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Abstract. The B method is a formal method supported by a variety of
tools. Those tools, like any complex piece of software, may suffer from
performance issues and vulnerabilities, especially for potentially undiscov-
ered, pathological cases. To find such cases and assess their performance
impacts within a single tool, we leverage the performance fuzzing algo-
rithm BanditFuzz for the constraint solving backends of the ProB model
checker. BanditFuzz utilises two multi-armed bandits to generate and
mutate benchmark inputs for the ProB backends in a targeted manner.
We describe how we adapted BanditFuzz for the B method, which differ-
ences exist to the original implementation for the SMT-LIB standard, and
how we ensure well-definedness of the randomly generated benchmarks.
Our experiments successfully uncovered performance issues in specific
backends and even external tooling, providing valuable insights into areas
which required improvement.

Keywords: B method · ProB · Constraint solving · Performance Fuzzing
· Reinforcement Learning · Multi-armed bandits

1 Introduction

The B method is a formal method for software [1] and systems development [2]
as well as data validation [9]. Specifications are written in the B language, which
is rooted in predicate logic, arithmetic and set theory. The B method is based on
a correct-by-construction approach and refinement calculus [5, 6].

ProB [24,25] is a model checker, animator, and constraint solver for the B
method. Its native constraint solver backend makes use of constraint logic pro-
gramming over finite domains (CLP(FD)) [11], it provides other solver backends
to SAT [32] and SMT [35,36]. While existing work already assessed strengths and
weaknesses of these backends in a general scope [16], the proposed BanditFuzz
approach by Scott et al. [38] for performance fuzzing promises a more targeted
generation of examples where the backends’ performances differ significantly.

The original BanditFuzz [37] finds targeted benchmark examples within the
SMT-LIB language [8], trying to increase the performance margin between two
sets of solvers. It relies on two reinforcement learning agents which control a
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fuzzing-generator. This more targeted approach allows achieving pathological
inputs for solvers which are concise yet cause significant performance issues and
are valuable for finding and debugging edge-cases, as the BanditFuzz case study
already proved [37].

In this work, we implement the BanditFuzz algorithms for the B method and
apply it to a selection of ProB’s constraint solving backends, namely the native
CLP(FD) backend (with varying parameters), a translation to Z3 [35], as well as
a natively implemented SMT backend based on CDCL(T) [36]. One particular
difficulty of applying BanditFuzz to B as opposed to SMT-LIB is the notion
of well-definedness, i.e. we have to take care that the fuzzer does not generate
predicates whose logical meaning is not well-defined. Our contributions are

– a fuzzer generator for the B method which ensures well-definedness of the
generated targets,

– a performance fuzzer based on BanditFuzz for the B method, and
– an evaluation of the applicability of the BanditFuzz algorithm outside the

SMT-LIB domain.

The remainder of this paper is organised as follows. Section 2 provides an overview
of ProB, performance fuzzing, and Thompson sampling. Section 3 then explains
the general workings of the BanditFuzz algorithm while Section 4 describes the
implementation of the algorithm for ProB and the resulting differences and
challenges in contrast to the original SMT-LIB implementation. We summarise
our experiments with the implemented performance fuzzer in Section 5. Section 6
explores related work concerned with performance fuzzing. We conclude the
paper with a discussion of our results in Sections 7 and 8.

2 Background

2.1 ProB and the B Method

ProB [24, 25] is a model checker, animator, and constraint solver for the B
method [1]. It is implemented in SICStus Prolog [10, 12] and natively makes
use of constraint logic programming over finite domains (CLP(FD)) [11]. This
constraint solver lies at the heart of ProB. For instance, it is used during
model checking for verification of machine invariants and thus responsible for
finding specification violations as well as calculating the follow-up states (i.e.,
animation). The constraint solver is further utilised for symbolic verification,
program synthesis [34], or test case generation [23].

The CLP(FD) based constraint solver, further referred to as ProB CLP(FD),
works by setting up possible domains for any variable then propagating con-
straints modelling relationships between those variables, successively reducing
said domains. If any domain becomes empty, no satisfying solution can be found.
Otherwise, when propagation terminates, satisfying solutions consist of simply
assigning each variable to one of the remaining values within their respective
domains.
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ProB further provides a translation to the SMT-LIBv2 standard [8] with
connection to the Z3 prover [15]. For the connection to Z3, two separate SMT-LIB
translations are available. The initial implementation [19] matches B operators
with their corresponding counterparts within SMT-LIB where possible. Con-
structs such as set comprehensions with no direct counterpart are translated as
axiomatised formulae containing quantifiers, or are interpreted as forms of set
comprehensions [36]. A new more constructive translation [36] uses Z3’s lambda
functions instead of quantifiers. ProB’s Z3 backend runs both translations in
parallel and reports the first found solution.

