Using a Formal B Model at Runtime in a
Demonstration of the ETCS Hybrid Level 3
Concept with Real Trains

Dominik Hansen®, Michael Leuschelf, David Schneider’, Sebastian Krings®,
Philipp Kérnert, Thomas Naulin?, Nader Nayeri*, Frank Skowron!

Institut fiir Informatik, Universitit Diisseldorf!
{lastname}@cs.uni-duesseldorf.de
Thales Deutschland GmbH*
{firstname.lastname}@thalesgroup.com

Abstract. In this article, we present a concrete realisation of the ETCS
Hybrid Level 3 concept, whose practical viability was evaluated in a field
demonstration in 2017. Hybrid Level 3 (HL3) introduces Virtual Sub-
Sections (VSS) as sub-divisions of classical track sections with Trackside
Train Detection (TTD). Our approach introduces an add-on for the Ra-
dio Block Centre (RBC) of Thales, called Virtual Block Function (VBF),
which computes the occupation states of the VSSs according to the HL3
concept using the train position reports, train integrity information, and
the TTD occupation states. From the perspective of the RBC, the VBF
behaves as an Interlocking (IXL) that transmits all signal aspects for
virtual signals introduced for each VSS to the RBC. We report on the
development of the VBF, implemented as a formal B model executed at
runtime using PROB and successfully used in a field demonstration to
control real trains.

Keywords: B-Method, Animation, Model-Based Testing, ETCS.

1 Introduction & Requirements

The specification “Hybrid ERTMS/ETCS Level 3” (HL3) [1] describes a novel
train control concept, incorporating classical trackside train detection, radio-
based position reports, and train integrity information. The main difference be-
tween the HL3 concept and a solution without any trackside train detection
(pure Level 3) is that not all trains need to be equipped with an ETCS on-board
unit and a TIMS (Train integrity monitoring system). In addition, the informa-
tion from the underlying trackside train detection system can be used as fall
back to, e.g., handle degraded situations and to improve the performance.

In June 2017 the Heinrich Heine University Diisseldorf (HHU) was asked by
Thales Deutschland GmbH to contribute to a field demonstration of feasibility of
the ETCS Hybrid Level 3 principles. The call for tender was initiated by ProRail
Netherland, with a demonstration planned on a test track at the ETCS National
Integration Facility (ENIF), provided by Network Rail (UK) for December 2017.

This resulted in the present cooperation between Thales and HHU, with
additional support provided by ClearSy. The goal was to develop an executable
version of the HL3 specification, called Virtual Block Function (VBF'), which is
an add-on for the existing Thales Radio Block Centre (RBC) without adapting
the RBC core functionalities. The main idea is that the VBF partitions each
Trackside Train Detection section (TTD) into Virtual Sub-Sections (VSS). For
the RBC, the track is thus decomposed into finer grained sections compared
to the TTDs. The VBF computes the occupation status of each VSS by using
the TTD occupation status and train position reports including train integrity
information. For example, in Fig. 1 at the bottom you can see that we have
two areas each with a trackside detection device (realised by axle counters or
track circuits). The VBF knows that the left one is occupied and the right one
is free. However, for the RBC it simulates the existence of six areas and six
trackside detection devices. Based on the train position information, the VBF
can already free part of the occupied left track for following trains, enabling
higher throughput without having to install additional trackside equipment.

Radio Block Centre (RBC)
Train Position
& Integrity, OBU VSS Signal Status
[Train]\
ES]

Virtual Block Function (VBF)

TTD Status

P P
occupied [e I TTD

Interlocking (IXL)

Fig. 1. The role of the VBF (Virtual Block Function)

In the following sections, we will report on our experience building a software
product for the VBF based on a formal B model. In Section 2 we outline our tasks
and early design decisions. Section 3 provides an overview of the formal B model
and the modelling challenges, along with some ambiguities and inconsistencies
we found in the HL3 specification. Section 4 describes the architecture of VBF
software which embeds the B model. Visualisation was important in our project

and we discuss it Section 5. We conclude with discussion about practical results
and insights gained in Section 6.

2 Project Constraints & Design Decisions

Due to the strict deadline and the very short time span for the project, it was
decided to use off-the-shelf RBC and interlocking systems and use a formal B
model [2] of the VBF as an executable demonstrator. More precisely:

— The Thales RBC core was to be used as is, without modifications for HL3.
(Thales owns a product line for the RBC software to configure the generic
software to the project specific requirements).

