
Three is a crowd: SAT, SMT and CLP
on a chessboard

Sebastian Krings1, Michael Leuschel1, Philipp Körner1, Stefan Hallerstede2,
and Miran Hasanagić2

1 Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf
{krings,leuschel}@cs.uni-duesseldorf.de

p.koerner@uni-duesseldorf.de
2 Department of Engineering, Aarhus University

Aarhus, Denmark
{sha,miran.hasanagic}@eng.au.dk

Abstract. Constraint solving technology for declarative formal models
has made considerable progress in recent years, and has many applica-
tions such as animation of high-level specifications, test case generation,
or symbolic model checking. In this article we evaluate the idea of using
very high-level declarative models themselves to express constraint sat-
isfaction problems. In particular, we study an old mathematical puzzle
from 100 years ago, called the crowded chessboard. We study various
high-level and low-level encodings and solutions, covering SAT, SMT
and CLP-based solutions of the puzzle. Additionally, we present a new
technique combining SAT-solving with CLP which is able to solve the
puzzle efficiently.

1 Motivation: Model-Based Constraint Solving

Logic programming and constraint programming are key members of the declar-
ative language paradigm. Logic programs and constraint (logic) programs tend
to be much more declarative than traditional imperative programs, but devel-
opers still have to consider considerable operational aspects. High-level formal
methods languages like B, tla+, or Z, are more declarative still: they were devel-
oped to be specification languages, with little concern for execution.3 In between
logic programs and formal methods are logic-based encodings like SMT-LIB.

In this paper, we study a non-trivial constraint satisfaction problem, inves-
tigating both the ease of expressing the problem and the solving performance
for a range of declarative languages, from Prolog, onto SAT, SMT and high-
level formal specification languages. One popular specification language is B [1],
which has its roots in first-order predicate logic, with (higher-order) set theory
and arithmetic. In that respect, it is quite similar to other formal methods such
as tla+, Z or even VDM. Constraint solvers have made a big impact for formal

3 Some even argue that formal specifications should be non-executable [11].

methods in general and B or tla+ in particular, by providing validation tech-
nology for proof [8, 18], animation [15], bounded or symbolic model checking [13],
and test case generation [21].

We want to turn our focus from constraint solving technology for validating
models towards using formal models to express constraint satisfaction problems.
The idea is to use the expressivity of the B language and logic to express practical
problems, and to use constraint solving technology on these high level models.
In [16], we already argued that B is well suited for expressing constraint satisfac-
tion problems in other domains as well. This was illustrated on the Jobs puzzle
challenge [24] and we are now solving various time tabling problems [23].

In this paper, we want to present one particular benchmark puzzle, and
various ways to solve it. One motivation was that the puzzle was formulated
exactly 100 years ago. A more academic motivation is that the puzzle is relatively
easy to explain and hence should be relatively easy for other researchers to
provide their own solutions in their favorite declarative formalism and compare
it with ours.

Indeed, a real-life problem such as the time-tabling problem in [23] is very
arduous to describe in an article, and would require considerable investment to
write a solution in another formalism, requiring many weeks or months of effort.
A puzzle such as the N-queens puzzle, on the other hand, is too simple and allows
many very special encodings, which cannot be easily used in real-life, practical
problems. The encoding is not really a challenge, and a solution to the N-queens
puzzle only provides limited insights into practicality of a formalism.

We feel that the crowded chessboard problem provides the almost perfect
middle ground, even though it is a combinatorical problem: the problem can
still be explained in a paper, and has some entertaining aspects as well. Fur-
thermore, solutions can be easily checked by a human, provided the solution is
rendered graphically. In the following, we investigate different declarative encod-
ings of the problem, considering ease of understanding, correspondance to the
problem statement and solving performance. Constraint solving technology can
be classified into the following broad categories, which we all experiment with:

– Constraint programming, used in Sections 3 and 4 and used by ProB’s
default solver in Section 2.1,

– Translation to boolean satisfiability and using SAT solvers in Section 5,
– Translation to SMT-LIB and using SMT solvers in Section 6.

All models used in this paper are available at:
https://github.com/leuschel/crowded-chessboard

2 The Crowded Chessboard Problem and its B Solution

The Crowded Chessboard Problem

The crowded chessboard is a 100 year old problem appearing as problem 306 in
Dudeney’s book [9]. The book provides the following description of the problem:

board
size QRB N

5 5 5 8 5
6 6 6 10 9
7 7 7 12 11
8 8 8 14 21
9 9 9 16 29

10 10 10 18 37
11 11 11 20 47
12 12 12 22 57
13 13 13 24 69
14 14 14 26 81
15 15 15 28 94
16 16 16 30 109

Table 1: Configurations

“The puzzle is to rearrange the fifty-one
pieces on the chessboard so that no queen
shall attack another queen, no rook at-
tack another rook, no bishop attack another
bishop, and no knight attack another knight.
No notice is to be taken of the intervention of
pieces of another type from that under con-
sideration - that is, two queens will be con-
sidered to attack one another although there
may be, say, a rook, a bishop, and a knight
between them. And so with the rooks and
bishops. It is not difficult to dispose of each
type of piece separately; the difficulty comes
in when you have to find room for all the
arrangements on the board simultaneously.”