ProB also features a native implementation of conflict driven clause learn-
ing modulo theories [28], which we will refer to as ProB CDCL(T) [36]. This
was implemented after observing the benefits of the Z3 integration in certain
problem domains and solves problems regarding still untranslated or subopti-
mally translated constructs, as ProB CDCL(T) works natively with B as input
languages.

2.2 Performance Fuzzing

Fuzzing was originally proposed by Miller et al. [29] who tested various Unix
utility programs with randomly generated input and found inputs to crash 24 % of
the programs under test (PUT). Nowadays, fuzzing is a well-established technique
to expose possible vulnerabilities and malfunctions of a PUT by constructing a
fuzz generator that samples inputs which might not reside in the PUT’s expected
input space [26,27].

Fuzzing algorithms can be distinguished as blackbox or whitebox fuzzing [26].
Blackbox fuzzing considers the PUT as a blackbox and thus has only the observ-
able outputs as feedback. Whitebox fuzzing on the other hand relies on knowledge
of internals of the PUT, allowing the algorithm for instance to generate inputs
that cover all possible execution paths. We can further differentiate between
generation based or mutation based fuzzing [27]. In generation based fuzzing, the
fuzzing algorithm randomly creates inputs based on a given model describing the
form of expected inputs of the PUT. Mutation based fuzzing does not rely on
such a model but rather takes a so called seed-input which it then subsequently
mutates.

Performance fuzzing extends the application domain to finding pathological
inputs over which the PUT loses performance [14]. While not focused on finding
vulnerabilities, the acquisition of small inputs which produce large runtimes still
allows to find performance bugs within the PUT [38].

2.3 Thompson Sampling

Thompson sampling [39] is an approach for choosing actions in the multi-armed
bandit (MAB) problem [4,33]. In the MAB problem, a slot machine with N inde-
pendent arms (corresponding to available actions) and time steps t = 1, 2, 3, . . .
are given. Playing an arm at time step t yields a random reward Rt which is
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sampled from an unknown but fixed distribution. Within T time steps, the goal
is to maximise the expected total reward

E

[
T∑

t=1

µi(t)

]

where µi(t) denotes the expected reward for arm i at step t based on previous
observations [4]. For Bernoulli distributed rewards, Thompson sampling assumes
priors are distributed by the Beta distribution, which has two shape parameters
α > 0 and β > 0. These priors are initialised for each arm to be Beta(1, 1), i.e.
α = β = 1 [4]. The algorithm samples N random numbers θ1, . . . , θN , one for each
arm, from their respective distributions Beta(αi, βi) and selects i(t) = argmaxi θi
as the arm to play next [13]. After observing the resulting reward, the chosen
arm’s prior distribution is updated in the following way: If the reward was positive,
increment αi, else increment βi. See Algorithm 1 for a summary of the approach.

Algorithm 1: Thompson Sampling for Bernoulli bandits (adapted from [4,13]).

Require: Arms i = 1, . . . , N with priors αi = 1, βi = 1
for all t ∈ 1, . . . , T do

For each arm i sample θi from Beta(αi, βi)
Play arm ı̂ = argmaxi θi
Observe reward rt ∈ {0, 1}
αı̂ ← αı̂ + rt, βı̂ ← βı̂ + (1− rt)

end for

3 The BanditFuzz Algorithm

BanditFuzz is a performance fuzzing algorithm for SMT solvers based on multi-
agent reinforcement learning (RL) as proposed by Scott et al. [37, 38]. The
algorithm is composed of a fuzzing unit as well as two reinforcement learning
agents based on Thompson sampling.

BanditFuzz takes as input a set of target solvers and a set of reference solvers,
and produces a new input (benchmark) which maximises the performance margin
between the two sets of solvers. The performance margin is hereby measured as
the runtime difference between the slowest reference solver and fastest target
solver.