— The interlocking was used as is, without modifications for HL3.!

— The VBF had to be developed from scratch as an add-on for the RBC,
which was to mimic an interlocking and transmits the signal aspects for the
virtual signals to the RBC. The VBF contains a VSS state machine, with
four possible states (free, occupied, unknown and ambiguous) for each VSS,
exactly as required by the HL3 specification.

The following main tasks are the focus of this paper:

T1: Providing evidence that the HL3 principles are consistent and complete to
handle possible hazards and to allow the desired operational behaviour.

T2: Implementation of the VBF as an independent software unit by supporting
the given interfaces to the other components. The implementation should be
conform to the HL3 principles.

To accomplish the first task, we decided to derive a formal B model from the
HL3 specification. The decision was based on diverse work (e.g., [3-9]) which
provided evidence that B is well suited for the railway domain. Moreover, first
experiments were very promising: in a few days it was possible to model some
simpler transitions of the HL3 specification.

For task T2, we intended to implement all interfaces (boundaries) to other
components by hand and to use a classical testing approach to ensure their
correct functioning. To reuse the formal model from task T1 for task T2, we had
three options:

1. Using the model as a template to implement the VBF core by hand.

2. Generating code from the model and combine this code and the handwritten
boundaries.

3. Executing the model at runtime by incorporating the execution engine and
the handwritten boundaries.

! Except for the TTD occupation status which has to be send from the IXL to the
VBF/RBC.

The first option would require us to maintain both the model and the code.
This could be time-consuming if there were changes to the specification (due to
feedback from ProRail, the specification was changed considerably). With the
second approach, we would have to use an existing code generator (there was no
time to develop our own) and thus have to refine our abstract B model down to
implementation level BO—also time-consuming. Concerning the third option, we
had already gained some experience of integrating PROB [10] as the execution
engine in different software products [11,12]. Given our time constraints, the
third option was the only feasible option, but it also posed the biggest research
challenge: using a formal model at runtime interacting with various hardware
and software components.

3 The Formal B Model

Below, we present some relevant aspects of our B model along with some source
code snippets. Due to space limitations we cannot cover all interesting aspects,
such as the modelling of timers and time.

3.1 Basic Datatypes

The modelling of the track was relatively straightforward, which is not surpris-
ing since B’s relations can be used to represent graphs and B provides many
convenient operators on relations and functions, which are just a special case of
graphs (see, e.g., Chapter 14 of “Modeling in Event-B” [13]).

However, for pragmatic reasons, we did not use Event-B [13] but rather clas-
sical B [2] for modelling the VBF. For example, we have modelled the VSSs,
TTDs and trains as classical B strings. For simulation and execution purposes,
we had to read topology and configuration data from XML files.The conversion
of the XML file into B data structures for the VBF model is also done in clas-
sical B using records and strings.? Finally, we have used other features, such as
machine composition and operation calls (see Section 3.2), not readily available
in Event-B.

Below, we try to give a flavour of our modelling by showing some derived
data structures for the track topology.

PROPERTIES

VSS : POW(STRING)

TTD : POW(STRING)

vsSs /\ TTD = {}

next_vss : VSS +-> VSS

vss_ttd: VSS --> TTD // maps VSS to their TTD

TTD_STATE = {free,occupied} // TTIDs only have two states
next_ttd : TTD +-> TTD

Frreeee

2 The conversion is not shown in this paper since the XML data format is proprietary.

& last_vss: TTD --> VSS

& /*@label "the last vss is part of its TTID" */
1t.(t:TTD => vss_ttd(last_vss(t)) = t)

& /*@label "a successor of a last vss is in another TTD" */
'(t,n).(t:TTD & last_vss(t)|->n : next_vss => vss_ttd(n) /= t)

For example, the next_vss constant is a partial function which links VSS
to their successor VSS. The direction of the track is thus constant for any given
execution run.® However, the direction of the track can be toggled, since the
conversion of the XML data is parameterised. Observe that we allow the IF-
THEN-ELSE to be applied to expressions and use an external B function (see
Section 6.3 in [11]) to read in the track data from an XML file.

