern for real-life applications, as already stated in 1989 by [24],
is performance. Low-level applications written in traditional imperative, func-
tional or even logical programming languages can be orders of magnitudes
faster because they can work at lower levels of abstraction. Hence, for many
time-critical applications the execution of formal specifications is not the
way to go yet. However, as long as performance requirements are reason-
able (e.g., if data sets are rather small), utilising formal models at runtime
allows us to quickly deploy complex applications that can make use of the
eco-system associated with formal methods, from proof to animation and
model checking.
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