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Abstract. The ProB disprover uses constraint solving to find counter-
examples for B proof obligations. As the ProB kernel is now capable
of determining whether a search was exhaustive, one can also use the
disprover as a prover. In this paper, we explain how ProB has been
embedded as a prover into Rodin and Atelier B. Furthermore, we com-
pare ProB with the standard automatic provers and SMT solvers used
in Rodin. We demonstrate that constraint solving in general and ProB
in particular are able to deal with classes of proof obligations that are
not easily discharged by other provers and solvers. As benchmarks we
use medium sized specifications such as landing gear systems, a CAN
bus specification and a railway system. We also present a new method
to check proof obligations for inconsistencies, which has helped uncover
various issues in existing (sometimes fully proven) models.

1 Introduction and Motivation

Both the B-method [1] and its successor Event-B [2] are state-based formal
methods rooted in set theory. They are used for the formal development of
software and systems that are correct by construction. This usually involves
formal proofs of different properties of the specification.

In former work [23] we described a disprover based on using ProB’s con-
straint solver to automatically find counter-examples for given proof obligations
and thus saving the user from spending time in a futile interactive proof at-
tempt. Say that we have to prove that the goal G is a logical consequence of the
hypotheses H1, . . . ,Hn. The ProB disprover then tries to find a solution for the
formula H1 ∧ . . . ∧Hn ∧ ¬G. If it can find a solution, the proof cannot succeed
and the solution is a counter-example.

In [23] we already made the observation that in some cases, namely if we
neither encounter infinite sets nor deferred sets1 whose cardinality is unbounded,
the absence of a counter-example is actually a proof. We thus suggested as future
work to implement an analysis that checks if the absence of a counter-example is

?? Parts of this research have been sponsored by the EU funded FP7 project 287563
(ADVANCE) and by an industrial project funded by Alstom.

1 Deferred sets are sets which are not given upfront by enumerating their elements.



a valid proof. This work has been finalized in the last year: ProB now keeps track
of infinite enumeration, in particular the scope in which an infinite enumeration
has occurred and whether a solution has been found or not. This enables our
technique to detect if the search for a counter-example was exhaustive, i.e., we
can now use ProB as a prover. Note that we go beyond the suggested future
work of [23]: we allow variables with an infinite domain to occur, as long as they
do not have to be enumerated exhaustively. We have also improved the core
algorithm of [23] in various ways, by allowing to focus on selected hypotheses
and by providing a way to detect inconsistencies in the hypotheses or potential
bugs in the disprover. In this paper we have also conducted a thorough empirical
evaluation, comparing our constraint-based proof with existing provers for B and
Event-B. This study shows that the constraint-based proof fares surprisingly well
for a variety of case studies.

2 Constraint-Based Proof Technique

In the following section we describe how ProB can be used as a prover inside
Rodin [3] and Atelier B [12]. First, we provide a short introduction to the con-
straint solving capabilities of ProB in Section 2.1. Further technical details re-
garding ProB’s kernel can be found in [21,22] or [20]. Following, Section 2.2 will
outline how ProB was embedded into Rodin’s proof architecture. Section 2.3
will explain the integration of ProB into Atelier B. Afterwards, in Section 2.4
we will show how ProB can be used to detect inconsistencies in the model.

2.1 ProB’s Constraint Solving Kernel

The ProB constraint solver is based on CLP(FD)-style constraint-propagation
[11], i.e., the variables of a B specification are annotated with possible values
(e.g., in the form of intervals for integer variables). This information is propa-
gated from one variable to another, e.g., if we know that x is in the range 0..8
and the predicate x = y + 2 holds, then y must be in the range −2..6. As a last
resort, ProB enumerates undetermined variables when no further propagation
is possible. While doing so, the solver tracks where and why enumeration occurs.
It is able to distinguish between safe and unsafe enumerations, i.e., if all possible
values of a variable have to be tried out or if a single solution is sufficient. This
is done by observing the context2 in which an enumeration occurs. Exhaustive
enumeration can then be detected individually for each variable and later be
transferred to the whole constraint if possible. Let us look at a few example
constraints, where we suppose all free variables to be existentially quantified:

– i ∈ {1, 2, 1024, 2048} ∧ i > 2 `? i mod 2 = 1
Here, we have the two hypotheses i ∈ {1, 2, 1024, 2048} and i > 2 and we
want to prove that i mod 2 = 1 is a logical consequence. Hence, we would
construct the formula i ∈ {1, 2, 1024, 2048}∧ i > 2 ∧ ¬(i mod 2 = 1) and try

2 This includes quantification, negation and arbitrarily nested combinations of them.



to find solutions for i. For this formula, ProB finds two solutions (i = 1024
and i = 2048) and no infinite enumeration has occurred (ProB has narrowed
down the interval of i to 3..2048 before enumeration has started). As such,
we can conclude that G ≡ i mod 2 = 1 is not a logical consequence of the
hypotheses H1 ≡ i ∈ {1, 2, 1024, 2048} and H2 ≡ i > 2.

– i ∈ {1, 2, 1024, 2048} ∧ i > 2 `? i mod 2 = 0
For the opposite of the goal, i.e, i mod 2 6= 1 or equivalently i mod 2 = 0,
we construct the formula i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 =
0). In this case ProB finds no solution and no infinite enumeration has
occurred. As such, we have proven that i mod 2 = 0 follows logically from
i ∈ {1, 2, 1024, 2048} ∧ i > 2.

– i > 20 `? i mod 2 = 1
If we want to prove that (i mod 2 = 1) is a logical consequence of i > 20,
we construct the formula i > 20 ∧ ¬(i mod 2 = 1). ProB finds a solution
(i = 22), but infinite enumeration has occurred in the sense that the possible
values of i lie in the interval 22..∞. However, in this context this is not an
issue, as a solution has been found. As such, we can conclude that i mod 2 = 1
is not a logical consequence of i > 20.

– i > 20 `? (i mod 2 = 0 ∨ i mod 1001 6= 800)
Finally, if we want to prove that (i mod 2 = 0 ∨ i mod 1001 6= 800) is a
logical consequence of i > 20, we get the formula i > 20 ∧ ¬(i mod 2 =
0 ∨ i mod 1001 6= 800). Here ProB finds no solution, but an “enumeration
warning” is produced. Indeed, the constraint solver has narrowed down the
possible solutions for i to the interval 801..∞, but with the default search
settings no solution has been found. Here, we cannot conclude that i mod 2 =
0 ∨ i mod 1001 6= 800 is a logical consequence of i > 20. Indeed, i = 1801 is
a counter-example.3

2.2 Integration into Rodin for Event-B

When working on a proof obligation, Rodin keeps track of two sets of hypotheses:
the set of all available hypothesis for the target goal and a user-selected subset.
The idea is to be able to reduce the search space of the automatic provers by
excluding irrelevant hypotheses. In the case of the ProB prover we could, for
instance, get rid of hypotheses that are irrelevant for the proof but contain
variables over infinite domains, deferred sets or complicated constraints.

This approach cannot lead to false positives, because limiting the number
of available hypothesis cannot render a formerly unprovable sequent provable.
However, disproving while omitting hypotheses can lead to false negatives if the
hypotheses are too weak for a proof. For instance, say the goal G is i mod 2 = 1
and the hypotheses are i ∈ {1, 2, 3} (H1) and i 6= 2 (H2). ProB will not find a
counter-example for H1 ∧H2 ∧ ¬G but it will find a (false) counter-example for
H1 ∧ ¬G.

Figure 1 outlines how the disprover proceeds in more detail:

3 Which ProB can find if we enlarge the default search space, e.g., by adding i < 10000
as additional constraint.
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Fig. 1. Disproving Algorithm

1. We first try to solve the predicate H1 ∧ ... ∧ Hm ∧ ¬G, i.e., the negated
goal together with all available hypotheses. If we find a solution, we report
the proof obligation as unprovable and insert the counter-example inside the
Rodin proof tree. If no counter-example is found and search was exhaustive,
the initial sequent is proven, because no counter-example exists.

2. If the constraint solver is unable to prove or disprove the predicate in step 1,
we reduce the number of hypotheses to the user-selected hypotheses and
again look for a counter-example. The three possible outcomes are:

– A contradiction is detected with the reduced set of hypotheses. This is
still a valid proof, as removing hypotheses can only introduce further
counter-examples but not remove them.

– If we find a solution, we report a possible counter-example, but leave the
proof obligation status as unknown. However, we do not interfere with
the ongoing proof effort, as the proof obligation might still be provable
using all hypotheses.