Table 1 shows the maximum number of pieces for which the puzzle can still
be solved. To gain unsatisfiable benchmarks, we will increment the number of
knights.

2.1 B Solution

We now try to formalise this problem in the B language, as clearly as possible.
Our goal here is to make a human readable formalisation of the model, where a
human can be convinced that the problem has been modelled correctly. Indeed,
in constraint programming it is quite often the case that subtle errors creep into
a formalisation, which can go unnoticed for quite some time. Thus, below we also
intersperse the formal model with a few visualisations and other sanity checks,
to ensure that the model is correct. The LATEX of this section has been derived
by executing the model, see [14].

For the visualisations, we first set the dimension n of the board to 5 and thus
have the following set of possible indexes on the chessboard: Idx = {1, 2, 3, 4, 5}.
Furthermore, we define the set of chess pieces, including a special piece Empty
for empty squares: PIECES = {Queen,Bishop,Rook,Knight, Empty}.

2.2 Specifying Movements

First, we compute for every position on the board which squares can be reached
by a horizontal or vertical move, i.e., a function which returns a set of coordinates

ZZZZZ
ZZRZZ
ZZZZZ
ZZZZZ
ZZZZZ

Fig. 1: Rook Attack

ZZZZZ
ZZBZZ
ZZZZZ
ZZZZZ
ZZZZZ

Fig. 2: Bishop Attack

ZZZZZ
ZZNZZ
ZZZZZ
ZZZZZ
ZZZZZ

Fig. 3: Knight Attack

that can be attacked from a given position. For example, we have moveHV (2 7→
3) = {(1 7→ 3), (2 7→ 1), (2 7→ 2), (2 7→ 4), (2 7→ 5), (3 7→ 3), (4 7→ 3), (5 7→ 3)},
visualized in Fig. 1. This can be expressed in B using a lambda function:

moveHV = λ(i, j).({i, j} ⊆ Idx | {k, l | {k, l} ⊆ Idx ∧ (i, j) 6= (k, l)∧
(i = k ∨ j = l)})

Now, we compute the diagonal moves, e.g., we have moveDiag(2 7→ 3) = {(1 7→
2), (1 7→ 4), (3 7→ 2), (3 7→ 4), (4 7→ 1), (4 7→ 5)}, visualized in Fig. 2.

moveDiag = λ(i, j).({i, j} ⊆ Idx | {k, l | {k, l} ⊆ Idx ∧ (i, j) 6= (k, l)∧
(k − i = l − j ∨ i− k = l − j)})

To describe the moves of the knight, we introduce the following auxiliary function
to compute the absolute distance between indices:

dist = λ(i, j).(i ∈ Z ∧ j ∈ Z | IF i ≥ j THEN i− j ELSE j − iEND).

Using it, the knight’s moves can now be described as follows:

moveK = λ(i, j).({i, j} ⊆ Idx | {k, l | {k, l} ⊆ Idx ∧ i 6= k∧
j 6= l ∧ dist(i, k) + dist(j, l) = 3})

For example, we have moveK (2 7→ 3) = {(1 7→ 1), (1 7→ 5), (3 7→ 1), (3 7→
5), (4 7→ 2), (4 7→ 4)}, visualized in Fig. 3.

We can now assemble all of these into a single higher-order function, which
for each piece returns the attacking function (which in turn for each position on
the board returns the set of attacked positions):

attack = {(Rook 7→ moveHV), (Bishop 7→ moveDiag), (Knight 7→ moveK),(
Queen 7→ λ(p).(p ∈ (Idx× Idx) | moveHV (p) ∪moveDiag(p))

)
,

(Empty 7→ ((Idx)× (Idx))× {∅})}

2.3 Specifying the Number of Pieces

After having modelled how the pieces move, we now describe how many pieces
of each type we want to place on the board as follows. Note that the second

conjunct asserts the number of all placed figures, including the empty field, to
be n2. That is, it computes the number of empty squares from the given figures.
The only hard-coded part is the number of knights (5 in this case):

nrPcs ∈ PIECES→ 0 . . . n2 ∧Σ(p).(p ∈ PIECES|nrPcs(p)) = n2∧(
(Queen 7→ n) ∈ nrPcs ∧ (Rook 7→ n) ∈ nrPcs∧
(Bishop 7→ 2 ∗ n− 2) ∈ nrPcs ∧ (Knight 7→ 5) ∈ nrPcs

)
This gives rise to the following solution for n = 5:

nrPcs = {(Queen 7→ 5), (Rook 7→ 5), (Bishop 7→ 8),

(Knight 7→ 5), (Empty 7→ 2)}

2.4 Solving the Crowded Chessboard Puzzle

Solving the crowded chessboard puzzle now amounts to solving the predicates:

board ∈ Idx × Idx → PIECES

∀P .(P ∈ PIECES ⇒ card({p|p ∈ dom(board) ∧ board(p) = P}) = nrPcs(P))