BanditFuzz employs two Thompson sampling agents. The first agent (fur-
ther referred to as inner agent) selects a mutation for the so far best found
benchmark. In terms of MAB, the arms correspond to available grammatical
language constructs which can be inserted into the given input to mutate it.
The insertion happens by replacement of existing constructs to not continuously
expand the benchmark’s size. The second (outer) agent was introduced in an
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Fig. 1: Overview of the BanditFuzz architecture. Adapted from [38, Fig. 1]. The
inner and outer RL agents to control whether to create a new input or how
to mutate the current best input. Rewards are played back to the agents after
performance analysis, based on whether the performance margin was increased.

updated version of BanditFuzz [38] and prevents the inner agent from becoming
stuck in local extrema. Its action set consists of either choosing to mutate the
best benchmark or to sample a new input via fuzzing. Figure 1 visualises this
double-agent architecture.

After selecting a new benchmark, it is passed to each solver from both the
reference and the target sets. If the resulting performance margin is now greater
than what the previously best benchmark produced, a new best benchmark was
found and a positive reward is played back to the agents, otherwise the reward
is negative. The implementation contains a hyperparameter γ ∈ [0, 1] which
influences the mean decay during reward playback. This changes the Thompson
sampling algorithm slightly, as shown in Algorithm 2. Note that αi and βi are now
starting at 0 and that the distribution formula is changed to Beta(αi + 1, βi + 1).

Algorithm 2: Thompson Sampling for Bernoulli bandits with mean decay.

Require: Arms i = 1, . . . , N with priors αi = 0, βi = 0; decay factor γ
for all t ∈ 1, . . . , T do

For each arm i sample θi from Beta(αi + 1, βi + 1)
Play arm ı̂ = argmaxi θi
Observe reward rt ∈ {0, 1}
αı̂ ← γαı̂ + rt
βı̂ ← γβı̂ + (1− rt)

end for
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(declare-const x Int)

(declare-const y Int)

(assert (= (+ x (* 4 y)) y))

(assert (>= (/ 1 x) 0))

(check-sat)

(get-value (x y))

(a) SMT-LIB

x : INTEGER & y : INTEGER

& x + 4*y = y

& 1/x >= 0

(b) Classical B

Fig. 2: Comparing SMT-LIB code to the respective Classical B formula for
the constraint x, y ∈ Z ∧ x + 4y = y ∧ 1/x ≥ 0. The constraint is satisfied for
x = −3y ∧ x > 0 and undefined for x = y = 0.

4 Adapting BanditFuzz for ProB

Implementing BanditFuzz for ProB results in major differences compared to the
original implementation by Scott et al. [38]. The most obvious difference are the
targeted formalisms, SMT-LIB [8] vs. Classical B [1]. This directly impacts the
fuzz generator and mutator as these now have to account for valid B syntax. A
direct result is the need to ensure well-definedness of the generated benchmarks
as B implements well-definedness constraints over its operators [3, 22]. A less
apparent distinction is the choice of implementation language. While the original
BanditFuzz implementation in Python, the application to ProB in our case
renders the use of SICStus Prolog [10] most sensible. This is due to ProB being
implemented in SICStus Prolog itself, allowing us to take advantage of already
existing tooling such as encoded typing information of available B syntax nodes
(encoded as Prolog facts within ProB), ProB’s well-definedness checker [22], or
direct access to the API of ProB’s respective constraint solving backends.

In the following, we summarize our Prolog-based implementation and highlight
arising differences to the original BanditFuzz, the entailed challenges, and our
solutions in more detail.

4.1 Fuzzing for Classical B instead of SMT-LIB

SMT-LIB [8] is a popular, standardised input language for SMT solvers and
is supported by tools such as Z3 [15], CVC5 [7], Yices 2 [17], or Bitwuzla [30]
among others. Syntactically, SMT-LIB has a Lisp-like syntax while B more closely
resembles standard mathematical notation. For comparison, Figure 2 shows the
same constraint in both, SMT-LIB and Classical B. As Lisp-dialects already
resemble their respective abstract syntax trees (ASTs) and tend to be homoiconic,
generating SMT-LIB code can be done in a top-down fashion without much
hassle. For achieving the same luxury, and given that ProB is implemented in
SICStus Prolog, we opted to write the fuzz generation in Prolog as well. Hence,
we fuzz B ASTs directly instead of their textual formula representations.



