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Abstract. Model checking larger specifications can take a lot of time,
from several minutes up to weeks. Naturally, this renders the develop-
ment of a correct specification very cumbersome. If the model offers
enough non-determinism, however, we can distribute the workload onto
multiple computers in order to reduce the runtime.

In this paper, we present distb, a distributed version of ProB’s model
checker. Furthermore, we show possible speed-ups for real-life formal
models on both a single workstation and a high-performance cluster.

1 Introduction

One way to verify software is explicit model checking, which checks a set of
(invariant) predicates in every reachable state of a formal model. A simple model
checking algorithm is shown in Algorithm 1: starting with a set of initial states,
a directed graph is created according to the operations (aka state transitions)
that the specification allows. It is checked whether a given property holds for
each state, e.g., that there is no deadlock or that all invariant predicates are
satisfied. Usually, open (aka unexplored) states are stored in a state queue and a
set of visited nodes is stored in order to avoid checking the same state multiple
times.

A big challenge however is the state space explosion problem: if we add more
variables and operations to the model, the amount of states that need to be
considered might grow exponentially.

One way to engage this issue is to add computational power and distributing
the calculation of successor states and verification of invariants. Many formal
models behave nondeterministically or have multiple initializations. If there is
more than one state in the state queue, they can be distributed on multiple CPU
cores or even workstations.

In this paper, we present the extension distb of ProB [21] that started as a
distribution framework for Prolog but was tailored to overcome several challenges
in the context of model checking. Now, distb allows checking industrial-sized
specifications in a few hours that were impossible to check with vanilla ProB.
distb is available for Linux and Mac OS X, but not for MS Windows. We focus
on distb’s application for B [2] and Event-B [1].



Algorithm 1 Explicit State Model Checking Algorithm

Require: formal specification and function desired-property
results := ∅
queue := get-initial-states(specification)
seen := set(queue)
while queue 6= ∅ do

state := pop(queue)
invariant-ok := check -invariant(specification, state)
successors := compute-successors(specification, state)
results := results ∪ desired-property(invariant-ok , successors)
for s ∈ successors \ seen do

enqueue(queue, s)
end for
seen := seen ∪ successors

end while
return results

1.1 B and ProB

The B specification language (which we will simply refer to as “B”) is part of
the B-Method [2] developed by Jean-Raymond Abrial. The B-Method favors
a “correct-by-construction” approach, where an abstract model is iteratively
refined in order to end with a concrete implementation. B and its successor
Event-B both work on a high level of abstraction and are based on set theory
and first-order logic.

ProB [21] is an animator and model checker, initially for B, but now is
capable of handling several formalisms, including Event-B, CSP-M, TLA+ and
Z. At its core, ProB implements a constraint solver to solve predicates in order
to compute state transitions. ProB is implemented in SICStus Prolog [8].

2 Architecture Overview

distb is a distribution framework for Prolog, based on previous work in [6]. We
focus on its application for ProB, i.e., distributed model checking. While ProB
is able to verify temporal formulas, e.g., LTL, distb is only able distribute invari-
ant, deadlock and assertion checking. It is implemented in C with a small Prolog
wrapper using SICStus Prolog’s foreign function interface. We also make use
of the ZeroMQ library [14] which offers distributed messaging. While distb can
handle any kind of computation task, we assume that they are tasks to verify a
given state’s compliance to an invariant and computation of its successor states.

Starting with a root state, more states are generated and checked as the model
checking process carries on. distb avoids to work on the same state multiple times
as much as possible by storing hash codes of enqueued and processed states.

For distb, we opted for a master-worker architecture in order to match com-
munication patterns offered by ZeroMQ. An architecture without a dedicated
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Fig. 1: Typical Setup in a Distributed Setting.

master, e.g., using MPI, is possible but also more complex. In the following, we
give a simplified summary of each component’s tasks. We go into more detail in
Section 3.

The Master oversees the entire model checking process. It monitors the distri-
bution of work items and coordinates transfers between workstations. Further-
more, it collects and publishes checked and enqueued states. Once all states are
checked, it sends a termination signal. In order to deal with infinite state spaces,
the user may also limit the number of states.

