
ReqIF: Requirements Interchange between Business Partners• Ebert, Jastram

ReqIF: Seamless Requirements
Interchange Format between Business

Partners
Christof Ebert

1, Michael Jastram
2

1Vector Consulting Services
2Formal Mind GmbH, Universität Düsseldorf

The primary sources of project risks and product problems are poor, missing, or chang-
ing requirements. Often, the underlying root cause is insufficient collaboration between
business partners. This article provides insight into how to effectively collaborate in
requirements engineering. We describe the Requirements Interchange Format (ReqIF)
standard and technologies for seamless requirements development and management.
We look forward to hearing from both readers and prospective column authors about
this and the technologies and tools you want to know more about.

DISTRIBUTED SOFTWARE ENGINEER-
ING is the consequence of the relatively
friction-free economic principles of the entire
software industry. Software can be exchanged
easily, and collaborative development is some-
thing most students already practice today at
university. Often the supply chains aren’t even
limited to software development but might
involve hardware suppliers, which must ex-
change interface specifications to adjust their
firmware in line with operating systems or mid-
dleware.

Many companies’ engagements in supplier
relationships with distributed software engi-
neering occur because of a lack of their own
competencies—an effective work-split across
architectural functions and building blocks and
perceived cost differences. Most of these com-
panies engage globally active sourcing com-
panies for components, subsystems, and ser-
vices to achieve the fastest ramp-up of their dis-
tributed sourcing targets. With time, they real-
ize that savings are much smaller and problems
are more difficult to cure than before. Needed
changes in product features don’t arrive in time

from their suppliers, and quality issues and the
risks of insufficiently implemented functional-
ity increase with each additional supplier. Dis-
illusioned, many companies pay high prices in
their supplier management and still miss their
own deadlines or face quality penalties in tight
schedules. So what went wrong? Supplier-
relationship management and collaborative de-
velopment bear many challenges, specifically
if external suppliers have shared responsibility
on some features that architecturally overlap
with system components done by a separate
party.

From surveys across companies, we found
that the divide-and-conquer approach is espe-
cially ineffective. Requirements specify needs
and solutions. Data from the evaluated projects
showed that only 52 percent of the originally
allocated requirements appear in the final re-
leased version of the product [2, 1, 4]. We can
identify several supplier-oriented challenges:

• overlooked requirements that affect dis-
tributed functionalities;

• inadequate supplier representation dur-

Published in IEEE Software, September/October 2012, Volume29, Number 5

1



ReqIF: Requirements Interchange between Business Partners• Ebert, Jastram

ing system analyses;

• lack of communication beyond functional
requirements;

• lack of requirement inspection before al-
location to a supplier;

• failure to look at requirements across
sourced components;

• representation of requirements in the
form of designs that overrestrict the sup-
plier;

• insufficient change management with all
stakeholders along the product life cycle;
and

• needed specifications not being shared or
being shared inconsistently.

In this article, we will look to lessons
learned from collaborative requirements en-
gineering (RE) to effectively and successfully
manage relationships across several business
partners. Specifically, we will show how to
effectively manage requirements interchange.

I. Observations

Working with companies around the world
in industries such as automotive, information
and communications technology, aerospace,
medicine, industrial automation, and trans-
portation, we realize that insufficient stake-
holder management is not primarily due to
“politics” or “insufficient communication,” as
engineers often argue. Often the original equip-
ment manufacturer or product manager de-
velop requirements and then partition and dis-
tribute them to their many business partners,
such as suppliers. After the project is started,
changes will become necessary somewhere
along the way. Those are again partitioned
and distributed to business partners. When the
components finally arrive, integration is diffi-
cult and the product manager (or integrator)

realizes that there was too much room for inter-
pretation and that many engineering decisions
were taken without synchronizing across the
multiple stakeholders.

II. Requirements Exchange

between Business Partners

Requirements exchange within an organization
is rarely a problem, because most commercial
RE tools use a central data repository. Because
organizations typically use the same tool inter-
nally, this poses few problems. Things change
when the requirements leave the organization.
Business partners typically only want to reveal
a subset of the requirements to outside parties,
and might not want to open themselves directly
to the Internet or other business partners.

Document-Based Solutions

A common practice is to transfer requirement
specs in HTML, word processing documents,
or spreadsheets between buyer and supplier
[1]. These documents are primarily extracts
from RE tools. Extracting more than one speci-
fication is generally not possible. Traceability
is hard to support. The partners must agree on
a template format so that partners subscribing
to an exchange have a chance to import docu-
ments into their respective RE tools. Conflict
detection and resolution are often not possible
because most RE tools consider documents as
new imports into the database or because a
merge cannot be performed on a given view.
A common alternative, namely PDF reports,
makes it next to impossible for most RE tools
to import the requirements because most struc-
tural information is lost and only the presenta-
tion of the data is preserved.

Other approaches merely extend existing
tools with specific “bridges” to collaborate
in specific environments and to ease copy-
ing and pasting of information from one tool
to the other. For instance, major electronic

2



ReqIF: Requirements Interchange between Business Partners• Ebert, Jastram

records management (ERM) vendors evolved
their environments to support engineering doc-
ument management. Customer-relationship-
management (CRM) environments have since
integrated with change and requirements tools.
However, such IT-centric approaches don’t go
beyond interface management and don’t inte-
grate with systems and software engineering
processes. Their scope is limited to interfaces
and front-end processes.