Performance Fuzzing for the B Method 7

4.2 Targeted Fuzzing and Mutating

We generate ASTs of B formulae in a top-down manner. Hereby, we ensure that
the ASTs are complete trees with respect to a fixed, user specified depth to
ensure generation of compact benchmarks. This means each leaf in the tree is at
the specified depth counted from the root node. Further, each generated AST’s
root node is ensured to form a predicate (contrary to an expression which simply
evaluates to a single value) which will be sent to the solver sets.

Initially, a random predicate is generated from which the BanditFuzz loop is
started. Subsequently, the outer agent selects whether the current benchmark is
to be mutated or replaced entirely. On replacement, a random new predicate is
generated (and any resulting feedback is only propagated to the outer agent).
When the benchmark is to be mutated, the inner agent selects a syntax node
which has to be incorporated into the new AST. As B is a strongly typed language,
there are two possibilities. First, there exists at least one similarly typed node in
the current benchmark already. In that case, one of these nodes is selected at
random and replaced by the new one. If possible, sub-nodes are reused. For cases
where the new node has a higher arity or demands sub-nodes of different types,
new sub-nodes are generated by the fuzzer on demand.

Second, if there exists no node of similar type in the current benchmark, a
new AST is fuzzed which is guaranteed to contain the demanded node by first
generating a sub-AST with the demanded node as root of size less or equal to the
user-specified maximum, then generating parents and siblings until the required
maximum height is reached. This approach diverges from the original BanditFuzz
which did not guarantee the node selected by the inner agent to be part of the
newly generated benchmark in cases where replacement was not possible.

4.3 Well-defined ASTs

Classical B implements the concept of well-definedness (WD) [3,22]. For instance,
the B formula in Figure 2b is not well-defined as division by zero is possible
within the subformula 1/x >= 1. The B method consequently generates the WD
proof obligation x ̸= 0. As this proof obligation cannot be discharged, the formula
is not well-defined. This contrasts with SMT-LIB’s approach of assuming all
functions are total. As such, 1/0 is an integer (but we don’t know which one).
Hence, for the SMT-LIB model in Figure 2a, Z3 returns x = 0, y = 0 as solution.
Consequently, when generating random B formulae, we need to account for any
WD problems as well.

We ensure well-definedness for fuzzed predicates by introducing non-discharged
WD proof obligations (like x ̸= 0 above) into the formula. This can be described
formally by the means of functions τ(·) and η(·). Hereby, τ is our rewrite oper-
ator for B predicates whereas η is the rewrite operator for B expressions. The
distinction is important as τ concatenates any WD constraints as conjuncts into
the original formula whereas η must not introduce new conjuncts as this would
turn the input expression into a predicate which will break typing.
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Table 1: Definition of the expression rewrites by η. Unlisted expressions are
not rewritten but left as-is. E,E1, E2 are arbitrary expressions, f is an arbitrary
function, P is an arbitrary predicate, and ⊙ is an arbitrary binary operator that
is defined over expressions (+,−, ∗,÷,∪,∩, . . .).

Expression ϕ η(ϕ)

E1 ⊙ E2 η(E1)⊙ η(E2)
f(E) f(η(E))
P(S) P(η(S))
{x1, . . . , xn | P} {x1, . . . , xn | τ(P )}
λ(x1, . . . , xn). (P | E) λ(x1, . . . , xn). (τ(P ) ∧WD(η(E)) | η(E))∑

(x1, . . . , xn). (P | E)
∑

(x1, . . . , xn). (WD(η(E)) ∧ τ(P ) | η(E))∏
(x1, . . . , xn). (P | E)

∏
(x1, . . . , xn). (WD(η(E)) ∧ τ(P ) | η(E))⋂

(x1, . . . , xn). (P | E)
⋂
(x1, . . . , xn). (WD(η(E)) ∧ τ(P ) | η(E))⋃

(x1, . . . , xn). (P | E)
⋃
(x1, . . . , xn). (WD(η(E)) ∧ τ(P ) | η(E))

IFP THENE1 ELSEE2 END IF τ(P )THEN η(E1) ELSE η(E2) END

Let WD(·) denote the conjunction of non-discharged WD proof obligations of a
predicate or B expression. We define η(·) as a function that takes a B expression
and rewrites it recursively into well-defined expressions where applicable according
to the rules listed in Table 1. This mostly involves expressions which have possibly
non-WD predicates as operants. The final function τ(·) can then be defined over
the rewrite rules in Table 2. The helper function η∗ hereby rewrites subexpressions
within a predicate with η, for instance

η∗(N = {x | 1/x > 0}) ≡ N = {x | x > 0 ∧ 1/x > 0} .