PROPERTIES
TRACK_DATA = READ_XML("./resources/prj_ENIF_01@STR.xml")

& C_VSSSequence = DeriveVSSSequence (TRACK_DATA)

& next_vss = UNION(i, ii).(
i : dom(C_VSSSequence) & ii : dom(C_VSSSequence) & ii = i + 1
| {IF RUNNING_DIRECTION = "LEFT_TO_RIGHT"
THEN C_VSSSequence(i) |-> C_VSSSequence(ii)
ELSE C_VSSSequence(ii) |-> C_VSSSequence(i) END
)

Train Status Modelling the integrity state of trains revealed some ambigui-
ties and inaccuracies within the HL3 specification. The concept “integer” (for
a train) is used in different contexts within the specification. We try to explain
the differences with the aid of our model:

SETS
REPORTED_TRAIN_INTEGRITY

{lost_integrity, confirmed_integrity,
no_integrity_information}
; INTERNAL_TRAIN_INTEGRITY = {integer, not_integer}
PROPERTIES
TRAIN_INTEGRITY_MAPPING = {
"TRAIN_INTEGRITY_CONFIRMED_BY_INTEGRITY_MONITORING_DEVICE"
|-> confirmed_integrity,

"TRAIN_INTEGRITY_CONFIRMED_BY_DRIVER" |-> confirmed_integrity,
"NO_TRAIN_INTEGRITY_AVAILABLE" |-> no_integrity_information,
"TRAIN_INTEGRITY_LOST" |-> lost_integrity}

Every scenario in the HL3 specification only has a single linear track with trains
running in one direction. Points are not considered by the current version of the
HL3 specification and they were not required for the field tests at ENIF.

INVARIANT
registeredTrains : POW(STRING) &
& train_reportedTrainIntegrity
: registeredTrains --> REPORTED_TRAIN_INTEGRITY
& train_integrity : registeredTrains --> INTERNAL_TRAIN_INTEGRITY

According to the ERTMS/ETCS specifications [14], a train can send four
possible integrity status values within a train position report, which are rep-
resented by the domain of the constant TRAIN_INTEGRITY_MAPPING. Within
the VBF, we only need to distinguish between three, which are represented
by the enumerated set REPORTED_TRAIN_INTEGRITY. The surjective function
TRAIN_INTEGRITY_MAPPING defines the respective mapping.

Moreover, the HL3 specification defines, in Section §3.5, a further integrity
state by using the terms “integer” and “not integer” which is represented by the
enumerated set INTERNAL_TRAIN_INTEGRITY.* Yet, an unambiguous mapping
from the reported train integrity to the internal train is missing in Section §3.5.
Thus, we were forced to find a sensible interpretation; we defined the following
two conditions as triggers for the transition from “integer” to “non-integer”:

2 »

— “rain reports ‘lost integrity
— “PTD [Positive Train Detection] with no integrity information is received
outside of the integrity waiting period”

Both conditions are part of the transitions #7B and #8A [1, Section §5.1.1.6].
The change of the train length (the remaining condition of #7B and #8A) does
not affect the internal integrity status of a train but can have a consequence
for VSS states as it triggers the “train integrity propagation timer” of the VSSs
where the train is located.

The following operation manipulates the internal train integrity variable in
our model:

Train_SetIntegrityStatus(train, integrityStatus) =
PRE integrityStatus : REPORTED_TRAIN_INTEGRITY

THEN
train_reportedTrainIntegrity(train) := integrityStatus ||
IF integrityStatus=lost_integrity
THEN train_integrity(train) := not_integer

ELSIF integrityStatus = confirmed_integrity

THEN StartTimerDelta(train|->WAIT_INTEGRITY_TIMER)
|| train_integrity(train) := integer

ELSIF // no information available

train |-> WAIT_INTEGRITY_TIMER : expiredTimers
THEN train_integrity(train) := not_integer
END
END

4 The term “internal” refers to the internal state of the VBF.

However, the model checker PROB directly reported an invariant violation.
This is because a train does not register itself by a train position report, thus
the variable train_reportedTrainIntegrity is not a total function with the
registered trains as its domain. As a consequence, we had to make a further
decision by treating a train as non_integer before the VBF receives the first
position report (interpretation to the safe side). We always tried to avoid partial
functions as it would mostly introduce handling of special cases. Moreover, the
description in the HL3 specification is imprecise regarding when to start the
first “wait integrity timer”: “A ‘wait integrity timer’ runs continuously for every
train [...]” [1, Section §3.4.1.3.1]. We decided to start the timer with first train
position reported but not with the registration.