More recently, Product Lifecycle Manage-
ment (PLM) and Application Lifecycle Man-
agement (ALM) environments include require-
ments management components or allow fed-
eration with popular requirements tools. Such
extended PLM and ALM solutions typically
allow shared data models and a common data
backbone; however, they still expect all dis-
tributed users to have the same tool.

Specific RE Tools

In general, all RE tools offer file-based capabili-
ties for archiving and restoring specifications.
An archive’s file format is proprietary to a tool
vendor and cannot be used if exchange part-
ners use different RE tools. Moreover, archiv-
ing solutions aren’t necessarily tailored to ex-
port a subset of requirements, so their usability
reduces when each partner needs a separate
view of the various subsets.

Some tool vendors do provide exchange
features based on proprietary formats and are
designed either to process a single specification
at a time or to exchange specifications with a
single partner. As we mentioned earlier, such
exchange formats don’t have wide industry
acceptance. Furthermore, tool vendors accept
the fact that customers will demand open stan-
dards for data exchange. Consider IBM’s tool
Rational DOORS. Initially, there was a com-
mercial extension available called DOORS eX-
change for exchanging requirements data be-
tween two parties. This extension has since dis-

appeared from IBM’s offering. Instead, ReqIF
(the Requirements Interchange Format stan-
dard) is now advocated as support for data
exchange. The high number of tool vendors
who participate in the ProSTEP implementor
forum1 also indicates that the area of propri-
etary exchange solutions is diminishing.

Although there are differences across com-
mercial tools in the marketplace, there are
some core features that all significant commer-
cial players offer:

Arbitrary attributes for requirements. In
most tools, requirements have an ID and text,
but users can add an arbitrary number of addi-
tional, typed attributes.

Hierarchical arrangements of requirements.
Requirements are typically presented in a hi-
erarchical structure. This presentation is often
table-like, allowing users to see many or all
attributes in columns. These arrangements typ-
ically correspond to a requirements document.

Traceability between requirements. Most
tools can establish arbitrary traces between re-
quirements, which can typically have attributes
as well (like requirements).

A tool’s value typically lies far beyond these
data structures in the form of advanced re-
porting and collaboration features. These data
structures matter, however, for achieving in-
teroperability among different requirements
tools.

Requirements Interchange Format

The requirements interchange format was
started in 2004 as a global initiative in the
automotive industry and became an Object
Management Group standard in 2011 [3]. To-
day, it’s used across many industries, making
its way to domains such as transportation, in-
dustrial automation, and medical devices. Re-

1http://www.prostep.org/en/projects/internationalization-of-the-requirements-interchange-format-intrif.html

3

http://www.prostep.org/en/projects/internationalization-of-the-requirements-interchange-format-intrif.html


ReqIF: Requirements Interchange between Business Partners• Ebert, Jastram

Figure 1: The exchange of requirements between two collaborating partners with different tools using ReqIF

qIF (formerly known as RIF) is based on XML
and defines a tool-independent exchange for-
mat that is specifically defined to represent all
important features of requirements data, in-
cluding requirements in the form of attributed
data elements, links (traces), views on the re-
quirements data, and permission data. Ad-
ditionally, text requirements can be exported
together with multimedia content such as pic-
tures or embedded documents. Containers are
also available to transport complete or partial
requirement hierarchies.

ReqIF and its practical implementation facil-
itate the single source concept of requirements
across organizational boundaries thus ensuring
consistency across different requirements arte-
facts, less defects from requirements to specifi-
cations to engineering work products, speed in
exchanging information and collaborating on
solutions, and cost reduction.

Many tools in the marketplace currently
support the previous RIF 1.2 version of the
standard. Several tool vendors plan on sup-
porting this new ReqIF by the end of 2012.

Attributes. In general terms, a ReqIF model
contains attributed requirements that are con-
nected with attributed links. The requirements
can be arbitrarily grouped into document-like
constructs, and the features of all common RE
tools can be mapped onto ReqIF without los-
ing information. In fact, the ReqIF metamodel
is so rich that established RE tools often can’t
represent all the features that the metamodel
supports. Therefore, loss-free data exchange
via ReqIF is feasible across tool and organiza-
tion boundaries.

Structure. The ReqIF data model is persisted
as XML, representing a tree structure. The
root element contains a header, tool-specific
extensions, and the actual requirements data.
The requirements data consist of a number of
relevant data elements:

• SpecObjects represent the actual require-
ments. SpecObjects themselves have no
user data—the data is provided in the
form of attributes.

4



ReqIF: Requirements Interchange between Business Partners• Ebert, Jastram

• A Specification is a hierarchical structure
referencing SpecObjects. Specifications
represent what is typically considered
the requirements document.

• SpecRelations represent directed links be-
tween SpecObjects. A SpecType is a col-
lection of AttributeDefinitions that deter-
mine which attribute values the element
can have. Supported atomic data types
for AttributeDefinitions include numeric,
string, enumeration, binary, and format-
ted text.