A Proxy has some similar features to the master. Multiple proxies might be
launched on the same workstation, but in most setups one proxy per machine
suffices. Each worker on a workstation connects to exactly one proxy on the
same computer. This is done by providing the same proxy ID to both the proxy
and its workers. The proxy monitors the exact queue sizes and initiates transfers
of work items between its assigned workers. Additionally, the proxy keeps the
shared set of known and enqueued states, represented as a hash trie, up to date
with the information provided by the master. The hash trie will be presented
in Section 3.4 in detail. Moreover, it translates commands sent by the master
into commands for the workers, e.g., sending work items to a worker assigned to
another proxy, and forwards messages from its workers to the master.

A Worker, lastly, is the only component performing any work directly related to
model checking. Each worker holds a local queue of states. Once it is not empty,
a state is dequeued and checked (i.e., the invariant predicates are verified). Fur-
thermore, the successors of this state are calculated and enqueued. Afterwards, a
worker sends a package to the proxy, containing information about the processed
state, its successors and additional statistics. Workers also periodically listen for
commands sent by the proxy.

Each model checking process requires a single master. Each participating work-
station should run at least one proxy. In order to initiate the calculation, at least
one worker is required. A typical setup of a model checking process is shown in



Fig. 1. There, we use two workstation, running two and three workers, respec-
tively. Arrows between components mean that there is direct communication
between them, e.g., the master directly communicates with the proxies but not
with workers. The dashed arrow, however, indicates that there might be direct
communication, but the socket is closed after receiving an answer, i.e., workers
communicate with each other at some time, but maintain no steady datastream
they rely on.

3 Implementation

There are many subtle details challenging the implementation of distb. In the
following, we state encountered problems as well as our proposals for solutions.

3.1 Socket Patterns and Messages

distb uses ZeroMQ [14] to distribute the model checking work. ZeroMQ offers
many useful communication patterns via different ZeroMQ socket types. We
make use of the following three patterns:

– Publish-subscribe (PUB-SUB) allows sending messages from multiple sources
to many subscribers, e.g., the master publishes commands to all proxies.

– Push-pull (PUSH-PULL) allows sending messages from many nodes to a sink
(PULL socket). distb only uses one sink per connection, so, e.g., all proxies
send (“push”) their results to a single master.

– Request-reply (REQ-REP) is the only bi-directional message pattern we em-
ploy. After a request is received, the reply will automatically be routed to
the requesting component, e.g., a worker might send a request to share work
with another worker, which in turn sends an acknowledgment as a reply.

In Table 1, we show which socket pattern is used between which components
and what data is exchanged. Proxies request an ID from the master and workers
request an ID from the proxy they connect to. These IDs are used in order to
uniquely identify a component in certain commands, e.g., work balancing.

Sending states over network should be avoided due to bandwidth constraints.
Instead, only hash codes of newly enqueued and checked states are transmitted
(cf. Section 3.4). Workers push hash codes to their assigned proxy, which in turn
pushes them to the master. The master distributes hash codes to all proxies.

All workers bind a TCP socket and always are able to receive work. Analo-
gously, each component can connect to this socket in order to offer work. This
way, workers share their queues with each other and the master can send work
items from its own queue, e.g., the initial state.

3.2 When is a Model Suitable for Distributed Model Checking?

distb is not a suitable tool for model checking all formal models. Naturally, distb
cannot scale at all for sequential models, e.g., a simple counter with a single



Master Proxy Worker Messages and Usage

REP REQ
ID distribution

REP REQ

PULL PUSH hash codes and results (e.g.,
deadlock, invariant violation)

PULL PUSH

PUB SUB, PUB hash code propagation,sending commands (e.g.,
initiating global transfers, termination)

PUB SUB sending commands (e.g., global transfers, local
transfers, termination)

REP receiving work

REQ REQ REQ sending work; connection is closed after transfer

Table 1: Socket Types in distb

initialization. There, the branching factor is one, i.e., each state only has one
successor and there is only a single open node at most. In order to achieve best
speed-ups, the state space should branch out in such way that many open nodes
are available at all times.