For the calculation of WD(·), ProB’s internal WD prover is used [22].

During the BanditFuzz loop, we store the raw version of the best benchmark
for further mutations, i.e. the version before ensuring well-definedness, while
evaluation performances on the WD-enforced predicates. Thus, mutations do
not take place within the WD-ensuring parts of the input and no unnecessary
WD-ensuring parts are kept (e.g. when the respective syntax node was replaced).

5 Running the Performance Fuzzer

For evaluation of how well the BanditFuzz approach works for the B method and
ProB, we applied our implementation to different combinations of target and
reference solvers. These experiments can be split into four categories: fuzzing only,
comparing the mentioned ProB backends with another, performance fuzzing
different settings for ProB’s native backend, and comparing the two existing
SMT-LIB translations with Z3.



Performance Fuzzing for the B Method 9

Table 2: Definition of the WD-transformation τ . P, P1, . . . , Pn are arbitrary
predicates. E,E1, E2 are arbitrary expressions. S is an arbitrary set expression.
Φ(·) is an arbitrary predicate that takes an expression as argument. The function
η∗ rewrites every subexpression within a predicate P with η.

Formula ϕ τ(ϕ) Note

¬P ¬τ(P )
P1 ∧ . . . ∧ Pn τ(P1) ∧ . . . ∧ τ(Pn)
P1 ∨ . . . ∨ Pn τ(P1) ∨ . . . ∨ τ(Pn)
P1 ⇒ P2 τ(P1)⇒ τ(P2)
P1 ⇔ P2 τ(P1)⇔ τ(P2)

∀X. (P1 ⇒ P2) ∀X. (τ(P1) ∧WD(η∗(P2))⇒ τ(P2)) X is a list of variables
∃X.P ∃X. τ(P ) X is a list of variables

E1 = E2 WD(η(E1)) ∧WD(η(E2)) ∧ η(E1) = η(E2) ̸=, <,>≤,≥ analogous
E ∈ S WD(η(E)) ∧WD(η(S)) ∧ η(E) ∈ η(S) /∈ analogous
E ⊆ S WD(η(E)) ∧WD(η(S)) ∧ η(E) ⊆ η(S) ⊊,⊈, ̸⊊ analogous

5.1 Fuzzing Only

Employing the fuzzer alone already led to the discovery of multiple issues within
the respective solvers. In the case of ProB this helped improve the robustness
in the case of corner-cases of well-definedness, in particular involving infinite
values and formulas using the new REAL datatype which ProB now supports.
Findings include:

– A series of edge cases where ProB raised an internal error and failed to
produce an answer:

– Cases where ProB raised a WD error because of missing or faulty treatments
in the WD analyser (in particular for certain new REAL operators such as
RPOW).

– Cases where ProB raised a WD error even though the input was WD
already. This led to improvements in ProB’s kernel, e.g., when partitioning
a predicate into components and one component is false and an earlier one
has a WD error.

We did not find any cases where ProB’s default solver produced a wrong
answer. Additionally, we were able to consistently generate inputs which caused
segmentation faults within the Z3 prover in version 4.12.2.1 As a consequence,
we changed to the Z3 nightly builds henceforth which included the respective fix.

While this highlights the benefit of input fuzzing, it does not relate to the
reinforcement learning approach of BanditFuzz. However, it is noteworthy that
ProB already employed a fuzzer which was not able to locate these issues before,
stressing the impact of using a secondary tool chain. As we implemented a new
fuzzer from scratch in this work, we were now able to generate constructs which
were apparently not generated before.

1 Reported in https://github.com/Z3Prover/z3/issues/6734.

https://github.com/Z3Prover/z3/issues/6734
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5.2 Performance Fuzzing Between ProB’s Backends

In the experiments involving backends of ProB presented in Section 2.1, we used
the following settings. Firstly, the fuzz generator was set to create predicates with
2–4 conjuncts. Each of these conjuncts had a fixed AST size of 3, meaning a path
from root to leaf would contain three nodes. Secondly, while ProB has begun
supporting reals the support is still experimental and not fully supported by all
employed backends. Thus, we did not generate any constraints involving real-
valued types during the performance fuzzing (note that reals were still employed
during the fuzzing-only stage of our experiments in Section 5.1).