We found a further inaccuracy with regard to the integrity status in the
specification: “For an integer train the confirmed rear end location of the train
is derived from [...]” [1, Section §3.3.3.1]. Here, the term “integer train” is
used which corresponds to the internal train integrity of our model. However, in
Section §3.3.3.4 it is stated that “the confirmed rear end of the train location is
never updated by position reports with integrity status ‘Lost’ or ‘No information
available’ 7 [1, Section §3.3.3.4]. Thus, Section §3.3.3.1 of the specification should
rather start with “For a train which reports confirmed integrity” since a train
can be integer while reporting “No integrity information available”.

Train Location Another essential concept in HL3 specification is the definition
of the train location (in our case the image of the train location seen by the
VBF) which is frequently referred within the state machine transitions of the
HL3 specification. We mapped each registered train to a set of VSS within our
model:

INVARIANTS

& train_location : registeredTrains --> POW(VSS)
& /*@label The train location must not have any gaps */
11oc. (loc: ran(train_location)
=> #s.(s : iseq(loc)
& 'i,ii.(i : 1..size(s-1) => s(i) |-> s(i + 1) : next_vss)))

In most cases, we just want to know if a certain train is located on a certain
VSS. For these cases, the data structure for train_location is very convenient.
Alternatively, we could have used a relation but we prefer functions over relations
except for the next_vss constant which is frequently inverted in our model.
The order of the VSS is not incorporated into the location definition as this
information is already contained in the next_vss constant. The condition that
a train location must not have any gaps (which is not explicitly mentioned in
the HL3 specification) can also easily be expressed with the aid of this constant.

While the modelling of the train location data structures was relatively
straightforward, the updates to this variable are, in our opinion, the most un-
derspecified part of the HL3 specification. Some issues referring to the location
are:

— Minor: “As long as the TTD where the mazx safe front end is reported is free,
the train location is not extended onto the VSS which are part of this free
TTD” [1, §3.3.2.1.2]. This is imprecise as the condition should be: only if the
max safe front is reported to be on the next free TTD but not the estimated
front of the train.

— Fundamental: “[...] the train location is derived from the estimated front end
[-..] of the last position report [...] as well as from TTD information |[...].”
Is the train location only updated/changed by processing train position re-
ports (in this case the TTD information will of course be considered)? Or
does a single TTD change event without a train position report also update
the train location? We had tried both alternatives and in the end we decided
to use a train position report as the only trigger to update the train location.
(The other alternative, forced us to adapt several transitions in order to be
able to replay all scenarios of the HL3 specification.)

3.2 State Machine Transitions & Priorities

Below, we show the B translation of the state machine transition (#9A) of the
HL3 specification.

DEFINITIONS
Guard9A(vss) == vss:VSS & vss_state(vss) = ambiguous
& /*@label "(TTD is free)" */
ttd_state(vss_ttd(vss)) = free

OPERATIONS
VSS_Ambiguous_Free_9A(vss) =
SELECT
Guard9A (vss)
THEN
vss_state(vss) := free ||
// state of the virtual signal which protects the vss
vss_signalState(vss) := PROCEED ||

END

The reason for separating out the guards into DEFINITIONS (in a separate
file) is to encode the priorities of the HL3 specification. We have experimented
with various ways of encoding the priorities, and have finally pursued a solution
based on using a large IF-THEN-ELSE with the guards as conditions, calling
respective operations of a subsidiary machine. The IF-THEN-ELSE ensures that
the priorities of the transitions are respected, e.g., that transition 2A has priority
over 3. A return variable out stores the exact VSS transition taken for debugging
and analysis.

out <-- VSSUpdateStep(vss) = PRE vss : VSS

THEN
IF GuardiA(vss) THEN VSS_Free_To_Unknown_1A(vss) || out := "1A"
ELSIF GuardiB(vss) THEN VSS_Free_To_Unknown_1B(vss) || out := "1B"

ELSIF #train.(train : registeredTrains & Guard11B(vss, train))

THEN
ANY train WHERE train : registeredTrains & Guard11B(vss, train)
THEN
VSS_Ambiguous_Occupied_11B(vss, train) || out := "11B"
END
ELSE
out := "NONE"
END

END

Execution of all VSS updates in a VBF cycle is done by a B WHILE loop
calling VSSUpdateStep.