∀(pos, piece).((pos 7→ piece) ∈ board

⇒ ∀pos2 .(pos2 ∈ attack(piece)(pos)⇒ board(pos2) 6= piece))

AQABS
BMRLZ
LRMZM
RMQMB
ABARL

Fig. 4: Solution

Observe how compact the core B representation of the
problem is. The first predicate sets up the board and spec-
ifies the possible pieces that can be put on the board. The
second predicate specifies how many pieces of each kind
should be placed on the board. The third predicate posits
that no piece can attack another piece of the same kind. In
case we want to add a new kind of piece or change the rules
for an existing piece, these three predicates would remain
unchanged; one would only have to adapt the definition of
the attack function. The first solution found by ProB for
n=5 is visualized in Fig. 4.

Of course, the model could be improved by adding further (implied) con-
straints, e.g., by asserting that bishops have to be placed on border cells. How-
ever, by doing so, we would decrease correspondence to the original problem
formulation, sacrificing comprehensibility for solving speed.

2.5 New CLP and SAT Integration

We believe that the above encoding is compact, elegant, easy to understand,
validate and adapt by a human. Unfortunately, as it stands, this encoding can
be solved by ProB only for small values of n. Given the success of the SAT
approach later in Section 5, one may wonder why ProB’s SAT backend [20]
cannot be applied to the B model instead of the default CLP solver.

The reason is the higher order nature of the model: the SAT backend re-
lies on Kodkod [26], a relational model finder translating its input language to
SAT. However, Kodkod can only translate certain first-order constructs and data
structures. For this reason, the technique in [20] statically splits a predicate P to
be solved into a part PSAT that can be translated by Kodkod and another one
PCLP that will be solved by ProB’s default solver. The solving now proceeds
by first performing deterministic propagation in PCLP , possibly instantiating
values in PSAT . Then, PSAT is solved, the solution of which is fed into ProB
for solving PCLP . The core problem is that, when solving PCLP we cannot gen-
erate new constraints to be shipped to the SAT solver. This is exactly what
we would need in our case: let ProB evaluate the higher-order attack function
from Section 2.2, unroll the involved quantifiers and then ship simple first-order
constraints to a SAT solver.

We have implemented exactly this style of integration in reaction to the chal-
lenge posed by the crowded chessboard. The idea is to allow the user to annotate
parts of the constraint as to be treated by a SAT solver. Note that these parts
can be inside quantifiers, in which case ProB would expand these quantifiers
and (possibly) compute relevant values using higher-order datastructures.

We annotate implications, equalities, inequalities and cardinality constraints
for SAT and let ProB deal with the rest, e.g., determining and applying the
higher-order attack function. Doing so, the first two predicates given in Sec-
tion 2.4 can completely be given to a SAT solver via Kodkod. The third one
however is unrolled by ProB, only the inner predicate gets solved by Kodkod:

ProB (CLP)︷ ︸︸ ︷
∀(piece, i, j, i2, j2).(i 7→ j ∈ (1 . . . n)× (1 . . . n) ∧ i2 7→ j2 ∈ attack(piece)(i 7→ j)

⇒ board1((i− 1) ∗ n+ j) = piece⇒ board1((i2− 1) ∗ n+ j2) 6= piece︸ ︷︷ ︸
Kodkod (SAT)

)

Observe that we have rewritten the quantification over (piece, i, j, i2, j2)
slightly, to enable ProB to completely expand the quantifier and apply the
higher-order function attack.

3 A Prolog CLP(FD) Solution

Given that ProB’s default CLP solver does not scale for the high-level B model,
we have written a direct encoding of the crowded chessboard problem in SICS-
tus Prolog using the finite domain library CLP(FD) [5]. As the following code
snippet shows, the chessboard is encoded as a list of length n of lists of n fi-
nite domain variables each, in the range 0 to 4. The value 0 denotes an empty
square, 1 a queen, 2 a rook, 3 a bishop, and 4 a knight. The entry predicate
is solve(N,K,Sol), where N specifies the size of the board and K the number
of knights to be placed. The solution is returned in Sol; by backtracking all
solutions can be found.

solve(N,Knights,Sol) :-

length(Sol,N),

maplist(pieces(N),Sol),

append(Sol,AllPieces),

... constraint setup ...

labeling([ffc],AllPieces).

pieces(N,L) :- length(L,N), clpfd:domain(L,0,4).

Above, AllP ieces is a flattened list of the domain variables. Below, we
explain the most important part of the constraint setup. To ensure that we
place the correct number of pieces of each type onto the board we use the
global cardinality constraint of CLP(FD):

Bishops is 2*N-2,

Empty is N*N - 2*N - Bishops - Knights,

global_cardinality(AllPieces,[0-Empty,1-N,2-N,3-Bishops,4-Knights])

We use the following auxiliary predicates for rows, columns and diagonals to
ensure that queens, rooks and bishops do not attack each other:

exactly_one(Piece,List) :- count(Piece,List,’#=’,1).

at_most_one(Piece,List) :- count(Piece,List,’#<’,2).