As usual in distributed programming, adding more workers does not neces-
sarily imply a bigger speed-up, e.g., using more workers than states in the state
space does not provide any benefits. If some worker processes do not receive
any work and stay idle, they might slow down the process overall due to the
additional communication overhead involved.

Models that can be checked in very little time usually neither benefit from
nor are hindered by adding more workers. If a state space is very large, distb
may currently run out of memory quickly because all states are kept in main
memory. Writing most states to disk and reading them back over time helps in
order to delay this, usually by orders of magnitude. Obviously, a complete check
of infinite models is unachievable in explicit state model checking. Instead, the
number of states that should be considered has to be limited.

As it will be explained in more detail in Section 3.3, all states are serialized
and deserialized. This additional overhead usually causes distb with a single
worker to run slower than ProB. Thus, an optimal model for distb would feature
only a small amount of variables which neither contain large nor nested data
structures in order to minimize this overhead.

3.3 Passing States to C

ProB is implemented in Prolog and, thus, represents states as ordinary Prolog
terms. However, terms passed into SICStus’ foreign function interface only have
a limited lifetime, i.e., exactly until the call that constructed the term returns.
Afterwards, the memory on the stack is freed again. Creating a copy is not



possible because it would end up on the same stack. If a reference to the list
of successor states was used as a return value, we could neither make use of
SICStus’ garbage collector nor free the memory ourselves.

Instead, we use an undocumented module named fastrw which offers a pred-
icate fast buf write in order to serialize and another predicate fast buf read

to deserialize a Prolog term. Both of these predicates work on a blob (binary
large object) in a local buffer. However, this buffer can be accessed and dupli-
cated with a simple call to memcpy.

Queue items reference such a blob as well as its size. Thus, when we call
the function that processes a state, it has to fast buf read the state and
fast buf write the successors. This blob also can be sent between multiple
instances of SICStus.

We found that the overhead of serializing and deserializing states repeatedly
is measurable and accumulates over time. However, the processing function of
ProB usually is way slower in comparison. So far, we found no major issue and
accepted the performance hit.

3.4 Visited States

In order to store whether states have been enqueued or checked already, we need
a data structure that maps a state to the constants ENQUEUED and PROCESSED.
However, keeping all seen states in memory is costly: each of them can be several
megabytes in size. If a state space consists of only some thousand or a million
of such states, it would be impossible to keep all of them in the main memory
of an ordinary workstation. Thus, instead of the state itself we store its hash
code. By default, a 160 bit SHA-1 hash is used. If we encounter states with the
same hash code, we assume that the states are the same state. This can lead
to unsoundness of the model checking if two different states produce the same
hash value. An approximation for the probability p of a hash collision, given the
number of possible keys d, and the number of stored keys n is [23]

p ≈ 1− e
−n

(
n− 1

2d

)
≈ 1− e

−

n2

2d


Since SHA-1 produces 160 Bit hash values, the approximate collision probability
for a billion elements is less than 2−100. For a trillion states it is less than 2−80.
This trade-off lets us store an efficient fingerprint of the state but the chance of
a collision for models that we can handle is about non-existent. Of course, it is
possible to change the hash function to one that calculates a larger digest.

A good loading factor of a regular hash map however should be below ten
per cent. This means that there still is a lot of overhead: more than nine times
the payload if we inline the hash code as key or about more than four times the
payload if we store 8 byte pointers instead of 20 byte hash codes. We found a
more memory-efficient solution by adapting a variation of Phil Bagwell’s Hash
Array Mapped Tries [3]. We use a Trie (also referred to as a prefix tree) to store
the states. We will refer to our implementation as digest trie. Knuth [16] defines
tries as follows:
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Fig. 2: An Example for an 26-ary Trie

“A trie is essentially an M-ary tree, whose nodes are M-place vectors
with components corresponding to digits or characters. Each node on
level ` represents the set of all keys that begin with a certain sequence
of ` characters; the node specifies an M-way branch, depending on the
(`+1)st character.”

An example for a 26-ary trie 1 is shown in Fig. 2. Each branch represents a
letter in the alphabet. We omit branches that have no successors. Then, looking
up a word is simply following each letter until a leaf is reached and comparing
the search term with the word found this way. For the word sting in Fig. 2a, one
follows the branches s, t and i in this order and finds the word sting. Looking
up stand fails because after following s, t and a, only stay is stored.

