(Hrsg.):
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2022 1

A Jupyter Kernel for Prolog

1

Anne Brecklinghaus!, Philipp Korner!

Abstract: Benefits of literate programming are well-known: By combining source code and
documentation, concepts can be introduced in a more comprehensible way to the reader. Motivated by
rendering our Prolog applications and teaching examples more readable, we implemented a Jupyter
kernel for SICStus Prolog. In this paper, we will give a feature overview of this kernel, discuss
particularities caused by Prolog’s execution mechanism and report on our experiences porting the
kernel to SWI-Prolog.

Keywords: Literate Programming; Prolog; Jupyter Notebook; Integration

1 Introduction and Motivation

In 1984, Donald Knuth, the creator of TgX, developed the notion of literate program-
ming [Kn84]. The idea is that programs and their documentation should be seen as works of
literature. A good explanation should facilitate understanding the program and therefore
result in less time spent for debugging. For this, the programming language WEB was
developed with the aim of combining code in Pascal and documentation in TgX in one file.

Jupyter notebook documents are a more recent implementation of this idea [PGO7, Pra].
They are convenient for executing code interactively as well as for documentation, which
is why they have become popular in scientific contexts. Notebooks can be viewed, edited,
and converted into other formats with Jupyter applications such as Jupyter Notebook and
JupyterLab. These frontends communicate with a kernel that determines the programming
language of the notebook and is responsible for code execution.

Our group in Diisseldorf uses a combination of SWI-Prolog [Wil2] and SICStus Pro-
log [CM12] for teaching and also maintains the formal methods tool ProB [LBOS] (a
model checker and contraint solver that makes heavy use of SICStus-specific features, in
particular the strong CLP(FD) solver; the core functionality was ported to SWI-Prolog
[GL22]). Many student theses revolve around the ProB tool, yet documentation is sparse
and distributed between the source code, a wiki and a handbook. While for SWI-Prolog,
the excellent SWISH tool [Bol6, Wil9] exists, we could only locate a very old Jupyter
kernel for SICStus 3. Thus, in order to improve our teaching material for self-studying (we
already made good experiences with Jupyter notebooks in courses on theoretical computer

! Heinrich-Heine-Universitiit Diisseldorf, Institut fiir Informatik, UniversititsstraBe 1, 40225 Diisseldorf, Germany
{anne.brecklinghaus, p.koerner } @hhu.de

ClOC)

https://creativecommons.org/licenses/by-sa/4.0/
mailto:{anne.brecklinghaus, p.koerner}@hhu.de

2 Anne Brecklinghaus, Philipp Korner

science and safety critical systems using a custom kernel for ProB itself [GL.22]) and the
documentation of ProB, we implemented a Jupyter kernel for SICStus Prolog. Later, we
modified it to support SWI-Prolog and be highly customisable so that it can be extended for
further Prolog implementations. This kernel and notebooks describing the kernel’s features
for SICStus and SWI-Prolog by providing examples is available at:

https://github.com/anbre/prolog- jupyter-kernel

In the following, we report on our experiences during this implementation. First, we
introduce the reader to Jupyter and existing applications in Sect. 2. Afterwards, in Sect. 3,
we briefly describe the architecture of the tool. In Sect. 4, we give an overview of the
features of our notebook application. Further, we report on our experiences on porting the
application to SWI-Prolog in Sect. 5, before giving our conclusions in Sect. 6.

2 Background & Related Work

In this section, we will first provide an introduction to Jupyter notebooks and their
eco-system. Afterwards, we discuss related applications and existing kernels for Prolog.

2.1 Background

Jupyter notebooks? originate from the IPython project [PG07] with the goal of enabling
interactive Python development. A Jupyter notebook consists of cells which can contain
either executable code (and its output) or accompanying rich text which is not meant for
execution. Each code cell is separate from the others in that its execution only influences
its own output (aside from global program state modifications). The successor Project
Jupyter [Pra] was developed in order to support notebooks for other programming languages.

Each Jupyter notebook is associated with a so-called kernel which determines the program-
ming language in which code can be executed. As can be seen in Fig. 1, when a user interacts
with a Jupyter frontend, it sends a corresponding request to the connected kernel. After
handling the request, the kernel sends a reply to the frontend which needs to be handled and
displayed to the user. While the default IPython kernel is the most well-known, there are
other popular kernels such as IRkernel for the R language [KA] and IJulia for Julia [La],
and many community-maintained kernels for various languages [Prb].