For example, maplist(exactly one(1),Sol) ensures that no queens attack
each other on rows. We can see that this is a lower-level encoding than the B-
solution: There is special code for knights, which are treated quite differently
from the other pieces. Furthermore, the model checks explicitly that there is
exactly one queen on every row and column.

4 OscaR / Scala solution

As an additional solution, we have written an encoding in Scala using the OscaR
Constraint Programming library [19]. This library supports a CLP(FD) mod-
elling approach combined with various search heuristics. Compared to ProB,
OscaR usually sacrifices completeness for efficiency, while also providing sup-
port for built-in constraint functions. Such functions have dedicated and opti-
mised domain restriction and search algorithms. Variables in OscaR are ex-
plicitly declared with their domains, e.g., val Pieces = Set(0 to k). The rep-
resentation of the problem in the OscaR model follows closely that of the B
model. However, implementation concerns need to be considered in OscaR. For
instance, when dereferencing a 2-dimensional array, the first index must be of
type int (but not of type CPIntVar). Hence, to refer to rows and columns usu-
ally the 2-dimensional array and its transpose are required. E.g., in OscaR the
board is modelled by

val board = Array.fill(n, n)(CPIntVar(Pieces))

val board_t = board.transpose

Constraints are added to the constraint store by means of a function add(c),
where c is a constraint. Constraints may not contain quantifiers. As a conse-
quence, OscaR models are less abstract than B models as well as not as easy
to read and understand, e.g., concerning knight attacks:

for(i<-0 until n; j<-0 until n)

(for(u<-Seq(-2, -1); v<-Seq(-2, -1, 1, 2);

if(u.abs!=v.abs && i+u>=0 && i+u<n && j+v>=0 && j+v<n))

yield board(i+u)(j+v)).foreach

{t=>add(board(i)(j).isEq(k)==>t.isDiff(k))}

We have analyzed two differently structured versions of the model.

1. A monolithic version where constraints are propagated between the four
sub-problems, similarly to the B and Prolog models.

2. A layered version where the sub-problems are solved in a predetermined order
(first bishops, then rooks, then queens, finally knights) where constraints are
propagated within the sub-problems and allocated positions are passed as
constants from one to the next sub-problem. The only way the sub-problems
communicate is by backtracking.

Three similar sets Bset, Rset and Qset are used in the layered model to
pass the already allocated board positions to the next sub-problem dealing with
bishops, rooks and queens, respectively. E.g., Bset is declared as

val Bset = scala.collection.mutable.Set[(Int, Int)]()

When the solver for the bishops problem has found a solution, the positions of
the bishops are copied into Bset,

for(i<-0 until n; j <- 0 until n)

if(board(i)(j).value.toInt!=0) Bset += (i, j)

The sub-model for the rooks contains constraints to block these positions,

for(i<-Bset) add(board(i._1)(i._2)!==r)

and adds the constraints for the placement of the rooks using global cardinality
constraints gcc

for(i <- 0 until n){

add(gcc(board(i), Array((r,CPIntVar(0 to 1)))))

add(gcc(board_t(i), Array((r,CPIntVar(0 to 1)))))

}

add(gcc(board.flatten.toArray, Array((r,CPIntVar(nR)))))

The same scheme is followed for the queens and knights subproblems.
We have varied the order of the sub-problems discussed above and the al-

ternatives have a worse performance than the one presented here. This is likely
due to the degrees of liberty when placing the figures, influenced by the possible

moves and the number of figures. As an example, for models starting with the
bishops sub-problem, the search performed better than for those starting with
the queens sub-problem. This could be a consequence of having to place almost
twice as many bishops as queens, i.e., we reduce the search space more when
passing the positions occupied by bishops while still having enough liberty in
placing the queens on the board.

The layered approach is not suitable for testing of unsatisfiability even for
small board sizes: backtracking is more costly than direct constraint propagation.
In addition, the search uses limits on the permitted number of iterations. In the
benchmarks this is not an issue, because the runtime is dominated by the sub-
problems. The ability to experiment easily with model representations and search
heuristics is an advantage of OscaR. The price to pay for this is the lower level
of abstraction which makes it more difficult to validate the model against the
problem statement.

We have also experimented with modelling variants using a piece-centric
model instead of a board-centric model. The models were generally less per-
formant than the two discussed above. We see two reasons for this: (1) when
the models are to be considered jointly, some optimisations usually applied to
piece-centric models were not possible because they depend on specific data-
models, (2) it requires replacing a few arithmetic calculations and comparisons
with many boolean comparisons. Due to the small board sizes used there are no
performance issues due to memory management. We also observed that when
trying to break symmetries in these models, the low level of the programming
and the restrictions on referencing arrays obscured the added constraints. This
reduces the legibility of the models further and makes validation more difficult.