Inserting might be possible by simply adding a branch to the trie. A more
complicated example is given in Fig. 2b, where we insert the word sad. An
additional internal node needs to be added because the stored prefix sa for the
contained word say collides with a prefix of sad.

The digest trie in distb is a 32-ary trie. In order to determine the next branch
in the tree, 5 bits of the hash code are used. We try to ensure that the prefix tree
has a relatively small depth in order to ensure a more performant lookup. Thus,
the cryptographic hash function SHA-1 is used because its values are usually
uniformly distributed.

Shared Digest Trie In a naive implementation, each worker stores a copy
of the digest trie. Duplicating the digest trie for multiple workers on the same
workstation is very costly: a single copy usually takes up multiple gigabytes
for larger models. Thus, we implemented a version [17] that resides in shared
memory. While there has been work on a lock-free version of concurrent hash

1 Strictly spoken, it should be a 27-ary trie including an end-of-word symbol in order
to store both a word and one of its prefixes. Since the data we store has a fixed
length, we omit this detail.



tries [22], the presence of a garbage collector for the shared memory is assumed.
Our version of a shared digest trie allows multiple writers and readers to modify
or read certain parts of the data structure concurrently. We use multiple locks
to block access to certain parts of the trie.

The tree is partitioned into three different types of shared memory segments:

– meta information about the trie, i.e., how many internal nodes and hash
codes are allocated as well as how many hash codes are marked as checked,

– an array of key-value pairs and
– an array of internal nodes of the trie.

While the first segment statically is of a fixed size, the other ones grow in size
while the model checking process is running. Because resizing of shared memory
segments is not possible in a UNIX-portable manner, we simply allocate more
segments of a fixed size as needed.

Access to each of these segments is restricted differently: since the meta
information only is accessed by the proxies and master, we use a single semaphore
in order to coordinate read and write access.

For the key-value pairs, we use two semaphores: the first one is a counting
semaphore allowing up to ten concurrent readers. This limit is chosen arbitrarily
but matches current CPUs. The second one is a semaphore that manages write
access. In order to gain write access, a process has to acquire the single write
lock first before acquiring all read locks. Because there only is one write lock
and all read locks are released eventually, deadlocks cannot occur.

Lastly, we use more fine-grained locking on the internal nodes. Each of the 32
sub-trees below the root node has such a combination of one counting semaphore
to manage read access and one semaphore that manages write access. This means
that each sub-tree can be read and written separately at the same time.

This technique has proven to be the best of multiple strategies we bench-
marked in [17]. However, we argue that the amount of time spent processing a
state is drastically larger than the amount of time spent in the hash trie. For
our needs, any working locking strategy is good enough.

Note that the digest trie is used to store the set of known states, which is
strictly growing. In particular, a delete operation is neither required nor imple-
mented. Hash codes are written into the corresponding segment entirely before
they are referenced in an inner node. Updating the status of the corresponding
state (i.e., enqueued to checked) does not modify the hash code but only changes
one bit. Thus, inconsistent reads of hash codes are impossible. In the worst case,
a state cannot be found while it is added to the trie and is enqueued or checked
again, which is sound behavior.

3.5 Work Sharing

When the model checking process begins, all workers start with an empty queue.
The master will send the initial state to the first worker that is announced by a
proxy. Once a worker accumulates enough work items, it is able to share some



of them. Of course, work queues may run empty during the process as well.
Distributed model checking scales best when many queues are filled.

There are several strategies in order to distribute work: in some cases, the
state space can statically be partitioned into (almost) disjunct parts. However, we
do not do any static computations beforehand. A modulo-based approach assigns
a state to a worker by calculating id = hash(state) mod amount(workers). One
drawback of this approach is that many states have to be transferred between
different workstations. As states can be several hundred megabytes in size, this
would be too costly. Additionally, the amount of workers must not change. How-
ever, we want to be able to add and remove workstations on the fly depending
on how well the model scales.

In order to oversee the work sharing, workers firstly send their queue sizes
to their corresponding proxy. The proxy uses a queue threshold to classify queue
sizes into one of three categories.