Jupyter Notebook [Jub] was the first web application with which these documents could be
created and viewed. Later, the highly customisable JupyterLab [Prc] was released, which is
planned to replace Jupyter Notebook eventually. In addition to notebook applications, there

2 Not to be confused with the frontend application “Jupyter Notebook”.

https://github.com/anbre/prolog-jupyter-kernel

A Jupyter Kernel for Prolog 3

User

request execution,

show rich output .
code completion, ...

Jupyter frontend (e.g. JupyterLab)

send reply messages send request messages

Jupyter kernel (e.g. IPython)

Fig. 1: Diagram showing how user interaction with a Jupyter frontend is handled

are console frontends like Jupyter Console [Tha] and QtConsole [Thb]; they behave similar
to an interactive Prolog session?3, but can inherit Jupyter features like code completion
and provide readline-wrapping (e.g., making the arrow keys usable on the terminal and
adding a searchable history of commands) by default. Furthermore, the Jupyter applications
Voila [Thc], nbviewer [Prd], and nbconvert [Jua] facilitate the distribution of notebook
documents, e.g., by generating presentations, IATEX, or static HTML documents. All Jupyter
applications can be used with any programming language for which a kernel exists.

Indeed, the Jupyter notebooks only offer a single cell type for code, which aligns with the
fundamentals of a typical imperative programming language. This often is a restriction that
requires workarounds in several aspects of our kernel: Prolog, as a declarative language,
differs significantly in its control flow (e.g., backtracking, coroutining, etc.). Nonetheless,
the basic workflow — typing in queries and getting some data as answer — can still be
implemented on top of the notebook infrastructure. For a typical notebook style, however,
one should also have the possibility to extend and modify the program itself. This requires
to distinguish between program code and queries. In order to keep compatibility with all
frontend applications, any interaction with Prolog still has to occur in the single code cell
type, rendering notebook extensions — such as different cell types for program code and
queries, buttons to cycle through several solutions, etc. — infeasible.

2.2 SWISH and Community Prolog Kernels

SWISH [Wi] is a notebook application developed for SWI-Prolog and it is meant to facilitate
sharing Prolog code. When saving a file a user can decide if it is public, in which case
other users can search for it. Cells can contain a Program, Query, Markdown, or HTML text.
Code defined in a Program cell can be configured to be either callable from queries below
the cell only or from all queries in the notebook. Query cells can be run and the number
of desired solutions can be defined. In addition to that, queries can also be executed in a
separate Prolog REPL. If a query succeeded with a choice point, additional solutions can be

3 We will refer to interactive sessions as REPL (read-eval-print-loop).

4 Anne Brecklinghaus, Philipp Korner

requested. The results can be displayed as a table as well as be downloaded as a CSV file.
The whole notebook can be printed and thereby converted to a PDF file.

When running a query in the aforementioned REPL, information about some elements can
be accessed by hovering over them. For example, for own predicates, the line of the first
defined clause is shown and a description can be seen for SWI-Prolog predicates. For these
queries, some interactive debugging features are available.

SWISH supports most functionality of Prolog (with some limitations due to security
concerns) including producing output. While it additionally implements some more helpful
features, such as real-time collaboration, it also lacks some functionality the Jupyter
applications provide (e.g., exporting slides). Moreover, it was implemented solely for
SWI-Prolog and — opposed to Jupyter — it is not meant for being extended for any other
programming language.

Furthermore, multiple community-written Prolog kernels are available, many of which,
are written for outdated Prolog versions and unmaintained. As often basic functionality is
missing and they were not implemented with extensibility in mind, we implemented our
own kernel from scratch. Nonetheless, in the following, we will present a selection.

The Calysto Prolog kernel [Ca] executes code based on a Prolog interpreter written in
Python [MO]. Each term ending with a ? is interpreted as a query and other terms are used
to define new Prolog facts and rules. The kernel can be used to define and query simple facts
and even compute alternative solutions with a magic command. Still, basic functionality
such as querying rules and producing output does not seem to work and no helpful error
messages are printed.