5 SAT Encoding

A different approach towards solving the crowded chessboard puzzle is to encode
it using pure propositional calculus and employ SAT solvers such as Minisat [10].
The general idea is as follows: For each kind of chess figure to be placed we
introduce n × n boolean variables to encode the chessboard, e.g., queen2,5. We
set a variable to true to represent a figure on a certain square, while false

represents an empty square.
Most placement rules can be encoded easily. First, we encode that no two

figures can be placed on the same square. This is done by enforcing, that for each
combination of indices i, j the fields encoded as queensi,j , rooksi,j , bishopsi,j
and knightsi,j should not be true simultaneously. For example, for queens and
rooks we assert ∀i ∈ 1 . . . n, j ∈ 1 . . . n·queensi,j = > ⇒ rooksi,j = ⊥. Of course,
using universal quantification is not allowed in the input of a common SAT solver.
Thus, we have to unroll the formula and set the constraint up explicitly for all
combinations of chess pieces, i and j.

Next, we have to encode the movement of figures. For a solution to be correct,
we require that no two figures of the same kind can capture each other. Again,
this can be encoded using implications, e.g., for the case of linear movement we

6 8 10 12 14 16

1

2

3

4

·104

Variables

Clauses

n variables clauses

5 276 2152
6 416 3434
7 564 5042
8 760 7096
9 948 9424

10 1176 12406
11 1412 15762
12 1712 19764
13 1996 24224
14 2328 29374
15 2668 35110
16 3064 41608

Fig. 5: Board Size vs. Variables / Clauses (Maximum Number of Knights)

assert ∀i ∈ 1 . . . n, j ∈ 1 . . . n, x ∈ 1 . . . n, x 6= j · queensi,j = > ⇒ queensi,x = ⊥.
Obviously, diagonal movement can be encoded similarly. Again, we have to unroll
the resulting constraints to remove the universal quantification.

Encoding the knights movement is more complicated and can not be ex-
pressed as easily using quantification. They key idea however remains the same:
we iterate over all possible fields a knight can reach and set up implications
preventing other knights from being placed there. To do so, we compute the set
of fields a knight can reach from a current field i, j:

reachablei,j = {(i+ 1, j + 2), (i− 1, j + 2), (i+ 1, j − 2), (i− 1, j − 2),

(i+ 2, j + 1), (i+ 2, j − 1), (i− 2, j + 1), (i− 2, j − 1)}.

Of course, we have to keep in mind not to violate the borders of the chess board:

reachable2i,j,n = {(x, y)|(x, y) ∈ reachablei,j ∧ x ∈ 1 . . . n ∧ y ∈ 1 . . . n}.

Following, we can prevent knights from attacking each other:

∀i ∈ 1 . . . n, j ∈ 1 . . . n, (x, y) ∈ reachable2i,j,nknightsi,j = > ⇒ knightsx,y = ⊥

In contrast to movement, encoding the number of figures to be placed is quite
involved. This is due to the fact the very low-level SAT encoding does not feature
constructs like cardinality computation. There are extensions to SAT introducing
quantified Boolean satisfiability, or QSAT for short. When the quantification of
variables is not existential, SAT becomes PSPACE-complete.

To summarize, we have two possible ways to proceed: use a solver for quan-
tified boolean formulas or encode the cardinality constraints ourselves. As we
intended to present a low-level alternative to the high-level encoding in B and
ProB, we went with the second alternative. Essentially, there are three ways to
encode the sum of boolean variables by means of pure propositional calculus:

– Encode a bit-wise adder and treat every boolean variable as an input bit. The
result can be compared to the required cardinality using bit-level arithmetic.
This is the approach we will use in our benchmarks.

– An improved encoding of bitwise addition called the totalizer [3]. In contrast
to the naive encoding it provides improved unit propagation. However, for
the problem at hand we did not observe any speedup.

– Use a sorting network as outlined in [2].

As can be seen in Fig. 5, encoding the crowded chessboard puzzle using pure
propositional calculus involves introducing numerous variables and connecting
them by a high number of relatively simple constraints. In particular, the number
of clauses rises quadratically, as expected due to the pairwise constraints.

6 SMT Encoding

In contrast to the very low-level encoding needed for SAT solvers, SMT solvers
support a much richer logic. In particular, cardinality constraints can be ex-
pressed by means of addition. Furthermore, we can again use quantifiers to ex-
press the relations between chess pieces. We investigated three possible encodings
of the crowded chessboard puzzle into SMT:

1. The board-centric approach, where we try to find a function mapping posi-
tions to chess pieces occupying them.

2. The piece-centric approach, where we try to find a function mapping pieces
to their position on the chess board.

3. A low-level approach using a boolean encoding similar to Section 5. This
time however, cardinality is expressed using integer arithmetic.