– The queue is empty and the worker should receive work items.
– The queue is not empty but below the queue threshold, usually a small value

between 10 and 100 items. This worker should neither share nor receive work
items. This is used in order to avoid many transfers at the beginning and
end of the model checking process, when most queues are empty.

– The queue is above the queue threshold. This worker should share some of
their work items if another one is empty.

This information is forwarded to the master as a queue fingerprint. In partic-
ular, exact queue sizes are not sent. An update is sent only when the fingerprint
changes in order to reduce network traffic.

Proxies can initiate transfers between workers on the same workstation. Then,
they flag the amount of workers as “in transfer” in their queue fingerprint. The
master initiates transfers between workers on different workstations. However,
local transfers are always favored over cross-workstation transfers.

For both kinds of the transfers, the worker that should share its queue is
sent the IP address and port of the empty worker. Then, the sharing worker
connects to the endpoint, sends part of their queue and disconnects after an
acknowledgment. All workers bind a separate TCP socket in order to receive
work.

3.6 Proxy

The proxy was, admittedly, introduced as a hack. As shown in Section 3.1, we
use multiple sockets per component for different types of data flow. For smaller
setups, it was possible to maintain multiple connections between the master
and each worker. However, each socket requires a unique file handle. On many
(shared) computation clusters, the amount of file handles per process is limited.

Nonetheless, we needed a component that runs once per workstation anyway:
one that initially sets up the shared memory and blocks access until an initial
consistent state is reached. As it turned out, having a single writer in a shared
memory setting avoids many concurrency issues as well.



Master

Proxy1 Proxy2

Proxy3 Proxy4 Proxy5 Proxy6

Proxy7 Proxy8

Fig. 3: Hash Code Streaming Tree. Arrows describe a “publishes to” relationship.

Furthermore, the proxy is able to take some responsibilities that can be
done on the same workstation. An example is local balancing. Another is to
handle information sent by the worker, e.g., queue size and logging into a shared
resource. This eliminates some unnecessary network traffic entirely.

3.7 Bandwidth Reduction

For some models, the distributed model checking scales wonderfully. This means,
we can utilize hundreds of CPU cores which are under load and produce an enor-
mous amount hash codes in a given time interval. We found that for some mod-
els, the master’s bandwidth does not suffice in order to provide each workstation
with the hash updates.

This renders the master’s bandwidth to be the bottleneck of the computation
resulting in many duplicates, meaning lots of useless work is done. Even though
the model offers more potential for scaling, the entire process slows down if we
add workers.

Inspired by streaming techniques in P2P networks, we implemented an ap-
plication level multicast [25] for the hash codes. An example for a small setup
consisting of eight workstations, each running a proxy, is shown in Fig. 3: there,
the master only publishes hash codes to two proxies, which in turn propagate
the information to two additional proxies each. Leaf nodes do not publish any
information.

When a proxy joins the calculation, they are assigned a parent in the tree.
Assume the n-th proxy connects to the master. Then, the master will include
the endpoint of the b(n−1)/2c-th proxy in the ID message and the joining proxy
will connect its subscribing socket there. In case the calculated number is zero,
the endpoint of the master’s hash publishing socket is provided instead.

By default, every proxy tries to publish hash codes. If there are no subscribers,
ZeroMQ automatically drops the message. This allows the master to save band-
width and to scale independently of the amount of participating workstations.
The trade-off is increased latency of the hash code propagation. However, since
we assume that we distribute the calculation in a local area network or cluster,
the impact is neglectable.



Additionally, in order to reduce overhead introduced by ZeroMQ messages,
proxies put the hash codes they receive from workers immediately, the master
may bundle multiple messages before propagating. The interval can be specified
by the user. Our benchmarks ran with the default value that propagates hashes
once every 25 milliseconds. We found it works fairly well for all the models we
tested. For models where states take a long time to check, this interval should be
set to zero so that all currently available hash codes are propagated immediately
in order to avoid checking states multiple times. In a setting where some duplicate
checks are acceptable, e.g., when processing a single state is very fast, it might
be increased even further. In general, this value should be fine-tuned according
to the model.