– Otherwise we return without a result (status is unknown).

2.3 Integration into Atelier B for classical B

The integration of ProB into Atelier B is closer to the original implementation of
the disprover explained in [23].4 Within Atelier B a proof obligation is translated
into a B machine, where all hypotheses are put into the properties clause and
the assertions clause contains an implication of the form SelHyp⇒ Goal. Here,
Goal is the proof goal, and SelHyp are the selected hypotheses. The latter are
empty if prob(0) is called from Atelier B and contain all hypotheses H1 which
have a variable in common with Goal if prob(1) is called. When prob(2) is
called, Atelier B recursively adds all further hypotheses which have variables in
common with H1. The selection algorithm is the same that is used for the other
Atelier B provers (e.g., pp(0), pp(1), pp(2)). It is also possible to specify a

4 This work was conducted in a joint project with ClearSy (Lilian Burdy, Etienne
Prun) and funded by Alstom (Fernando Mejia).



time-out t in milliseconds: prob(n|t). Once the machine is constructed, Atelier
B calls the command line version of ProB, which tries to find a counter-example
to SelHyp ⇒ Goal and writes the result to an intermediate file. The possible
result values are very similar to above:

– no counter-example exists: the proof obligation is proven,
– no counter-example found (with reason being either time-out, deferred sets

used or enumeration warning): the proof obligation status is unknown
– counter-example found: the proof obligation status is still unknown, but not

provable from the selected hypotheses.

2.4 Inconsistency Detection

After the algorithms outlined in Sections 2.2 and 2.3 return a proof, a second
phase can be triggered as outlined in Figure 2: We try to find a proof for the
negation of the goal. This time, we send H1 ∧ ... ∧ Hm ∧ G to the constraint
solver. The result allows us to decide, whether the goal predicate G played a role
in the original proof. If the negated goal can be proven as well, we detected a
contradiction in the hypotheses. Contradicting hypotheses might occur due to
an error in the model, in particular if they are detected at the root of the proof
tree.5 Hence, the user should be notified if they occur in a successful proof.

If contradicting hypotheses or disproven obligations have been found, ProB
can afterwards compute the unsat core in order to provide smaller counter-
examples and ease understanding of shortcomings in the underlying model. This
helped us to identify the cause of several bugs in the Stuttgart 21 model and in
one of the published landing gear case studies (see Section 3.2).

Furthermore, this two-phase analysis can be used to detect bugs in ProB: if
the search for a counter-example fails to explore certain cases, it might be inde-
pendent of the goal. Hence, we can detect if ProB correctly spots contradictions
using crafted sequents. In fact, we did detect an error in a prototypical optimi-
sation (common-subexpression elimination), which we did not use in this paper.
We could even go further and apply other provers to the unsat core generated
by ProB in order to validate a proof effort by a second toolchain.

3 Empirical Evaluation and Comparison

In this section, we compare ProB to several other provers available for the
Rodin platform [3], i.e., Rodin’s automatic tactic and the SMT plug-in [14,15].

Our evaluation leads us to the following conclusions:

– In many cases ProB can discharge proof obligations that cannot be dis-
charged by other provers. Each additional obligation that is discharged ac-
tually saves time and money.

– None of the provers can be replaced by the others.

5 Deeper within a proof, contradicting hypotheses can occur “naturally”.
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– The performance of a prover is influenced by the surrounding tactic, includ-
ing other provers. While the influence of a tactic on ProB is only marginal,
it is quite strong for other provers.

3.1 Experimental Setup

For our experiments, we have used Rodin 3.1, version 2.1.0 of the Atelier B
provers plugin and version 1.2.1 of the SMT plugin, with the bundled version
2.4.1 of CVC3 and the bundled development version of veriT. We have used a
timeout of 5 seconds for each SMT solver, run in succession. ProB was used
in version 1.5.1-beta1, connected through the disprover plugin version 3.0.8.
Again, a timeout of 5 second was used for each constraint solving attempt with
a maximum of two attempts per proof obligation (see Figure 1). We used a
global timeout of 25 seconds for a whole tactic.

All benchmarks were run on a MacBook Pro featuring a 2.6 GHz i7 CPU
and 8 GB of RAM. We did not run proof attempts in parallel to avoid issues
due to hyper-threading or scheduling. We developed an evaluation plugin6 for
the Rodin platform that applies the user- or pre-defined proof tactics to selected
proof obligations.