3.3 Animation of Scenarios

The HL3 document describes a number of scenarios in addition to the VSS state
machine. We used these scenarios as test specifications, i.e., to check that these
scenarios are feasible in our model (detection of inconsistencies).

To animate the scenarios with PROB, we developed an environment model
and composed it with the VBF core model (software model) to obtain a system
model. The environment model has knowledge of the “real” (physical) position
of a train, which allows it to move the train and to send train positions reports
which are inputs of the VBF. Figure 2 shows a system state where the “real”
position differs from the train position within the VBF. In this case, the physical
train has already moved to VSS21 and the VBF still sees the train in VSS12.
Note that this is a very common situation as trains usually only send its position
cyclically (e.g., each 6 seconds). Otherwise, this state can be seen as the situation
where Trainl has already sent its position report but the VBF has not yet
received it due to the delays of the communication interface.

VSS12 — VSS21 VSS22 —
[$Train1 i

Train1

‘ Occupied f
Occljpied Occupied

—TTD10 3 TTD20 —

Fig. 2. Environment Model: “physical” train position ($Trainl) vs. train position image
in the VBF (Trainl)

In summary, with the environment model it is possible to trigger all interfaces
of the VBF by generating the following inputs:

— Train position reports including train integrity information
— Train registration message

Train deregistration message

— Train data message (includes the train length)

TTD occupation status

— Movement Authorities (MA) for trains

The environment model can make use of different tracks. For example, we
used the track snippet from the HL3 specification to validate its scenarios and
used the real track for onsite execution and to define a test plan for onsite
execution.

While animating the scenarios of the HL3 specification, we detected more
issues.® One issue, which is easy to understand but hard to find without tool
support, is the following: in scenario 4 (Start of Mission / End of Mission)
at step 8, it is stated that all VSS of TTD 20 go to “unknown” because the
disconnect propagation timer of VSS 22 has expired. This is wrong because after
the deregistration of the train in step 7, the train will be immediately treated as
a ghost train and the corresponding transition #1A will apply. The result for the
remaining VSSs of TTD20 is the same but at a different point in time; the VSSs
go directly to “unknown” and not just after the disconnect propagation timer
(of VSS22) has expired. As an aside, we think that transition #1A is erroneous,
too: there should be an “and” instead of the “or” in “(no FS MA is issued or
no train is located on this TTD)”. Otherwise, a connected train (with a FS MA)
which physically enters a free TTD would always be treated as a ghost train
because the TTD occupation usually arrives before a new train position report.
In this case, the second condition “no train is located on this TTD” would be
fulfilled which would allow applying transition #1A.

Besides the validation of the scenarios, the environment model permitted us
to specify system level invariants. For example, the system state shown in Fig. 3
should never occur. Here, a physical train ($Train2), which is not connected, is
located on a VSS which is seen as “free”. The threat in this situation is that
another train (not displayed in the figure) in rear of the non-connected train
could receive a movement authority (FS MA) for VSS31 and VSS32. We were
able produce a scenario which finally led to this state caused by an invalid
stopping criterion for the ghost train propagation.®

Replaying Recorded Runs with ProB Simulations runs (with On-Board-
Unit simulators) as well as demonstration runs (with real trains) were logged by
the VBF and could be replayed in the animator. This was vital, as it allowed us
to analyse defects without inspecting (huge) RBC, IXL and Java log files. Log
replay was also used to define timer values of the HL3 specification.

5 Overall we detected more than 30 issues which we reported to authors of the HL3
specification.
% The scenario is too complex to be presented in this paper.

10

VSS23 VSS31 VSS32 VSS33
{$Train2 $Train
| | Train1

)

Occupied

Occupied

TTD30

Fig. 3. Invalid system state: Non-connected train ($Train2) is located on a VSS with
state “free”.