4 Evaluation

In this section, we evaluate the performance of distb in two settings. Firstly,
we consider a high-performance cluster where we can use multiple computation
nodes and many hundred CPUs. All nodes used in this cluster have two Intel
Xeon IvyBridge E5-2697, each of them consisting of 12 cores running at 2,70
GHz, offering up to 24 CPU cores per node. We reserved 100 GB RAM on each
node. For network communication, we used standard 1 Gbit/s Ethernet. Each
node runs a Red Hat 6.6 Linux. Secondly, we run the same version of distb on a
single notebook with an Intel i7-7700HQ quad-core CPU and 16 GB RAM.

On the cluster, we run models that have a larger runtime, the smallest model
takes about 30 minutes to model check with ProB. We could not check the
largest model with ProB entirely thus far, although it checked half the state
space in about three days.

When comparing the performance of distb with ProB, one has to keep in
mind that distb suffers additionally to the distribution overhead from the fact
that it has to serialize and deserialize all states. For larger states, this can be
as expensive as verifying the invariant and calculating the successors. Thus, for
some models, running distb with a single worker is much slower than ProB.

On the other hand, ProB usually does a little extra work compared to
distb, e.g., it maintains the entire state space. Additionally, due to the different
data structure, the lookup of seen states might be faster in distb. Thus, if the
serialization is very fast, distb might be a bit faster than ProB. We have also
noticed that if we add additional load to the CPU while running ProB, ProB
speeds up a bit. A reason could be that Turbo Boost only gets activated if enough
CPU load is present.

Speed-ups will always be given relative to ProB. For runtimes and speed-
ups, we use the median value of ten repetitions. All models and their description
are available at https://github.com/pkoerner/distb.

From Fig. 4 and Table 2, we can see that for suitable models with very long
runtimes, like Train and earley, distb scales almost linearly even for hundreds
of workers. Two smaller models that were developed by Space Systems Finland,

https://github.com/pkoerner/distb


0 100 200 300 400
0

100

200

300

400

Workers

S
p

ee
d

-u
p

Speedups (Cluster)

earley

obsw

Train

Hanoi

MPM

1 2 3 4 5 6

1

2

3

4

5

6

Workers

S
p

ee
d

-u
p

Speedups (Notebook)

Landing Gear

Hanoi (10 discs)

RETHER

CAN BUS

Fig. 4: Speed-ups in Different Configurations

MPM and obsw [9], take about half an hour with ProB and can be checked in
less than half a minute given enough workers.

However, note that performance degrades in distb when too many workers are
added. In our log files, we can see that messages get delayed for several seconds in
the network. This could be caused by congestion of the internal switch that only
has 20 Gbit/s throughput. Note that we ran multiple benchmarks in parallel and
other users were active on the cluster at the same time. This would also explain
the high variance in runtime we noted for these benchmarks, e.g., running the
obsw model with 400 workers took between 39 seconds and 3.5 minutes, whereas
the runtimes for 100 workers all were within 5 seconds.

We included a model of the Tower of Hanoi with 15 discs in our benchmarks
because it has a particular property: the queue size blows up exponentially over
time but collapses down to one possible state regularly, when there is only a new
single possible new position for the smallest disc. Most of the time, the overall
queue size is relatively small and we did not expect distb to scale very well.

When we run smaller benchmarks on a quad-core notebook, distb usually
scales linearly for three workers as can be seen in Fig. 4 and Table 3. This is due
to the fourth core running both the proxy and master process. In particular, the
proxy employs busy polling in order to react on input from multiple sources as
soon as possible while the core logic still runs in a single thread. If more workers
are added, minor additional speed-ups are gained due to hyper-threading.