We used the following combined tactics as they represent closely what can
be utilized by end-users:

– The automatic tactic that comes with Rodin. It applies a number of rewriting
rules and decision procedures to the proof tree. For instance, it checks if the
goal is included in the set of hypotheses and thus discharged. The automatic
tactic is applied until a fixpoint is reached or the process times out. This
is the “Default Auto Tactic” of Rodin where the calls to PP and ML have
been removed.

– In a second step, we used this tactic in its original state, i.e., with the PP
and ML provers from Atelier B enabled.

6 See https://github.com/wysiib/ProverEvaluationPlugin for sources and instruc-
tions.

https://github.com/wysiib/ProverEvaluationPlugin


– The SMT plugin [14,15] applies two different SMT solvers (veriT [10] and
CVC3 [7]) to the original goal. We used the default SMT tactic that calls
PP and ML as well.

– Finally, we add ProB to the tactic as well. It is applied to the goal before
the other provers.

In addition we benchmarked the provers alone, i.e. without tactics. This gives
us a better picture of the individual power of each prover.

– PP and ML from Atelier B together,
– SMT plugin on its own, using both veriT and CVC3, and
– ProB alone.

We used the following models for our benchmarks:

– Answers to the ABZ-2014 landing gear case study [9]. Beside our own ver-
sion [18], we also used the three models by Su and Abrial [26], a model
by André, Attiogbé and Lanoix [4], as well as a model by Mammar and
Laleau [24].

– A model of the Stuttgart 21 Railway station interlocking by Wiegard, derived
from chapter 17 of [2] with added timing and performance modeling.

– A model of a controller area network (CAN) bus developed by Colley.
– A formal development of a graph coloring algorithm by Andriamiarina and

Méry. The graphs to be colored are finite, but unbounded and not fixed in
the model.

– A model of a pacemaker by Méry and Singh [25].

The models were selected so as to cover a variety of use cases. The landing
gear model [18] contains mainly enumerated sets; hence we suspected ProB to
perform well. We included several other versions of the case study to investigate
how modelling style influenced prover performance. On the other end of the
spectrum, the graph coloring model uses only deferred sets. Hence, we expected
ProB not to perform well, as finite enumeration is not possible. The other
models were expected to lie in between those extremes. We do not claim that
our selection is representative. Indeed, we could have selected more models using
(mostly) deferred sets; but this would have just confirmed that ProB’s prover
is disabled for proof obligations involving deferred sets.

For raw data and additional visualizations see http://www.stups.hhu.de/

ProB/index.php5/Sefm2015. Rodin is available on http://www.event-b.org.
The provers are available from update sites included in Rodin.7

3.2 Results

The benchmark results for the tactics can be found in Tables 1 and 2 and Fig-
ures 3 to 5, while the results for the provers alone are in Table 3 and part (b) of
Figure 3. Table 1 shows the total number of proof obligations discharged, as well

7 For a standalone version of ProB see http://www.prob2.de.

http://www.stups.hhu.de/ProB/index.php5/Sefm2015
http://www.stups.hhu.de/ProB/index.php5/Sefm2015
http://www.event-b.org
http://www.prob2.de


Table 1. Benchmark results: Discharged Event-B Proof Obligations

Model # POs Tactic alone +ML/PP +ML/PP+SMT +ML/PP+SMT+ProB

Landing Gear System 1, Su, et. al. 2328 2022 2190 2303 2306
Landing Gear System 2, Su, et. al. 1188 817 915 1169 1173
Landing Gear System 3, Su, et. al. 341 134 152 205 262
CAN Bus, Colley 534 289 398 403 388
Graph Coloring, Andriamiarina, et. al. 254 122 166 170 169
Landing Gear System, Hansen, et. al. 74 64 65 67 74
Landing Gear System, Mammar, et. al. 433 218 297 381 397
Landing Gear System, Andre, et. al. 619 180 214 319 450
Pacemaker, Neeraj Kumar Singh 370 258 354 364 369
Stuttgart 21 interlocking, Wiegard 202 37 33 97 147

Table 2. Benchmark results: Event-B Average Runtimes (in seconds / po)