Two Jupyter kernels for SWI-Prolog stand out: the SWI-Prolog-Kernel [Me] which in
turn inspired jswipl [Co]. However, neither kernel provides more advanced features such as
producing output or using DCGs.

For the SWI-Prolog-Kernel, no proper installation instructions exist. It seems to work by
writing Prolog code to a file and executing the file with SWI-Prolog in a subshell. This
means that all cells are independent of each other, and defining clauses in one cell and
querying them in another is impossible.

The other SWI-Prolog kernel jswipl uses the SWI-Prolog and Python interface PySwip [Tc]
for code execution. Contrary to PySwip, each fact or rule which is added exists as long as
the kernel is running. Therefore, cells containing facts and rules should not be executed
more than once and programs cannot be altered. A query needs to start with ?- and if there
is more than one solution, by default, up to 10 answers are printed (though this limit can be
adjusted with special syntax). The jswipl kernel does not claim to be tested properly and
PySwip does not claim to be complete.

A Jupyter Kernel for Prolog 5

Jupyter frontend
(e.g. JupyterLab)

T ZeroMQ
(&
Jupyter Kernel Kernel extension for Prolog (Python class PrologKernel)
(extends the IPython kernel)

Imethod calling

Default kernel implementation (Python)

(class PrologKernelBaseImplementation)
&

extends extends

|

SICStus implementation (Python)
(class PrologKernelImplementation)

SWI implementation (Python)
(class PrologKernelImplementation)

JSON-RPC 2.0 JSON-RPC 2.0

!

Prolog server (Prolog)
(conditional compilation for SICStus and SWI-Prolog)

Fig. 2: Diagram showing the architectural components and their communication methods

3 Architecture

Fig. 2 provides an overview over the basic architecture of our implementation: The Jupyter
kernel is split in three: the first part is written in Python and interacts with an arbitrary
Jupyter frontend via the ZeroMQ protocol [Hil3]. We extended the IPython kernel so that it
handles a Prolog backend and inherits the communication with the frontend. Note that this
extension does not interpret Prolog itself.

Instead, the third part, an instance of (SWI- or SICStus) Prolog is started. That Prolog
server is based on a recent addition to SICStus Prolog, a library that handles JSON remote
procedure calls (RPCs). The kernel starts a Prolog subprocess and communicates with it
according to the JSON-RPC 2.0 protocol. For any code execution request the kernel receives
from the frontend, it sends a request message to the Prolog server containing the code

Prolog terms are read from

the code with read_term/3 or server_loop :-

read_term_from_atom/3 depend- next_term(Term),

ing on the Prolog implementation. (Term == call(X) -> call(X), server_loop
In general, all terms are looped over ; (Term == retry -> fail

and after handling one, the loop is i (Term == cut -> | ; ...))),
continued with the next one (the server_loop.

main idea is depicted in Fig. 3).

However, if a query execution is Fig. 3: Rough overview of the server loop

6 Anne Brecklinghaus, Philipp Korner

successful, instead of continuing the current loop, a new recursive loop is started. In that
case, the current goal is seen as the active one which can be retried. This is possible because
the predicate which actually calls the goal leaves a choicepoint. When a retry request
is received, the current loop iteration fails, causing the active goal to backtrack. If a cut
is encountered instead, choicepoints of the active query are cut off and the current loop
terminates.

By using the option variable_names(Variables) when reading the Prolog terms, a list
of Name=Var pairs is obtained. After all terms are processed, the server sends a response.
For instance, clause definitions are asserted and queries are executed with call/1. In the
latter case, the list of variables which might have been bound is included in the response.
Depending on the type of the server response (e.g., solutions are found or errors raised), the
kernel sends the response to the frontend which displays it to the user.

The tool can be extended in order to support additional Prolog interpreters: When the
kernel is started, it loads a configuration file which contains the path to interpreter-specific
Python class files. Such classes are responsible for starting and communicating with
their corresponding Prolog server. For every request the kernel receives, a method of the
implementation class is called. Therefore, to configure a different interpreter (which needs
to extend a base class with the default implementation), the class can easily be overridden
(e.g., to support another Prolog interpreter). Additionally, the kernel can be configured to
start a different implementation of the Prolog server4.