4 Architecture

VBF Application

External Input \dle Events System Output
Sources
N -
TTD Occupation Signal F
Aspects to

ProB Java API RBC

VBF.mch

/ \
\
TTD Occupation Operation / ‘< (B Model)
(Simulated) Dispatching \
’< VARTABLES

Ul Java FX
Visualisation

Output
Dispatching

RBC Train
Messages

Logging

LU
il fi

Fig. 4. Application Architecture

The VBF model described above is part of a larger application developed
to conduct the field demonstration. The application embeds the VBF model
using the PROB Java API [15] (often referred to as ProB2) and manages all the
model’s interactions with the outside world. The Java API exposes all of PROB’s
animation and model checking features to programs running on the Java Virtual
Machine. This approach has been successfully used in several applications that
use B models at runtime [12] and is the basis for a new PROB UI that is currently
being developed.

The responsibilities of the application are: firstly, to interact with external
input sources such as the RBC and others that provide information about the
current state of the track, of physical and of simulated trains, etc. Secondly, to
process these inputs and forward them to the model. And lastly, to act on the
newly computed state of the model to update the visualisation and send updates
to the RBC.

Figure 4 provides an overview of the application’s architecture. The external
inputs are provided via a variety of inputs, such as UDP packages, XML-RPC

11

calls, plain files, etc. These inputs represent train information from the RBC
as well as TTD information from real and simulated trains. These events are
received by the application, normalised and dispatched to the model. In case
there are no external events, the application will, after a given delay, begin
sending idle events to the model in specific intervals until it receives new external
events. These events are used to update the timers in the model and compute
an updated system state even in the absence of external events. Each type of
input event is dispatched to a corresponding operation of the B machine by
executing one guided animation step and computing a new state of the model.
From each new model state computed by PROB, we derive an application-level
state representation. This representation is based on the state variables of the
model. These variables are exposed through the PROB Java API and extracted
from the state, mapped to Java structures and used to compute the application’s
outputs. From this application-level state the signal aspect changes are extracted
and sent to the RBC. The state is provided to the visualisation layer to update
the track diagram and information tables. Lastly, the delta between two states
is logged for debugging purposes.

5 Visualisation

One requirement for the actual onsite field demonstration was to provide a vi-
sualisation for checking the correct functioning of the VBF. Additionally, our
experience has shown [16-18] that a visualisation combined with an interactive
animator can be especially useful in early stages of the development such as the
modelling and analysis stage.

Thus, our intention was to develop one visualisation that could be used in
the early stages and during the field demonstration. As a consequence, the visu-
alisation was developed as a separated software component with clearly defined
interfaces for it to be integrated both into the PROB-Animator and the final
VBF product. In both cases, the state information is extracted from the same
(core) model. The only difference is that within the PROB-Animator the model
is interactively controlled via an environment model by a user and in the final
VBF software, the model is controlled via the real interfaces of the VBF.

Having the visualisation in the early stages of the project provided the fol-
lowing benefits:

We quickly spotted mistakes in the specification and the model.

We used the visualisation to communicate the model within our team and
to the domain experts.

— We were able to replay the scenarios in the HL3 specification and detected
inconsistencies between them and the state machine description.

The visualisation enabled us to let a domain expert act as a tester by inter-
actively inspecting the model.

12

For the project, we have also developed a new feature in PROB, namely
to export an entire animation trace into an HTML file with one visualisation
per state. This feature was useful to send entire animation scenarios to domain
experts.

For the main application, we created a custom visualisation using the JavaFX
UI framework. The visualisation is linked to the B model’s state, and updates
itself as soon as a new state is provided. As such, the same visualisation could
be used as a plugin in the PROB-Animator during development.

Figure 5 shows a screenshot of the VBF visualisation running as a plugin in
the PROB-Animator.