For the first two approaches, fields are encoded as pairs of two integers rang-
ing from 1 to n. The two functions first and second are used to access the first
and second entry. A set of common predicates is used to set up the constraints:

on board(x)⇔ 1 ≤ first(x) ≤ n ∧ 1 ≤ second(x) ≤ n
not same row(x, y)⇔ first(x) 6= first(y)

not same col(x, y)⇔ second(x) 6= second(y)

not same diag(x, y)⇔ |first(x)− first(y)| 6= |second(x)− second(y)|

All of them can directly be encoded using SMT-LIB, the common input
language of SMT solvers. For the first approach, we try to find board, a mapping
of pairs to integers ranging from −1 to 3, where −1 represents an empty square,
0 a queen, 1 a rook, 2 a bishop and 3 a knight. We assert that the board may
not hold other values and that a figure may not be placed outside of the field:
∀x · −1 ≤ board(x) ≤ 3 ∧ ¬on board(x)⇒ board(x) = −1.

Movement and attacking is also modeled using universal quantification. For
instance, the fact that two rooks may not attack each other is encoded as follows:

∀x, y·board(x) = 1 ∧ board(y) = 1 ∧ x 6= y

⇒ not same row(x, y) ∧ not same col(x, y)

Cardinality is encoded by enforcing the existence of n pairs where a queen is
placed. The first universal quantification can be expressed efficiently in SMT-LIB
by a distinct constraint:

∃q1, . . . , qn ·
(
(∀i, j ∈ [1, n], i 6= j · qi 6= qj) ∧ (∀i ∈ [1, n] · board(qi) = 0)

)
This first approach was not successful, as it could not compete with the SAT

approach even for small board sizes. While the usage of SMT instead of SAT
greatly increases expressiveness and therefore understandability of the encoded
problem, it also causes a performance decline if used as above.

The second approach, the piece-centric view of the puzzle can be extracted
out of the first one by unrolling board. Essentially, we set up a variable for each
queen, rook, bishop and knight. In consequence, we do not have to consider
empty squares anymore. Furthermore, by using the correct number of variables,
checking cardinality boils down to checking inequality.

Now that we have immediate access to the different figures, we can hardcode
some simple symmetry reductions directly into the constraints. For instance, we
know that the queens cannot share a row at all. Hence, we can sort them by
asserting ∀i ∈ [1, n] · first(qi) = i.

We could again use quantifiers for the attack relation. For instance, in case
of the queens we could reuse the not same diag predicate defined above:

∀x, y ·

(
n∨

i=1

x = qi

)
∧

(
n∨

i=1

y = qi

)
∧ x 6= y ⇒ not same diag(x, y).

However, SMT solvers such as Z3 [7] and CVC4 [4] currently do not detect
saturation of the left hand side, i.e., they do not realize that the quantifier in
fact handles all combinations of two queens. In consequence, we decided to unroll
the universal quantifier and assert all not same diag combinations individually.

7 Related Work and Other Encodings

There are well-known approaches (e.g., [12]) to encoding constraint problems
using integer programming (IP). Instead of asking for logical satisfaction one
asks for the solution to a minimisation problem. An IP formulation for the
crowded chessboard problem has been proposed in [6] where two approaches are
discussed: (i) counting the number of attacks or (ii) a direct binary model for the
logical constraints. The objective function for model (i) is binary discarding the
extra information provided by counting the number of attacks. The XPRESS-
MP models that are mentioned are not accessible. However, a MiniZinc model
and a Picat encoding based on the direct binary model of [6] is available. For the
MiniZinc version, a comment in the model states that for n = 8 the computation
of a solution takes 108 seconds using ECLiPSe/eplex [22, 25], however, in our
benchmarks solutions were found much faster. A more low-level implementation
of the direct binary model has been implemented directly in ECLiPSe/eplex. As
one would expect, this implementation obscures the clear abstract description
of [6] when using a Prolog-like notation.

n k B CLP(FD) OscaR SAT SMT ECLiPSe Picat
plain +Kodkod plain split board figure SAT plain MiniZinc

5 5 6.1 8.3 2.6 2.8 1.5 0.7 117.6 1.9 0.4 0.6 0.3 1.3
*5 6 28.4 8.3 2.2 0.8 0.7 0.6 0.3 3.0
6 9 10.8 2.0 85.9 3.0 0.8 636.4 1.7 0.6 0.5 3.5