Note that SpecObjects, specifications, and
SpecRelations can also have SpecTypes, and
therefore attributes.

A Use Case

The ReqIF standard describes a number of use
cases. Figure1 depicts the most prominent one
and concerns the round-trip data exchange be-
tween manufacturer and supplier, and is de-
picted in Figure1.

In this use case, partner 1 exports a subset
of requirements (with a subset of attributes)
as ReqIF. Partner 2 then imports these require-
ments into his or her RE system. In that sys-
tem, partner 2 can augment the requirements
with additional attributes or add more require-
ments, even information that’s relevant to only
the supplier. It’s possible to create links be-
tween requirements in the same or different
specifications.

Once this work is done, partner 2 creates
another ReqIF export. Again, this export only
contains requirements and attributes that are
relevant to partner 1, who in turn imports it
into his or her system. Elements are matched
by ID, and the new data that partner 2 pro-
vided are updated in the correct space.

This cycle can be repeated several times.
Furthermore, the manufacturer can define a

number of exports for various suppliers and
merge them back into their database to have
all suppliers’ feedback listed side by side.

III. An Example

The Eclipse Requirements Modeling Frame-
work (RMF) [6] is the first open source clean-
room implementation of ReqIF. RMF consists
of a data core capable of reading, processing,
and writing ReqIF, and a GUI called ProR2,
which allows interactivity with ReqIF models.

RMF is designed as a generic framework
for requirements modeling and consists of an
Eclipse Modeling Framework (EMF)-based im-
plementation of the ReqIF core that supports
persistence using the ReqIF XML schema. The
core also supports older versions (RIF 1.1a and
RIF 1.2).

The GUI for capturing requirements is
called ProR (see Figure2). It operates directly
on the ReqIF data model—an advantage over
existing requirements tools, which require a
transformation between ReqIF and the tool’s
data model. Not all tools support all ReqIF
features; therefore, information might be lost
in their processes. Because ProR uses ReqIF as
the underlying data model, it’s currently the
only tool on the market that supports all ReqIF
features.

IV. Conclusion

ReqIF was started as a global initiative and is
growing fast. Today, it’s used across industries,
having initially started in automotive supplier
networks and now growing to domains such
as transportation, industrial automation, and
medical devices. Using Eclipse as the platform
for ReqIF with, for instance, ProR makes feder-
ation across tools possible, including environ-
ments such as Topcased [5] and PREEvision3,

2http://eclipse.org/rmf/pror
3http://www.vector.com/PREEvision

5

http://eclipse.org/rmf/pror
http://www.vector.com/PREEvision


ReqIF: Requirements Interchange between Business Partners• Ebert, Jastram

Figure 2: The ProR GUI is designed as an extensible application to the Requirements Modeling Framework.

thus allowing the seamless connection of re-
quirements with architecture models along the
entire product life cycle.

Needless to say that ReqIF by itself will not
solve problems entrenched in insufficient en-
gineering and management processes. There-
fore a typical introduction strategy will always
start with analyzing and improving processes
and improving product life-cycle management
– specifically the supplier interfaces – and then
proceed to using ReqIF for streamlining and
automating the collaboration in requirements

engineering and management from concept to
production and maintenance.

Our results from ReqIF and its predeces-
sor showed cost and resource savings in the
exchange between customers and suppliers.
These cost reductions resulted from improved
efficiency (that is, less manual exchange many
with small adoptions) and from less rework
due to changes and misunderstanding by shar-
ing insufficient requirements information. This
holds true specifically in time-critical stress sit-
uations, such as changes in the final phase of an

6



ReqIF: Requirements Interchange between Business Partners• Ebert, Jastram

RFP, change requests close to product delivery,
or at the start of production. When such re-
quirements changes must be quick, they often
create many defects and inconsistencies. Such
expensive last-minute defects are reduced by
exchanging traces between customer require-

ments and proposals. Therefore, such collab-
oration not only makes supplier management
more effective and less error prone, but also
tangibly and sustainably reduces cost along
the product life cycle—which, these days, is
certainly important in global competition.

References

[1] C. Ebert. Global Software and IT. Wiley-IEEE CS, 2012.

[2] C. Ebert and R. Dumke. Software Measurement. Springer, 2007.

[3] Object Management Group. Requirements Interchange Format (ReqIF), version 1.0.1.
http://www.omg.org/spec/ReqIF/1.0.1.

[4] Standish Group. What Are Your Requirements. Tech Report, 2003.

[5] M. Jastram and A. Graf. Requirement Traceability in Topcased with the Requirements Inter-
change Format (RIF/ReqIF). 1st Topcased Days Toulouse, 2011.

[6] M. Jastram and A. Graf. ReqIF -– The New Requirements Standard and its Open Source
Implementation Eclipse RMF. Commercial Vehicle Technology Symposium, 2012.

7


	Observations
	Requirements Exchange between Business Partners
	Document-Based Solutions
	Specific RE Tools
	Requirements Interchange Format
	A Use Case

	An Example
	Conclusion