Thirdly, we measured the Par2 score for each solver’s runtime. It is defined as

Par2(t, r) =

{
t, if r ∈ {valid, invalid}
t+ δ, if r ∈ {unknown, timeout}

where t is the measured runtime, r is the solver’s response, and δ is a fixed
timeout value. In all of our experiments, we used δ = 2.5 s, which is ProB’s
default timeout.

Another point to mention is the use of the B compiler. While not a compiler
in the sense of creating machine code, the B compiler transforms a B formula by
inlining any variables that it depends upon. The B compiler is essential to create
so called “closures” for symbolic B values. That is, given that the variable y has
the value 2, the B compiler will translate {x | x > y + 1} into {x | x > 3}, i.e.,
inlining the value of y and pre-computing static subexpressions. The result is a
symbolic value that can be stored and evaluated without requiring the original
state (of y). The B compiler is also used to pre-compute bodies of quantifiers
and while loops, and it can be used as an additional pre-processing step before
calling a solver. The B compiler is invoked by both, ProB CDCL(T) and the
bridge to Z3, as a preprocessing step before the solving process starts. ProB
CLP(FD) does, however, not invoke the B compiler by default. This led to the
discovery of examples where ProB CDCL(T) seemed to perform better than
ProB CLP(FD) solely due to the B compiler being able to reduce the input to
btrue (⊤) or bfalse (⊥), respectively. As this does not equate to instances in
which the ProB CDCL(T) solver itself performs better, we opted to incorporate
the B compiler as additional preprocessing step for ProB CLP(FD) in these
experiments. We will refer to the version of ProB CLP(FD) with the B compiler
preprocessing as ProB[Compile].

Figure 3 shows a subset of the results produced by the performance fuzzing.
Given the timeout of 2.5 s, the Par2 score should be 5 at most per benchmark. We
see this does not seem to hold true in Figure 3a, where the final benchmarks had
a Par2 score of around 20 for ProB CDCL(T). This looks like a bug where the
timeout does not properly apply during solving, but closer investigation showed
the issue to be related to the call cleanup/2 predicate from the SICStus Prolog
standard library.

Further findings include an unhandled case for the empty set, where the
internal representation was not recognised, leading to a timeout for ProB
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Fig. 3: Selection of performance fuzzing results between ProB[Compile], ProB
CDCL(T), and Z3. All benchmarks were found within 18 h. The cactus plots
show the accumulated Par2 scores up until the respective benchmarks.

CLP(FD) while ProB CDCL(T) found a solution in time. We also logged
whether there were any contradictions within the solver’s responses, namely if
one solver reports a solution for a constraint and another saying there exists
none. Such soundness bugs where found and fixed for ProB CDCL(T) and Z3.
Results reported by ProB CLP(FD) were always found to be correct.

5.3 Performance Fuzzing Between ProB’s Settings

While the constraint solving backends use different underlying algorithms, a
comparison within one solver under different settings is testing the same algorithm,
just with slightly altered behaviour in its processing steps.

We already presented ProB’s default setting, ProB CLP(FD). Further
settings we looked into are the addition of the CHR solver, and the SMT mode.
CHR (constraint handling rules) should speed up the detection of unsolvable
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Fig. 4: Selection of performance fuzzing results between different ProB settings.
The cactus plots show the accumulated Par2 scores up until the respective
benchmarks.

predicates at the price of slowing down the solving process in general. The SMT
mode instructs ProB to give higher priority to choice points emanating from
the logical structure of the formulas, rather than relying mainly on enumeration
of data values. E.g., given the predicate x ∈ A ∧ (x ∈ B ⇒ P ) the enumeration
would mainly be driven by x ∈ A in regular mode, while in SMT mode, ProB
would tend to make a case distinction on ⇒ before enumerating x ∈ A. The
ProB[SMT] mode is typically more suitable for symbolic model checking tasks,
while the regular mode works well with animation and explicit model checking.
We will refer to both as ProB[CHR] and ProB[SMT], respectively.

Further, ProB offers the option to run a clean-up preprocessing over the
input, simplifying parts of the predicate for easier solving. Activating this option
should desirably not reduce performance of the solving procedure. We refer to the
solver with the enabled clean-up as ProB[CleanUp], which is not to be mistaken
for ProB[Compile] which involves a different preprocessing step.
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Fig. 5: Selection of performance fuzzing results between Z3[Axm] and Z3[Cns]
The cactus plots show the accumulated Par2 scores up until the respective
benchmarks.