*6 10 11.9 485.6 0.7 3.8 3.9 1.2 12.8
7 11 16.7 42.8 7.4 0.9 41.4 1.1 0.6 4.0

*7 12 16.1 10.9 0.2 48.6 0.7 0.5 3.3
8 21 75.5 41.5 13.2 402.1 1.0 4.8 8.5

*8 22 374.1 160.1 1535.0 54.9 93.7 516.0
9 29 709.5 184.7 16.9 13.5 11.7

*9 30 1385.1 1257.4 59.8 1633.1 245.0
10 37 1408.9 189.6 1.2 153.6 23.6

*10 38 1413.5 300.6 726.2
11 47 1449.5 38.2 56.1

*11 48 1455.3 275.2
12 57 1509.1 46.0 81.2

*12 58 1516.6 1106.4
13 69 1599.5 201.2

*13 70 1615.0 430.2
14 81 1768.4 59.5

*14 82 1755.4
15 94 2.5

*15 95

Table 2: Solving times (in seconds), * means unsat, empty means timeout

8 Empirical Evaluation

In this section, we evaluate the performance of the different approaches. Each
encoding is executed once for several board sizes. The amount of knights is varied
in order to check both a satisfiable and unsatisfiable instance. All benchmarks
were run on an AMD Opteron with 2 GHz and 4 physical cores. Up to 3 bench-
marks were run in parallel. After 30 minutes without a result, the execution
was aborted. Results are given in Table 2 and Fig. 6, showing the runtimes in
seconds.

We benchmarked the CLP(FD) encoding introduced in Section 3 using SICS-
tus Prolog. For n = 5 and 5 knights, solving takes 2.6s. For n = 6 and 9 knights
it takes only 2s, but to determine that there is no solution for 10 knights it takes
> 30 minutes. For n = 7 and 12 knights however, unsatisfiability is detected in
11s. We did not manage to solve the full puzzle for n = 8 and 21 knights.

In summary, this encoding is more efficient than the higher level one written
in B in Section 2, as the high level one can only solve the puzzle for n = 5. This
shows that there is still scope to reduce the overhead of ProB’s default CLP
backend, given that it is based on CLP(FD) and SICStus as well. However, it is
disappointing not to be able to solve the original puzzle for n = 8. In the future,
we will investigate whether we can replace the global cardinality constraint
by a more effective encoding.

6 8 10 12 14

Satisfiable

6 8 10 12 14
0

500

1,000

1,500

2,000

Unsatisfiable

B

B +Kodkod

CLP(FD)

OscaR

OscaR (split)

SAT

SMT (board)

SMT (figure)

SMT (SAT)

ECLiPSe

Picat

ECLiPSe (MiniZinc)

Fig. 6: Runtimes for Satisfiable and Unsatisfiable Instances

Furthermore, integrating ProB’s default backend with other solvers is bene-
ficial. Thanks to the improved integration with Kodkod presented in Section 2.5,
ProB can solve all satisfiable and unsatisfiable instances with n ≤ 14. Combin-
ing SAT and CLP proves to be stronger than both working independently.

In Section 4, we presented another attempt at a constraint programming solu-
tion to this problem; this time using the OscaR library in Scala. Unfortunately,
the monolithic solution also does not scale to n = 8, but an optimized layered
version, splitting the constraints and sacrificing completeness for efficiency, does
scale (but is in principle not guaranteed to find a solution if there is one).

With respect to the search, the layered approach showed a superior perfor-
mance. For n = 5, the execution time was roughly split in half, while for n = 6
the layered version was nearly 30 times faster. Until n = 8 the performance is
very high in comparison, which is likely down to the small amount of backtrack-
ing that occurs during the search up to this point.

For the low-level encoding into SAT, we benchmarked using the winner of the
SAT competition 2017, Maple [17]. Despite the blowup in complexity the result-
ing performance of a translation to SAT is often better than the one exhibited by
our other encoding for large n. Both for satisfiable and unsatisfiable benchmarks
Maple outperforms CLP(FD), ProB and OscaR. In particular, for n = 8 and
22 knights, the low-level SAT encoding using Maple reports unsatisfiability after
160.1s. Furthermore, it can compute solutions for n = 10.

Our last approach, replacing the cardinality constraint by integer arithmetic,
proves not to be an advantage over the plain SAT encoding. In fact, the context
switch between SAT and Z3’s arithmetic solver causes overhead and, in conse-
quence, reduces performance. For n = 8, Z3 takes 402s to find a model. If the
number of knights is increased to 22, Z3 detects unsatisfiability in 1535s.

The related encodings discussed in Section 7 perform surprisingly well: Using
the MiniZinc encoding we find a solution for n = 8 and 21 knights in 8.5s. We
are not sure what caused the speedup since the model was introduced in [6], but
suspect a combination of improvements in ECLiPSe/eplex and faster CPUs.

The performance of the Picat and the MiniZinc model differs, although they
are based on the same encoding. While Picat is slower for n ≤ 8, it is faster for
larger instances. The direct encodings in ECLiPSe and Picat show that tailoring
towards the particular strengths of solvers is beneficial regarding performance.
ECLiPSe outperforms the more general solution written in MiniZinc on the
larger benchmarks. In particular, it is the only combination of encoding and
solver able to solve the puzzle for n ≥ 14. However, as argued above, the price
is readability.

9 Conclusion, Outlook and Discussion

In conclusion, the crowded chessboard problem turned out to be surprisingly
difficult to solve. The problem also allowed us to compare a variety of approaches.