4 Feature Overview

In this section, we will present the features of our Jupyter kernel. First, we consider particu-
larities of Prolog that stem from using SLD-resolution as its execution mechanism. Second,
we present non-standard features that are available in almost every Prolog implementation.
Last, we show features that are driven by the Jupyter integration and are provided mostly for
user convenience.

Where appropriate, we will briefly touch on implementation details if they are caused by
our choice of architecture. Note that most special predicates in the jupyter module need to
be executed as the only predicate in a cell. Some details may differ based on the Prolog
interpreter that is used and cannot be listed in detail here (but can be found in the notebooks
in the GitHub repository).

4 The GitHub repository provides an explanation of all available configuration options as well as an example
configuration file.

A Jupyter Kernel for Prolog 7

4.1 Prolog Particularities

As discussed in Sect. 2.1, a typical Jupyter application is limited to a single code cell type
only. However, each term in a code cell might be either a clause definition or a query (that
might be in the form of a directive) which shall be evaluated (Fig. 4). While terms like
directives and clauses with bodies can easily be distinguished from queries, it is more
difficult for clauses without bodies. One option for differentiation would have been to expect
all queries to be somehow marked. However, this would likely cause frustration for users
forgetting about it because they are used to a Prolog REPL where no such marking is
required.

Therefore, if a cell contains a single potential query, it is interpreted as such instead of a
clause definition. If users want to assert a single fact, they can still achieve it by writing foo
:- true.. Additionally, terms starting with ?- and directives starting with :- are evaluated
as queries (which corresponds to valid Prolog syntax) even in a cell containing further
terms. If instead, a potential query without prefix or body is encountered with multiple
other terms, it is handled as a clause definition. Further, terms with bodies are always seen
as clause definitions. In each case, as described below, the user can infer from the output
how a term was interpreted.

Predicate (Re-)Definition: The possibility app([1, Res, Res)

of defining programs on the fly is a major app([Head|Tail], List, [Head|Res]) :-
advantage of using Prolog with a Jupyter app(Tail, List, Res).

notebook over a Prolog REPL. Except from % Asserting clauses for user:app/3
plunit test definitions, all defined clauses

are added as dynamic facts to the data baseS. =pihes R G

In order to let the user know that a predicate R =1[1,2,3,4]

was (re-)defined, a message is output with

Fig. 4: Predicate definition and query
the corresponding predicate specification.

Further, interactive programming involves writing, testing and re-writing clauses rather
than only adding new clauses to the fact database. Therefore, by default, when clauses are
defined for a dynamic predicate for which there are existing ones, these are retracted first
(in this case, the user is informed). Thus, all clauses of a predicate need to be defined in one
cell. However, when a predicate is declared discontiguous, new clauses are added without
any preceding retractions.

Query Execution: If a query succeeds and binds any variables, the bindings are usually
shown in the output of the cell like they would be displayed in a console. Analogously, if
there are no bindings or the query fails, the corresponding output for success or failure is
displayed (e.g., yes or no)®. During execution, any output is redirected to a file so that it can

5 Modules loaded from disk are not added as dynamic facts.
6 In order to mimic the Prolog behavior, no such result is displayed for directives.

8 Anne Brecklinghaus, Philipp Korner

be read in again and displayed to the user preceding the query result. Additionally, if an
exception is caught, the corresponding message is computed and output in red.

Handling Multiple Solutions: When a query succeeds with a choice point, one can request
further solutions via backtracking. The Jupyter kernel mimics this by providing the predicate
jupyter:retry/0: Whenever a query is executed, it is seen as the active query as long
as there might be further solutions for it. Then, the retry predicate may be called from
within the same cell as the query or, alternatively, in a new cell. Backtracking is triggered to
compute the next solution by causing a loop failure (see Sect. 3). Additionally, the predicate
jupyter:cut/0 is exposed to cut off choice points of the active execution and to set an older
query which might have open choice points as active. The stack of these queries can be
inspected with jupyter:print_stack/0.