Figure 4 shows the Par2 scores of a selection of the settings experiments. Note
the steep increase for ProB[CleanUp] in Figure 4a from Benchmark 7 onwards
where the aforementioned SICStus bug resulted in highly inflated runtimes once
again. While we were capable of producing pathological inputs for almost each
matchup, it remains to note that the reported benchmarks suffered from repro-
ducibility issues. Rerunning the final benchmarks in a more isolated environment
did often not mirror the expected runtime BanditFuzz reported. While this
influenced to the SICStus bug, it might also indicate other clean-up problems
within the solvers, as we were calling them all from within the same process,
making room for shared state between them. If this state is not properly cleaned
between calls, residues might accumulate, impacting subsequent performance.
Further investigation is needed.

5.4 Performance Fuzzing Between the SMT-LIB translations

Finally, we applied the performance fuzzing to the two competing SMT-LIB
translations described in Section 2.1. Recall that the former translation used
an approach which translated the B predicates to axiomatised formulae with
quantifiers, whereas the newer reimplementation reconstructs B operators by
means of Z3’s lambda functions. Hence, we will refer to these translations as
Z3[Axm] and Z3[Cns], respectively. The solver from previous experiments in
Section 5.2 simply labelled Z3 most notably made use of both translations in
parallel, awaiting and propagating the faster solver’s response.

Running this experiment, we quickly found a bug regarding the Z3 backend’s
clean-up handling during timeouts. As both, a timeout on Prolog side and a
timeout within Z3, are employed, the Prolog timeout could end up interupting
Z3’s internal timeout clean-up, polluting internal state and increasing runtime of
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subsequent calls. Figure 5 displays that after fixing this bug, we are still able to
produce benchmarks in which either translation has the edge over the other.

6 Related Work

The area of performance fuzzing is comparably young but extends prior research
of diagnosing performance issues and finding worst-case inputs and algorithmic
complexity vulnerabilities in a static way. The first automated approaches were
SlowFuzz [31] and PerfFuzz [21], both of which used mutation-based fuzzing
in an evolutionary algorithm context.

Other tools quickly made use of reinforcement learning, such as Saffron [20]
and PySE [18]. Saffron takes a user-specified grammar as input and refines it
first with respect to found inputs which are not part of the grammar but accepted
by the PUT nonetheless. The following generation of pathological inputs over
the synthetic grammar then assigns probabilities to the grammar’s production
rules which represent their likelihood to be chosen for input generation. The final
choices are then done by tournament selection until an input with maximum
depth is generated. If the input increases the measured performance complexity,
the corresponding production rules’ probabilities are updated accordingly.

PySE [18] is a tool for automatic worst-case test generation via symbolic
execution of a Python program. Here, a Q-Learning [40] approach is utilised to
learn a branching heuristic to navigate through the execution paths. This heuristic
is gradually updated between subsequent runs of the search for a worst-case
execution.

With regard to SMT solvers, one application of performance fuzzing (next
to BanditFuzz, see Section 3) is SPRFinder [42]. SPRFinder targets solver
performance regressions (SPRs) for SMT string solvers by using an adapted
version of BanditFuzz which targets newer releases of a string solver and uses old
releases as references. Adaptions to the original BanditFuzz include the use of
a set of seed inputs instead of using a single one and an adaptive configuration
per loop iteration (i.e. if no SPR was found within a number of iterations, the
complexity of generated inputs is subsequently increased).

7 Discussion

In this work, we implemented and adapted the BanditFuzz algorithm by Scott et
al. [38] to a performance fuzzing procedure for the B method and ProB specifically.
In this section, we restate the findings of our performance experiments, talk about
issues we experienced during implementation of the algorithm and experiments,
and iterate over lessons learned as well as take-aways for future implementation
and extensions, which are worth to consider for reimplementation for other tools
and formalisms as well.
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Performance fuzzing results. With the help of performance fuzzing as well as
simple input fuzzing, we were able to find a set of performance bugs within ProB’s
default and alternative solver implementations, as well as more fundamental
issues within external tooling these solvers build upon. We found cases in which
internal exceptions within ProB were not captured accurately, missing value
interpretations regarding empty sets causing timeouts where a solution was
otherwise available, soundness issues in the ProB CDCL(T) and Z3 backends,
segmentation faults within the Z3 prover itself, issues with state clean-up in the
Z3 backend when a timeout fires, and a performance issue within the SICStus
Prolog standard library which can inflate the post-cleanup runtime after solver
calls in ProB CLP(FD) and ProB CDCL(T).