Model Tactic alone +ML/PP +ML/PP+SMT +ML/PP+SMT+ProB

Landing Gear System 1, Su, et. al. 0.23 0.35 0.3 0.55
Landing Gear System 2, Su, et. al. 0.34 0.64 0.74 0.79
Landing Gear System 3, Su, et. al. 8.29 9.71 11.08 6.01
CAN Bus, Colley 5.29 5.93 6.03 7.13
Graph Coloring, Andriamiarina, et. al. 1.48 2.56 7.44 8.04
Landing Gear System, Hansen, et. al. 0 2.1 2.7 0.2
Landing Gear System, Mammar, et. al. 1.68 2.02 2.05 2.39
Landing Gear System, Andre, et. al. 11.64 11.89 11.92 7.01
Pacemaker, Neeraj Kumar Singh 0 0.1 0.04 0.4
Stuttgart 21 interlocking, Wiegard 11.7 13.26 13.2 9.84

as the percentage of proof obligations discharged using ML/PP together with
SMT and in the last column the percentage discharged by using these two proof
tactics together with the ProB disprover. Each Venn diagram shows how many
proof obligations are discharged by which prover. Table 2 shows the runtimes of
the different provers for all proof obligations and for discharged proof obligations
individually. Note that for the Stuttgart 21 model and the Andre et al. model,
ProB found several unprovable proof obligations, i.e., errors in the model as
can be seen in Table 3. E.g., for Stuttgart 21 ProB found a counter-example for
two proof obligations, while it found five counter-examples in the landing gear
model. This is very useful feedback to the developer of the model, and the initial
purpose of the ProB disprover.

The diagram in Figure 3 shows the gain of using ProB in addition to the
other decision procedures. Compared to the SMT Tactic, adding ProB leads to
an additional 304 (238+1+11+54) proof obligations being discharged. However,
due to the time consumption by ProB, 47 (35+7+5) proof obligations cannot be
discharged anymore. With a higher time-out, these could again be proven. The
second diagram in Figure 3 shows how the individual provers alone contribute:
Each of them has a set of proof obligations that cannot be solved by any of the
others (192 for ML/PP, 43 for SMT and 2000 for ProB).

Except for the graph coloring algorithm ProB performs surprisingly well.
The graph coloring algorithm uses unbounded sets, meaning that some of the
proof obligations cannot be proven using constraint solving and enumeration.



Table 3. Results of running Provers alone (without pre-processing by Rodin)

Model # POs ML/PP SMT ProB
prove disprove

Landing Gear System 1, Su, et. al. 2328 1396 1477 2311 0
Landing Gear System 2, Su, et. al. 1188 341 567 1176 0
Landing Gear System 3, Su, et. al. 341 99 146 290 0
CAN Bus, Colley 534 481 282 276 0
Graph Coloring, Andriamiarina, et. al. 254 90 97 0 0
Landing Gear System, Hansen, et. al. 74 70 59 74 0
Landing Gear System, Mammar, et. al. 433 227 257 400 0
Landing Gear System, Andre, et. al. 619 189 268 567 5
Pacemaker, Neeraj Kumar Singh 370 356 224 354 0
Stuttgart 21 interlocking, Wiegard 202 51 44 125 2

As can be seen in Table 1, adding ProB improves the results of automatic
proving for all other models. In some cases, such as the landing gears, the im-
provement is substantial (cf., Figure 4). The reason for the rather big improve-
ment is that these models only use enumerated sets, booleans and integers as
base types. In these cases ProB can produce elaborate case distinctions, com-
bined with constraint solving to narrow down the search space. This type of
proof is not supported by the classical provers ML and PP. Generally, the proof
obligations that pose problems to ProB are certain well-definedness proof obli-
gations. For instance, function application requires to proof that the parameter
is in the domain of the function. Usually this leads to expensive enumeration of
the possible parameter values.