Term Expansion: With many Prolog implementations, definite clause grammars (DCGs)
can be defined by writing so-called grammar rules of the form Head --> Body.. When a
Prolog file containing such rules is compiled, they are automatically translated into Prolog
clauses by passing them to a term expansion predicate. The Prolog Jupyter kernel handles
grammar rules similarly. For every rule which is encountered, term expansion is manually
applied in order to compute the resulting clause. This clause can then be handled in the
same way as any other clause definition.

4.2 De-Facto Standard Prolog Features

Loading Source Files and Libraries: Loading source files and libraries works in the same
way as on a Prolog REPL. Predicates are always re-defined when encountered (as user
interaction is not possible during the load). Note, however, that loading a library and using
operators from that library does not work in a single query, as it needs to be read by a
built-in read predicate, which throws a syntax error when encountering undefined operators.

Test Runner: library(plunit) can be used to define and run automated tests. Tests can
either be defined in a file which is loaded or in a cell. Note that test/1 or test/2 are the
only predicates which cannot simply be asserted as dynamic clauses. Instead, whenever
such a clause is encountered after a begin_tests directive, it is written to a file which
later is loaded. Therefore, in order to be recognised as such, any test definition needs to
be preceded by a begin_tests directive. Additionally, if there is an optional end_tests
directive, it needs to follow the test clauses.

Benchmarking Capabilities: Whenever a query is executed, its runtime is stored in a data
base. It can be output with jupyter:print_query_time/®, which prints the latest previous
query and its runtime in milliseconds measured with statistics(walltime, Value).

Debugging: In a Jupyter notebook, debugging cannot be performed interactively as user
input is not supported during the execution of a cell. Thus, switching on trace mode
with trace/0 would cause the server to stop at an invocation (and a restart is required).

A Jupyter Kernel for Prolog 9

However, the call stack can be ac-

c . . jupyter:t (([1,2], [3]. R)).
cessed by printing debugging mes- jupyter:trace(app

. . . _ 1 1 Call: app([1,2],[3],_188345)
sages w1th. breakpom?s. As this mech 5 2 Call: app([2],13], 192175)
anism might be difficult for stu- 3 3 call: app([1,[31,_192623)
dents, we implemented the predicate 3 3 Exit: app([],[3].[3])
K . I itch 2 2 Exit: app([2],[31,[2,3])
jupyter:trace(Goal). It switches on 1 1 Exit: app([1,2],[3],[1,2,3])

trace mode, calls the goal Goal and R = [1,2,3]
switches debug mode off. By default,
all ports are unleashed and included
in the output (Fig. 5), so that no user interaction is requested on breakpoint activation.

Fig. 5: A trace for append

4.3 Jupyter Convenience Features

Introspection: In JupyterLab as well as Jupyter Notebook, code completion for the token
at the current cursor position can be requested by pressing the Tab key. If there is a single
possible match, the code preceding the cursor is replaced directly. Otherwise, a list of
options is shown from which the user can choose one (Fig. 6). Completion can be used for
predicates which are built-in or exported by a loaded module’. Requesting completion for a
module name is especially useful for retrieving all special jupyter predicates. After loading
another module, completion data can be updated with jupyter:update_completion_data/@®
so that completion works for predicates from that module as well.

By pressing Shift+Tab, inspection for the token pre- | |, [Jupyeer:

ceding the current cursor position can be requested. |
For SWI-Prolog, documentation for the token is re- jupyter:help _

trieved with help/1 and shown right away. However, ;::;::zg:zi::::ix

this is not possible for SICStus Prolog. Instead, for all jupyter:print_sld tree(A)

predicates which the Predicate Index page [Pre] lists, jupyter:print_stack

a link to the documentation of the corresponding uyter:print_table(a,B)

predicate is shown if the predicate’s name contains o er.orint transition graph(,8,c.0)
the current token. The data shown about the predicate jupyter:print_variable bindings .
is the same as shown on the web page, which includes
the predicate’s name and arity. For JupyterLab, click-
able hyperlinks can be displayed; since this is not possible for Jupyter Notebook, the
links are only given to be copied. However, module jupyter defines documentation for its
exported predicates. This can be shown right away for inspection and also be output with
jupyter:help/0.

jupyter:print_table(A)

Fig. 6: Code completion

Accessing Previous Results: SWI-Prolog provides functionality of reusing top-level
bindings. Roughly, when a top-level goal succeeds, its bindings are asserted in a database
(i.e., succeeding calls will update the binding). Before calling a top-level query, it is expanded

7 These are loaded when the kernel is started.

10 Anne Brecklinghaus, Philipp Korner

to replace any $Var term with the stored binding of variable Var. This way, the latest bindings
from previous queries can be accessed. The Jupyter kernel also provides this functionality for
SICStus Prolog. Additionally, there is the predicate jupyter:print_variable_bindings/0
that outputs all stored variable bindings.