As expected, the Tower of Hanoi model scales worst because it is the least
suitable model for distribution of the ones benchmarked.



earley Workers ProB 1 10 50 100 200 300 400
(472 886 states) Runtime 25025.94 25280.63 2538.97 521.46 270.65 143.61 105.73 85.60

Speed-up 1.00 0.99 9.86 47.99 92.47 174.26 236.70 292.36

obsw [9] Workers ProB 1 10 50 100 200 300 400
(589 279 states) Runtime 2206.54 2021.54 212.96 45.82 26.84 23.40 52.75 118.45

Speed-up 1.00 1.09 10.36 48.16 82.20 94.30 41.83 18.63

Train [1] Workers ProB 10 50 100 200 300 400 500
(61 648 077 states) Runtime 518400.00 † 58107.65 11649.45 5812.45 2942.85 1998.64 1524.78 1230.52

Speed-up 1.00 8.92 44.50 89.19 176.16 259.38 339.98 421.29

Hanoi Workers ProB 1 10 50 100
(14 348 909 states) Runtime 17383.32 14107.04 1475.26 463.13 680.33

Speed-up 1.00 1.23 11.78 37.53 25.55

MPM [9] Workers ProB 1 10 50 100 200 300 400
(336 649‡ states) Runtime 1621.30 2114.86 209.26 45.27 25.08 15.78 13.26 21.93

Speed-up 1.00 0.77 7.75 35.82 64.65 102.74 122.29 73.93

Table 2: Runtimes (in Seconds) and Speed-ups on the High-Performance Cluster.
†: Estimated Runtime, ‡: Limited Amount of Initializations

Landing Gear (Refinement 5) [11] Workers ProB 1 2 3 4 5 6
(43 307 states) Runtime 30.11 25.65 13.46 9.95 9.61 9.26 9.17

Speed-up 1.00 1.17 2.24 3.03 3.13 3.25 3.28

Hanoi (10 discs) Workers ProB 1 2 3 4 5 6
(59 051 states) Runtime 33.97 38.15 19.75 14.63 13.96 13.27 12.93

Speed-up 1.00 0.89 1.72 2.32 2.43 2.56 2.63

RETHER protocol [24] Workers ProB 1 2 3 4 5 6
(42 254 states) Runtime 40.36 45.26 23.19 16.56 15.57 14.05 13.84

Speed-up 1.00 0.89 1.74 2.44 2.59 2.87 2.92

CAN BUS (John Colley) Workers ProB 1 2 3 4 5 6
(132 600 states) Runtime 73.85 64.20 33.54 24.46 22.53 21.78 21.13

Speed-up 1.00 1.15 2.20 3.02 3.28 3.39 3.50

Table 3: Runtimes (in Seconds) and Speed-ups on a Regular Notebook.

5 Related Work

Distributed model checking using ProB was also made available by integrating
it with LTSmin [4,7]. For LTSmin, states are split into several chunks, each
containing only a single variable. This is done by multiple calls into the fastrw

library (cf. Section 3.3 for more details). Thus, LTSmin inherently runs slower
without further optimizations.

However, LTSmin offers a sophisticated caching mechanism: for each opera-
tion, states are projected into short states containing only the relevant variables.
Then, ProB is only called if one of these variables changed. Otherwise, succes-
sor states are recombined from the cached value and the old state. For many
models, this approach is very fast compared to ProB, trading reduced runtime
for increased memory consumption. In a distributed setting, this concept does
not scale as well as distb, because each worker maintains a separate cache. A
preliminary evaluation of LTSmin’s scaling behavior on a single machine can be
found in [18].



Furthermore, the distributed version of LTSmin allows checking LTL formu-
las with ProB, which distb is not yet capable of.

TLC is a model checker implemented in Java that offers both a parallel and
distributed mode in order to check TLA+ specifications [26]. Usually, all workers
on a single workstation run inside the same JVM which allows sharing work
with good performance. Furthermore, TLC offers a checkpointing mechanism
that allows recovering progress after a graceful termination of the tool or after
a crash. For its seen set, TLC stores hash codes only as well, however they are
only 32-bits in size. Using the approximation from Section 3.4, the chance that
no hash collision exists for one million states is less than 10−50. This almost
guarantees that an unchecked state is discarded. Thus, we argue that such small
fingerprints should not be used in order to verify larger state spaces.

While TLA+ is a high-level formalism like B and Event-B, the input language
for SPIN [15] is very low-level and its distributed version [19] tackles different
issues. The main reason for distribution was not because of time but memory
constraints: most of the main memory was used up by the hash table containing
the visited states. The motivation was to distribute this hash table and, at this
opportunity, to make use of additional computational power. Thus, the state
space is partitioned beforehand in a way that relies on certain features of its
input language.