Size of benchmarks. While the results make the performance fuzzing approach
seem lucrative to employ, we ran into problems during implementation of the fuzz
generator and reproduction capabilities of the reported results. Implementation
wise, it is straight forward to create a valid B AST that ProB can technically
work with, and the BanditFuzz approach promises small and concise, pathological
benchmarks. Even though we restricted the size of the initially fuzzed predicates,
the addition of the WD constraints in Section 4.3, inflated the constraints notably.
In the future, a more involved fuzz generation which already accounts for the
size of WD constraints during fuzzing might leverage the added complexity
of produced benchmarks significantly. As discussed in Section 5.3, this can be
caused by the found bug in SICStus Prolog regarding call cleanup/2 but might
indicate another issue regarding subsequent calls to pathological inputs and
improper clean-ups. This issue is still to be investigated, but made it harder for
us to reliably produce valuable benchmarks.

Issues with snapshotting and repeated benchmarks. Another problem were im-
precisions on the millisecond scale. During fuzzing for different ProB settings,
we often got results where one solver performed worse in our logs but during
reproduction all solvers under test exhibited the same performances. This was
due to all solvers varying in runtime over a multiple hundred milliseconds, and
BanditFuzz snapshotting instances where the target solver happened to perform
worse — even when we already took the mean runtime of three consecutive runs
for each solver. A solution might consist of employing a minimal needed improve-
ment over the last performance margin. This would also cancel a set of produced
benchmarks which had the same Par2 scores ±10ms and only differed slightly
while capturing the same underlying issues. This is a particular shortcoming in
search for performance bugs: once one is found, due to the mutational nature of
the algorithm, slightly varied inputs causing the same bug will be found as well.

Lessons learned and future perspective. We found the BanditFuzz algorithm
valuable for generating pathological inputs. In our implementation, we opted
to link the performance fuzzer within ProB’s source code instead of making
it an external tool which uses the compiled executable. Having direct access to
the internals of ProB allowed us to find bugs related to post-solving clean-up
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issues, such as for the Z3 backend or within SICStus Prolog. Any issues related
to possibly shared state between two solver calls, i.e. subsequent queries of
possibly distinct constraints, can only be caught if the program instance is the
same. A draw-back is that the ProB source code is a direct dependency to the
performance fuzzer. Hence, it is not possible to target different versions of the
same solvers for performance regression testing as done by Zhang et al. [42].
Given that the SICStus Prolog bug we found was only reproducible for us in
SICStus Prolog version 4.8.0 but not 4.7.0, the possibility of regression testing
would have direct value for us as well and will be considered in the future. In
retrospective, we would advise to use an external approach and keep regression
testing as an easily implementable option. Implementing an API that allows the
performance fuzzer to query the same solver instance subsequently should hereby
still allow detection of problems with internal clean-up routines between calls.

The reported difficulty in finding reliable benchmarks targeting the different
ProB settings might suggest that the fuzzed predicates were too small. For such
cases, we advocate to incorporate an adaptive configuration into the algorithm,
for instance as done by Zhang et al. [42]. The adaptive configuration would
increase the predicate complexity until significant benchmarks are found, then
should ideally aim to reduce the inflated complexity again while maintaining or
increasing the performance margin.

While wallclock runtime and Par2 scores seem to be popular metrics for
performance fuzzing [14, 37, 42], other performance related metrics should be
accounted for as well [14]. For instance, targeting memory consumption, as done
by Wen et al. [41], seems to be a valuable alternative we’d like to incorporate in
future work as well.

8 Conclusions

We implemented a fuzzer for the B language which ensures well-definedness on
the generated B formulae. We utilised said fuzzer within an adaption of the
BanditFuzz performance fuzzing algorithm implemented within the ProB tool.
Targeting different constraint solving backends and settings, our experiments
successfully unveiled various performance bugs within our tooling as well as
external tooling such as the Z3 prover and SICStus Prolog. Our results show that
an adaption of BanditFuzz for other formalisms can become a powerful asset in
debugging and fine-tuning respective tooling. The aggregated take-aways suggest
benefits from implementing the performance fuzzer as an external tool which has
no dependency on the version of the program under test, so as to allow regression
tests over multiple releases of the program.
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