Further, all executed queries are stored internally:
When writing a new predicate, a user might test
its subgoals gradually in different cells, poten-
tially using $Var terms to access previous val-
ues. Once all the parts are written, the predicate

member (Member, [1,2,3]).

Member = 1

Square is $Member * $Member.

jupyter:print_queries(Ids) can be called to ac- :‘g;g;i : i'

cess previous queries from cells with IDs in the list

Ids. They are printed in a way that they can easily jupyter:print queries([1,2]).
be copied to a cell and executed right away (Fig. 7) member (Member, [1,2,3]),

or expanded with a head to define a predicate. If a Square is Member*Member.
query contains a $Var term and one of the previously yes

printed queries contains the variable Var, the term is Fig. 7: Incrementally building a predicate
replaced by the variable name.

Structured Output: Our kernel implementation provides two special predicates to output
tables: The predicate jupyter:print_table(Goal) can be used to compute all results of the
goal Goal with findall/3 and display them in a table. The table contains a column for each
variable occurring in it (which were extracted when reading in the term) and a line for each
result (Fig. 8). If the goal does not terminate, no data at all can be sent to the client and
therefore displayed. In that case, the server needs to be restarted.

In order to fill a table with data that is , .

. . . . jupyter:print table((
not obtained by calling findall/3, there is member (Member, [16,20,30]1),
the predicate jupyter:print_table(ValuesLists, Square is Member*Member)).
VariableNames). ValuesLists is expected to be a
list of lists where each of them corresponds to one

Member Square

10 100
line of the table. Therefore, all the lists need to be 2 400
of the same length. Furthermore, VariableNames
is used to provide the column headers and needs to % %0
yes

be a list of ground terms of the same length as well
unless it equals []. In the latter case, the headers Fig. 8: Tabular output
contain capital letters starting from A.

Switching Between Prolog Implementations: If implementation-specific data is configured
for more than one Prolog implementation, the active Prolog implementation used for code
execution can be changed with jupyter:set_prolog_impl(ImplementationID). It needs to
be noted that the implementation is changed after all code of the cell has been executed.
Therefore, any code following such a query is still executed with the previous active
implementation.

A Jupyter Kernel for Prolog 11

The server for the previously used implementation is kept running so that when changing
back, the state has not changed. For example, the previous variable bindings still exist.
When the Jupyter kernel is interrupted, all running Prolog servers are killed and need to
be restarted the next time code is executed. In order to restart a single Prolog process,
jupyter:halt/® can be used.

5 Porting the Application to SWI-Prolog

After our kernel supported SICStus Prolog, we made adjustments to also support SWI-Prolog
(and be extensible for further Prolog implementations). The kernel can be configured to
use either interpreter and even switch between them on the fly. However, there was a lot of
Prolog code which had to be adjusted. Since similar issues might occur when extending this
kernel for another Prolog implementation, our experience might serve as a rough tutorial.

For code execution, the Jupyter kernel can communicate with any Prolog server process
over JSON-RPC 2.0. By replacing the Prolog server with another one, the Python part of
the kernel can easily support a different Prolog implementation. If the replacement of the
server does not suffice, most of the Python code can be extended as well8. In case of SWI-
and SICStus Prolog, the only Python code that differs is for predicate inspection.

The main requirement for the Prolog server for a different Prolog implementation is that
it can receive requests in the form of JSON-RPC 2.0 messages, handle them and send
responses. Most of the code we used for this was compatible with SWI-Prolog®. We expect
this to be similar for other Prolog implementations, but in rare cases — or when trying to
support Prolog derivatives such as Mercury [SHC96] — it might be required to write a new
server from scratch.