For some of the models, using ProB slows down the prove process. As shown
in Table 2 ProB’s runtime is above average for some proof obligations, while it
considerably speeds up other proof attempts. We suspect that this is due to the
multiple constraint solver calls ProB performs on different sets of hypotheses
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Table 4. Performance of provers on different kinds of proof obligations

Kind of PO # POs ML/PP SMT ProB

Feasibility of non-det. action 59 53 (89.8 %) 40 (67.8 %) 44 (74.6 %)
Guard strengthening 300 27 (9.0 %) 13 (4.3 %) 258 (86.0 %)
Invariant preservation 4938 2877 (58.3 %) 3111 (63.0 %) 4488 (90.9 %)
Action simulation 153 118 (77.1 %) 108 (70.6 %) 134 (87.6 %)
Theorem 97 13 (13.4 %) 29 (29.9 %) 66 (68.0 %)
Well definedness 779 200 (25.7 %) 109 (14.0 %) 570 (73.2 %)

6326 3288 (52.0 %) 3410 (53.9 %) 5560 (87.9 %)

as shown in Figure 1. Also, ProB is looking for proofs and counter-examples.
This often means that ProB will continue the computation, even after it has
realized that no proof is possible (in the hope of finding a counter-example).

It is also interesting to note that, on their own, the ML and PP provers do not
fare quite so well as in Table 1: they require pre-processing and tactic support to
be fully effective: See Table 3 containing the results without any pre-processing.

All models except the Landing Gear System by Mammar, et. al. show the
same behavior: The rate of discharged proof obligations drops significantly if
Rodin’s default tactics are not applied. Adding SMT solvers or ProB does not
replace the tactics either.

In contrast, the model by Mammar, et. al. shows the opposite behavior: with-
out pre-processing, more proof obligations can be discharged. This is probably
due to the timeouts leaving less time for the actual prover, if we include a pre-
processing phase. In future, we want to examine whether better pre-processing
can improve the performance of the ProB disprover.

The same effect can be observed in Table 4. Here, the performance of the
provers on different kinds of proof obligations is given. For most kinds, ProB
does perform quite well when compared to ML/PP and the SMT solvers, espe-
cially for guard strengthening proofs, theorem proofs and well-definedness proofs.
For feasibility and finiteness proof obligations, on the other hand, ProB fares
less well.

Unexpected Performance of SMT To our surprise, the SMT solvers did not
perform as well as we expected when compared to ProB. For certain kinds like
guard strengthening or initialization in Table 4, the SMT solvers prove less proof
obligations than ML/PP or ProB. We suspect that this is due to the translation
from Event-B to SMT-LIB:

– The λ-based approach [14,15] does not support sets of sets. Thus, a whole
class of proof obligations cannot be solved by it. Therefore, the SMT plugin
uses the second approach presented in [14,15] as the default:

– The ppTrans approach [19] translates set theory to predicate calculus. The
resulting SMT-LIB problem is then enriched by the predicate calculus version
of certain set-theoretic axioms.
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Fig. 4. Visualization of the benchmark results. Part 1: Landing gear systems

Newer releases of SMT-Solvers like CVC4 [5] support finite sets natively
as an extension to the SMT-LIB language [27]. Thus, certain classes of proof
obligations could be passed to the SMT-Solvers directly instead using one of the
approaches mentioned above. We assume that this would increase the number
of proof obligations that could be discharged successfully. In summary, while
the SMT plugin has been very successful, we recommend critically examining
the current SMT-LIB translation and believe there is scope for considerable
improvement by using an alternate translation.

Inconsistency in Hypothesis Detection The inconsistency detection of Sec-
tion 2.4 found also various contradictions in the theorems (at lower refinement
levels) of the Stuttgart 21 model. It also highlighted an issue in the first devel-
opment of the ABZ landing gear from [26]. The ProB disprover was flagging,
e.g., the proof obligation treat hndl up 112/inv1/INV in the machine LPN4 as
containing a contradiction in the hypothesis. The ProB unsat core algorithm
found out the following root cause:

close_EV = FALSE & open_EV = FALSE & door = op2cl &

((open_EV = FALSE & close_EV = FALSE) => door = cl)

The seen context LPNC0 contains the axiom partition(D, {cl}, {cl2op},
{op2cl}, {op}).8 The first line comes from the guard of the event treat hndl up,
the second line is the invariant inv1 from LPN4. In other words, the disprover
has detected that this event can never be executed given the invariant. A similar
issue was detected for several other events.9

When (not) to use the ProB Disprover In summary, we present the fol-
lowing insights on when to use the ProB disprover (+) and when not to (-):

8 For technical reasons this axiom is not yet included in the unsat core; partition
axioms are never removed from the core by the current algorithm.