– The high-level B model from Section 2.1 is a very readable, mathematical
formulation of the problem. It cannot be solved for n = 8 using the current
CLP(FD)-based backend of ProB, but it can be used to validate solutions
found by other approaches. Other backends of ProB based on SAT [20] or
SMT cannot be applied, due to the higher-order nature of the model.

– The lower-level, direct CLP(FD) encoding in Section 3 is faster, but also
cannot scale to n = 8.

– The monolithic encoding using the OscaR constraint library in Section 4
also does not scale, but an optimized, layered version, sacrificing complete-
ness for efficiency, does.

– Various attempts at a lower-level direct SMT-LIB encoding in Section 6, also
cannot be solved for n = 8 using Z3.

– The high-level B model from Section 2.5 is slightly less declarative than the
B model from Section 2.1, but scales surprisingly well.

– Among the fastest of our solutions is a direct SAT encoding, generated by a
Python program in Section 5. However, this solution is hardest to read by
a human: neither the SAT encoding nor the Python program are ideal for
human validation and reviewing.

The ultimate goal is to be able to solve the high-level, readable model from
Section 2.1, fully automatically. We hope that further refinements of the ap-
proaches in Section 2.5 and Section 4 will enable this, and pave the road for very
declarative but tractable modelling of complex constraint problems.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodŕıguez-Carbonell. Cardinality

Networks and Their Applications. In Proceedings SAT, LNCS 5584, pages 167–180.
Springer, 2009.

3. O. Bailleux and Y. Boufkhad. Efficient CNF Encoding of Boolean Cardinality
Constraints. In Proceedings CP, LNCS 2833, pages 108–122. Springer, 2003.

4. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In Proceedings CAV, LNCS 6806, pages
171–177. Springer, 2011.

5. M. Carlsson and G. Ottosson. An Open-Ended Finite Domain Constraint Solver.
In Proceedings PLILP, LNCS 1292, pages 191–206. Springer, 1997.

6. M. J. Chlond. IP modeling of chessboard placements and related puzzles. IN-
FORMS Transactions on Education, 2(2):56–57, 2002.

7. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proceedings TACAS,
LNCS 4963, pages 337–340. Springer, 2008.

8. D. Deharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for Rodin. In
Proceedings ABZ, LNCS 7316, pages 194–207. Springer, 2012.

9. H. E. Dudeney. Amusements in Mathematics. 1917. Available at
https://www.gutenberg.org/ebooks/16713.

10. N. Eén and N. Sörensson. An Extensible SAT-solver. In Proceedings SAT, LNCS
2919, pages 502–518, 2003.

11. I. Hayes and C. Jones. Specifications are not (necessarily) executable. Softw. Eng.
J., 4(6):330–338, 1989.

12. J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. John Wiley, New York, 2000.

13. S. Krings and M. Leuschel. Proof Assisted Symbolic Model Checking for B and
Event-B. In Proceedings ABZ, LNCS 9675. Springer, 2016.

14. M. Leuschel. Formal Model-Based Constraint Solving and Document Generation.
In Proceedings SBMF, pages 3–20, 2016.

15. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185–203, 2008.

16. M. Leuschel and D. Schneider. Towards B as a High-Level Constraint Modelling
Language. In Proceedings ABZ, LNCS 8477, pages 101–116. Springer, 2014.

17. M. Luo, C.-M. Li, F. Xiao, F. Manyà, and Z. Lü. An Effective Learnt Clause
Minimization Approach for CDCL SAT Solvers. In Proceedings IJCAI-17, pages
703–711, 2017.

18. S. Merz and H. Vanzetto. Automatic Verification Of TLA+ Proof Obligations With
SMT Solvers. In Proceedings LPAR-18, LNCS, Mérida, Venezuela, 2012. Springer.

19. OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

20. D. Plagge and M. Leuschel. Validating B, Z and TLA+ using ProB and Kodkod.
In Proceedings FM, LNCS 7436, pages 372–386. Springer, 2012.

21. A. Savary, M. Frappier, and M. Leuschel. Model-Based Robustness Testing in
Event-B using Mutation. In Proceedings SEFM, LNCS 9276, pages 132–147, 2015.

22. J. Schimpf and K. Shen. ECLiPSe - From LP to CLP. TPLP, 12(1-2):127–156,
2012.

23. D. Schneider, M. Leuschel, and T. Witt. Model-Based Problem Solving for Uni-
versity Timetable Validation and Improvement. In Proceedings FM, LNCS 9109,
pages 487–495. Springer, 2015.

24. S. C. Shapiro. The Jobs Puzzle: A Challenge for Logical Expressibility and Auto-
mated Reasoning. In AAAI SS, 2011.

25. K. Shen and J. Schimpf. Eplex: Harnessing Mathematical Programming Solvers
for Constraint Logic Programming. In Proceedings CP, LNCS 370, pages 622–636.
Springer, 2005.

26. E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. In Proceedings
TACAS, LNCS 4424, pages 632–647. Springer, 2007.