While implementing the basic code execution does not require major effort, more advanced
features such as introspection or other functionality provided by the module jupyter may
require more significant changes. Some issues we encountered are:

. Some predicates which are built-in for one Prolog implementation need to be loaded
from a library for the other one. Furthermore, libraries are named differently and
predicates with the same functionality are provided under different names.

. Even though the SICStus 1ibrary(plunit) is based on the one developed for SWI-
Prolog and the basic functionality overlaps, there are major discrepancies between
them. These include options which can be provided for begin_tests/2, test/2, and
run_tests/2. Further, there are different requirements for loaded files defining tests.

8 The GitHub repository contains a detailed explanation of the configuration and extension options.
9 Therefore, the Prolog source files contain code for both implementations by using conditional compilation with
the directives if/1, else, and endif.

12 Anne Brecklinghaus, Philipp Korner

. Reading terms from an atom is more complex in SWI-Prolog when a helpful error
message is required (e.g., in case of syntax errors).

. Debugging in general and breakpoint handling differs considerably.

. For SICStus Prolog, a website listing links to documentations of all predicates is used
for providing inspection information. Instead, for SWI-Prolog, there is the predicate
help/1 with which information about predicates can be retrieved.

6 Conclusions and Future Work

In this paper, we presented an implementation of a Jupyter kernel for Prolog developed
for SICStus Prolog and its extension to accommodate SWI-Prolog. Communication with a
Prolog interpreter follows a JSON-RPC protocol. Overall, we think it has great merits to
share code examples for teaching or for tutorials on usage of larger libraries or applications.

The execution mechanism of Prolog does not follow the typical statements that Jupyter
expects. Especially distinguishing between program definitions and queries is finicky when
considering user convenience. The notebook application SWISH offers a clean solution
with multiple cell types.

Porting the basic functionality of the kernel to SWI-Prolog was relatively easy, yet more
advanced features such as debugging required significant work. Standards for library and
introspection would have facilitated this work considerably.

6.1 Future Work

In the future, we want to explore an idea that stemmed from discussions about the portability
of Prolog programs and future developments of Prolog itself [K622]: The Jupyter kernel
can alread by connected with multiple Prolog instances and it should be relatively easy
to reuse results from one instance for the other. Then, one could combine the individual
strengths of several interpreters (e.g., making use of the many SWI-Prolog libraries that
handle file formats and then use the efficient CLP(FD) implementation of SICStus Prolog).

Further, one could send commands to all available Prolog interpreters at once. Then,
the benchmarking infrastructure could be helpful to quickly compare the performance of
several Prolog interpreters and identify performance improvements or degradations between
multiple versions of the same Prolog implementation. Finally, once a broader range of
interpreters is available, it could provide a tool for Prolog implementors and (ISO) standard
maintainers to write test suites and locate instances in which Prolog interpreters differ in
their behaviour.

A Jupyter Kernel for Prolog 13

Bibliography

[Bol6]

[Ca]

[CM12]

[Co]

[GL22]

[Hil3]

[Jua]

[Jub]

[KA]

[Kn84]

[K622]

[La]

[LBO8]

[Me]

[MO]

[PGO7]

[Pra]

Bogaard, Tessel; Wielemaker, Jan; Hollink, Laura; van Ossenbruggen, Jacco: SWISH
DatalLab: A Web Interface for Data Exploration and Analysis. In (Bosse, Tibor; Bredeweg,
Bert, eds): Proceedings BNAIC. volume 765 of Communications in Computer and
Information Science. Springer, pp. 181-187, 2016.

Calysto: Calysto Prolog. https://github.com/Calysto/calysto_prolog. Last access:
September 6, 2022.

Carlsson, Mats; Mildner, Per: SICStus Prolog — The first 25 years. Theory and Practice of
Logic Programming, 12(1-2):35-66, 2012.

Corbatto, Luca: jswipl. https://github.com/targodan/jupyter-swi-prolog. Last access:
September 6, 2022.

GeleBus, David; Leuschel, Michael: Making ProB Compatible with SWI-Prolog. Theory
and Practice of Logic Programming, p. 1-15, 2022.

Hintjens, Pieter: ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc., 2013.

Jupyter Development Team: nbconvert Documentation. https://nbconvert .readthedocs.
io/en/latest/. Last access: September 6, 2022.