Scale: ||+ | Valm:0826406 |RasetScals | Snapshot Lefttoright

VSS11 : VSS12 : VSS21 VSS22 : VsS23
| $Train2 $Train1
Train2 | Train1
- O b B # |
Occupied Occupied
Occflpied [Occupied
TTD10 : TTD20
o
THALES

/2018 12:24:55

=N odel HL L ModsLHLS L ENV Model HL3 200

» Statistics

e[] 9 » Verifications
Name Value ‘ Prev... ‘
« < o s @ % v [>sETS b izt
————— » CONSTANTS
» ENV. Train("Train2", 500 Y VARIABLES .
~moveTrain(*Train2", 500) ' = - - History (state 34 of 34)
» ENV_ChangeTrainLength("Train1", 30) ENV_train_estimatedFEPOsit... {(“Train1"|->...n2"[->15600)} {("...}}|

ENV._train_length

» ENV_ChangeTrainLength(*Train2", 30) >5""f‘"2 ">5°‘” « ”

« < o B @

» ENV_Train_HandleTrainPositionReport("Train1", confirmed_int
Classical B Position ¥ Transiti ‘
» ENV_Train_HandleTrainPositionReport(“Train1", lost_integrity! osition ransition

ProB 2.0 B Console

» ENV_Train_HandleTrainPositionReport("Train1", no_integrity_i B> train_location

) N X X i ("TrainI®|->{"Vss21"})), ("Train2" |->{"VSS11"}) }
» ENV_Train_HandleTrainPositionReport(*Train2", confirmed_in fa> vss state

" 34 ENV_moveTrain("Tr...
(‘
e
(‘

33 — ENV_Train_Han...
32 ENV_incrementTime(5)
31 ENV_incrementTime(5)
30 ENV_moveTrain("Tra...

{("VSS11"|->occupied) , ("VSS12"|->free), ("VSS21" |->occupie
d), ("VSS22"|->free) , ("VSS23" |->free), ("VSS31"|->free), ("V

5832"|->free), ("VSS33"|->free) }
1=

» ENV_Train_HandleTrainPositionReport("Train2", lost_integrity

» ENV_Train_HandleTrainPositionReport("Train2", no_integrity_i

Everything is OK

Fig. 5. Screenshot of the visualisation running as a PROB-Animator plugin

6 Practical Results, Discussion, Conclusion

Building upon the Thales domain knowledge, the formal B model was developed
from July until the end of October (including the embedding application), with
fine-tuning performed afterwards. A first integration with the Thales RBC was
carried out in the beginning of November. The field demonstrations were carried
out in November and December 2017. The VBF demonstrator was finished on
time and on budget, and the demonstration of the HL3 principles using the
Thales RBC was successful. The VBF model (without environment) consists

13

of 13 B Machines, 14 definition files and has 45 constants and 28 variables.
The required scenarios were demonstrated, with simulated and real trains. Five
persons from HHU worked on the VBF demonstrator (two on the formal B
model, three on the boundaries and the visualisation). Also, within the project,
some PRODB extensions were developed.

PRrROB had two different roles in our project. Its first role was, as described
in Section 4, the execution engine for our B model. From the formal methods
perspective, it is interesting to note that the B model can be used to control sim-
ulated and real trains in real time. Moreover, no problems with PROB occurred
at runtime, performance and memory consumption were no issues.” In addition,
the PROB Java API turned out to be a flexible way to link a formal model to
external data sources or components.

In its second, more common role, PROB was the central tool in the validation
process of the model and specification. Animation combined with visualisation
were crucial for the success of the project, in particular to replay and validate the
scenarios of the HL3 specification. We think this approach, of using animation
and custom visualisations at every stage of development — especially the early
ones — should be more widely used for safety critical (e.g., SIL 4) projects in
industry. For example, the specification engineer can take over some work of the
testing team as he is able to interactively derive test cases from the model®,
which are much more precise and consistent compared to the description of the
scenarios contained in the HL3 specification.

From the project, we can conclude that formal models can be useful and
cost-effective for demonstrators. Animation with forward /backward stepping and
visualisation were extremely useful in the development process. We were able to
develop a complete formalisation of the HL3 specification: the B formal model
can now serve as an executable reference specification, for understanding the
HL3 principles, for deriving test cases from it or possibly to generate code using
Atelier-B.

Acknowledgements We thank Jens Bendisposto, David Geleflus, Christoph Hein-
zen, Antonia Piitz, Yumiko Takahashi, Fabian Vu and Michelle Werth for all the
work that went into the PROB Java API and the new PROB-Animator Ul. We
thank Mirko Aigner, Stefano Allrath, Burkhard Borner, Joachim Jost, Editha
Nentzl, Sebastian Neuhau, Michael Schilling, Wilfried Seibt, Tom Seidel and
Tino Wegner from Thales as well as the staff from ClearSy for their work and
support on the demonstrator. Moreover, we are thankful to the authors of the
HL3 specification and the reviewers of ABZ for their useful feedback.