When comparing SPIN with ProB, we notice that SPIN is able to deal
with billions of states quite easily whereas ProB cannot cope with models that
consist of more than a couple of million states. In [20], Leuschel has argued
that these numbers are really difficult to compare due to the different level of
abstractions. While the input language for SPIN is almost C like, the classical
B language is almost pure mathematics. The high level of abstraction in B can
lead to a significant reduction in the number of states because a single state at
a high level of abstraction can represent hundreds or even thousand states in a
low level language.

For distributed model checking, this has several consequences: firstly, distb
usually is able to keep the entirety of the digest trie in main memory of each
workstation. Secondly, ProB’s states usually are larger and keeping all of them
in main memory of a single workstation would be a hard issue. However, reading
them from disk in sequence – like a queue – is relatively fast compared to random
access of a hash map. Furthermore, states are inherently distributed on several
workstations in the first place. Lastly, the computation of successors of a state
takes a lot more time in ProB than in SPIN. Thus, the entire distribution
overhead is rather small in comparison and allows more potential for scaling
more easily.

6 Conclusion and Future Work

For suitable models, distb is able to achieve hundred-fold speed-ups compared
to ProB. This renders it possible to model check medium-sized models in less
than a minute instead of an hour. Furthermore, it allows model checking large



specification that could not be handled by ProB before. We think for larger
models like the Train benchmark, even better speed-ups are achievable, yet
would require InfiniBand instead of standard Ethernet. While the speed-ups we
could achieve are very satisfactory, there still remains a list of features that are
nice to have.

Storing states in their binary representation is costly. While SICStus Prolog
reuses, e.g., atomic terms, and avoids their duplication, their blobs offer no
structural sharing at all. Thus, keeping all blobs in memory often is not feasible
for large models. In order to tackle this issue, we are currently evaluating storing
these blobs on disk by making use of Google’s database LevelDB [10]. Reading
from and writing to a HDD usually suffers from huge performance costs due
to latency. Therefore, a user can specify an upper bound for the amount of
blobs which are kept in memory. Once this upper bound is reached, additional
states are written to disk asynchronously. Once no states reside in memory, the
specified amount of states is read back from disk. This way, even large amounts
of states can be queued without taking a major performance loss.

This should allow us to be able to check several billion B states of a very
large model, a number we could not achieve thus far. Before, we were able to
check about 160 million states of a Hanoi model but simply ran out of memory.

Additionally, we will try to reduce the serialization overhead. Many large
models feature large constant values, e.g., a topology for a railway interlocking.
Serialization and deserialization could be avoided if the value is replaced by a
simple integer “handle”. The master could calculate all possible assignments
for constants beforehand and provide a mapping from an integer to a set of
constants to all workers. It will ensure that all workers share the same mapping
which might not be the case due to, e.g., random enumeration.

Furthermore, we noticed that adding idle workers often slows down distb. We
plan to add logic to the master or even a different tool that monitors queue sizes
as well as progress that decides whether to hot-join additional workstations or to
remove some of them from the calculation. Some models like the Hanoi example
could benefit, where at the beginning most queues are empty but grow to large
sizes as the model check progresses. This could be used, e.g., in a cloud settings
where computational power can be added but, in order to reduce costs, may also
be shut down if not needed.

Finally, distb does not make use of information about discharged proofs as
described in [5]. Workers could send information which transition was used ad-
ditionally to the hash code or only make use of it itself. This might lead to
additional speed-ups because some invariants do not need to be verified at run-
time if already proven beforehand.

Nonetheless, it would be interesting to compare the performance and scaling
of distb with other state-of-the-art distributed model checkers, e.g., LTSmin,
TLC or SPIN. However, a fair comparison with SPIN would be hard because
of different levels of abstraction. LTSmin’s integration with ProB is usually
inherently slower due to additional serialization and communication overhead. If
caching is enabled, LTSmin is usually faster but does not scale as good due to



the fact that additional workers maintain their own caches. A proper comparison
with TLC is feasible because it is possible to translate models freely between
TLA+ and B [12,13].
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