9 In LPN4 of [26]: treat hndl up 122, treat hndl up 132, treat hndl dn 112,
treat hndl dn 122, treat hndl dn 132.
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Fig. 5. Visualization of the benchmark results. Part 2: Miscellaneous models

+ Used solely as a disprover, ProB can prevent futile interactive proof at-
tempts. This is always worthwhile.

+ The inconsistency detection is very useful for finding subtle modelling errors.

+ On models such as the ABZ landing gear models (Figure 4), which rely
heavily on enumerated sets, booleans and/or bounded integers as base types,
ProB performs very well.

+ The Stuttgart 21 model shows that explicit data, e.g., track layouts or time
tables, can often be used effectively by ProB. Often, this results in a proof
by an elaborate case distinction.

+ ProB performs reasonably well on unbounded intervals, when interval rea-
soning can be applied. This occurs for example in the lower refinement levels
of the ABZ case study models or the pacemaker model.

- As soon as the proof goal references deferred sets (e.g., in the graph coloring
model), no proof can be done by construction of the disprover (see Figure 1).

- When unbounded datastructures are used, ProB cannot exhaustively enu-
merate cases and is much less powerful. This happens for example in the
CAN bus model, that represents a buffer as an unbounded partial function
from N to Z.



4 Discussion and Conclusion

One motivation for the experiments conducted in this paper was the empirical
evaluation of our constraint solver, more precisely its capability to detect incon-
sistencies (a successful proof with the disprover requires finding a contradiction
without enumerating unbounded variables; see Figure 1). Finding inconsistencies
is important for many other features of ProB, e.g., detecting disabled events
during animation. Furthermore, it is useful for constraint-based validation, such
as deadlock checking [17], where it avoids the constraint solver exploring infea-
sible alternatives. In the context of model-based testing, it enables ProB to
detect uncoverable alternatives, and not spend time trying to find test cases for
them.

An important issue is the soundness of the ProB disprover. In [8] we have
presented the various measures we are taking to validate ProB’s results in gen-
eral. In addition, we have developed an SMT-LIB [6] importer for ProB and
have applied our disprover to a large number of SMT-LIB benchmarks, checking
that no “false theorems” are proven. For this paper, we have also double checked
many of the proof obligations which were only provable by ProB, to ensure that
they are indeed provable. As the Venn diagrams in Figures 4 and 5 show, a large
number of proof obligations can be proven by two or even three different provers.
As the three provers rely on completely different technologies and have been de-
veloped by independent teams, we can have a very high confidence that those
proof obligations are indeed provable.

We have demonstrated that constraint-based proof in general, and ProB
in particular, is capable of discharging proof obligations that currently cannot
be proven using Rodin’s auto tactic and the SMT solvers. Our prover typically
deals well with a different kind of proof obligations than the other provers, and
is thus an orthogonal extension rather than a replacement. Rodin’s auto tactic
performs well in the realm of set theoretic constructs and relational expressions,
some of which cannot be easily represented in the SMT syntax. SMT on the other
hand performs well on arithmetic expressions, where the auto tactics often fail.
ProB finally covers predicates over enumerated sets, explicit data and explicit
computations and has a good support for integer arithmetic over finite domains.

However, for models which make heavy use of deferred sets, such as the graph
coloring algorithm model, the ProB disprover can currently mainly play its role
as disprover. More precisely, for any proof obligation which involves deferred sets
and where no precise value of the cardinality of the deferred set is known, the
disprover can only return either a counter-example or the result “unknown”.

In future, we plan to improve the treatment of deferred sets in ProB, and to
have the constraint solver determine the cardinalities of those sets while solving.

We also plan to conduct experimental evaluations for ProB within Atelier
B, and compare with efforts such as [13] or the BWare project [16]. First results
on industrial case studies within Alstom are already very promising.

We think that the ProB Disprover is a valuable extension to the existing
set of provers, because it can increase the number of proof obligations that are
automatically discharged, thus saving time and money. Overall, the outcome



of the empirical evaluation was a positive surprise, as ProB’s main domain of
application is finding concrete counter-examples, not discharging proof obliga-
tions. In particular, the fact that the number of discharged proof obligations
(5573 in Figure 3 (b)), for the models under consideration, is better than that of
the two SMT solvers of the SMT plugin (3421 in Figure 3 (b)) was completely
unexpected.
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