" For example, in one 6-minute run PROB’s response time was — with one exception —
between 0.03 and 0.14 seconds per event. One event required 0.31 seconds, possibly
due to garbage collection being triggered.

8 Note that we talk here about product and system level tests and not just unit tests.

14

References

1.

2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Hybrid ERTMS/ETCS Level 3. Principles Ref: 16E042, Version: 1A, EEIG ERTMS
Users Group, 123-133 Rue Froissart, 1040 Brussels, Belgium, 7 2017.
Jean-Raymond Abrial. The B-Book. Cambridge University Press, 1996.

Daniel Dollé, Didier Essamé, and Jérome Falampin. B dans le transport ferroviaire.
L’expérience de Siemens Transportation Systems. Technique et Science Informa-
tiques, 22(1):11-32, 2003.

Didier Essamé and Daniel Dollé. B in large-scale projects: The Canarsie line
CBTC experience. In Jacques Julliand and Olga Kouchnarenko, editors, Proceed-
ings B’2007, LNCS 4355, pages 252-254, Besancon, France, 2007. Springer.
Michael Leuschel, Jérome Falampin, Fabian Fritz, and Daniel Plagge. Automated
property verification for large scale B models with ProB. Formal Asp. Comput.,
23(6):683-709, 2011.

Thierry Lecomte, Lilian Burdy, and Michael Leuschel. Formally Checking Large
Data Sets in the Railways. CoRR, abs/1210.6815, 2012.

Denis Sabatier, Lilian Burdy, Antoine Requet, and Jéréme Guéry. Formal proofs
for the NYCT line 7 (flushing) modernization project. In ABZ 2012, Proceedings,
volume 7316 of LNCS, pages 369-372. Springer, 2012.

Denis Sabatier. Using formal proof and B method at system level for indus-
trial projects. In RSSRail 2016, Proceedings, volume 9707 of LNCS, pages 20-31.
Springer, 2016.

Mathieu Comptier, David Déharbe, Julien Molinero Perez, Louis Mussat, Pierre
Thibaut, and Denis Sabatier. Safety analysis of a CBTC system: A rigorous ap-
proach with event-b. In RSSRail 2017, Proceedings, volume 10598 of LNCS, pages
148-159. Springer, 2017.

Michael Leuschel and Michael J. Butler. ProB: A model checker for B. In FMFE
2003 Symposium, volume 2805 of LNCS, pages 855—874. Springer, 2003.

Dominik Hansen, David Schneider, and Michael Leuschel. Using B and ProB for
Data Validation Projects. In ABZ 2016, Proceedings, volume 9675 of LNCS, pages
167-182. Springer, 2016.

David Schneider, Michael Leuschel, and Tobias Witt. Model-Based Problem Solv-
ing for University Timetable Validation and Improvement. In FM 2015: Formal
Methods Symposium, volume 9109 of LNCS, pages 487-495. Springer, 2015.
Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

ERTMS/ETCS Baseline 3. System Requirements Specification Ref: SUBSET-026-
3, Issue: 3.0.0, EEIG ERTMS Users Group, 123-133 Rue Froissart, 1040 Brussels,
Belgium, 12 2008.

Jens Bendisposto, Joy Clark, Ivaylo Dobrikov, Philipp Koérner, Sebastian Krings,
Lukas Ladenberger, Michael Leuschel, and Daniel Plagge. PROB 2.0 Tutorial. In
Proceedings of the 4th Rodin User and Developer Workshop, TUCS Lecture Notes,
Turku, June 2013. Turku Centre for Computer Science.

Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel. Visualising Event-B
models with B-Motion Studio. In Proceedings FMICS’2009, LNCS 5825, pages
202—204. Springer, 2009.

Lukas Ladenberger. Rapid Creation of Interactive Formal Prototypes for Validating
Safety-Critical Systems. PhD thesis, University of Diisseldorf, Germany, 2017.
Lukas Ladenberger, Dominik Hansen, Harald Wiegard, Jens Bendisposto, and
Michael Leuschel. Validation of the ABZ landing gear system using ProB. In-
ternational Journal on Software Tools for Technology Transfer, pages 1-17, 2015.

15