Jupyter Team: Jupyter Notebook Documentation. https://jupyter-notebook.
readthedocs.io/en/stable/notebook.html. September 6, 2022.

Kluyver, Thomas; A., Philipp: IRkernel. https://irkernel.github.io/. Last access:
September 6, 2022.

Knuth, Donald E.: Literate Programming. The Computer Journal, 27(2):97-111, January
1984.

Korner, Philipp; Leuschel, Michael; Barbosa, Jodo; Costa, Vitor Santos; Dahl, Verdnica;
Hermenegildo, Manuel V.; Morales, Jose F.; Wielemaker, Jan; Diaz, Daniel; Abreu,
Salvador; Ciatto, Giovanni: Fifty Years of Prolog and Beyond. Theory and Practice of
Logic Programming, pp. 1-83, 2022.

Language, The Julia Programming: [Julia. https://github.com/Julialang/IJulia.jl.
Last access: September 6, 2022.

Leuschel, Michael; Butler, Michael: ProB: an automated analysis toolset for the B method.
Software Tools for Technology Transfer, 10(2):185-203, 2008.

Mensing, Max: SWI-Prolog-Kernel. https://github.com/madmax2012/SWI-Prolog-
Kernel. Last access: September 6, 2022.

Meyers, Chris; Obermann, Fred: Prolog in Python - Part 3. http://openbookproject.
net/py4fun/prolog/prolog3.html. Last access: September 6, 2022.

Pérez, Fernando; Granger, Brian E.: [Python: a System for Interactive Scientific Computing.
Computing in Science and Engineering, 9(3):21-29, May 2007.

Project Jupyter: https://jupyter.org/. Last access: September 6, 2022.

https://github.com/Calysto/calysto_prolog
https://github.com/targodan/jupyter-swi-prolog
https://nbconvert.readthedocs.io/en/latest/
https://nbconvert.readthedocs.io/en/latest/
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://irkernel.github.io/
https://github.com/JuliaLang/IJulia.jl
https://github.com/madmax2012/SWI-Prolog-Kernel
https://github.com/madmax2012/SWI-Prolog-Kernel
http://openbookproject.net/py4fun/prolog/prolog3.html
http://openbookproject.net/py4fun/prolog/prolog3.html
https://jupyter.org/

14 Anne Brecklinghaus, Philipp Korner

[Prb]

[Prc]

[Prd]
[Pre]

[SHC96]

[Tc]

[Tha]

[Thb]

[The]

[Wi]

[Wil2]

[Wil9]

Project Jupyter: Jupyter kernels. https://github.com/jupyter/jupyter/wiki/Jupyter-
kernels. Last access: September 6, 2022.

Project Jupyter: JupyterLab Documentation. https://jupyterlab.readthedocs.io/en/
stable/. Last access: September 6, 2022.

nbviewer. https://nbviewer.org/, Last access: September 6, 2022.

Prolog, SICStus: Predicate Index. https://sicstus.sics.se/sicstus/docs/latest/
html/sicstus.html/Predicate-Index.html. Last access: September 6, 2022.

Somogyi, Zoltan; Henderson, Fergus; Conway, Thomas C.: The Execution Algorithm of
Mercury, an Efficient Purely Declarative Logic Programming Language. Journal of Logic
Programming, 29(1-3):17-64, 1996.

Tekol, Yiice; contributors: PySwip. https://github.com/yuce/pyswip. Last access:
September 6, 2022.

The Jupyter Development Team: Jupyter console. https://jupyter-console.
readthedocs.io/en/latest/. Last access: September 6, 2022.

The Jupyter Development Team: Jupyter QtConsole. https://qtconsole.readthedocs.
io/en/stable/index.html. Last access: September 6, 2022.

The Voila Development Team: Voila Documentation. https://voila.readthedocs.io/
en/stable/. Last access: September 6, 2022.

Wielemaker, Jan: SWISH. https://swish.swi-prolog.org/. Last access: September 6,
2022.

Wielemaker, Jan; Schrijvers, Tom; Triska, Markus; Lager, Torbjorn: SWI-Prolog. Theory
and Practice of Logic Programming, 12(1-2):67-96, 2012.

Wielemaker, Jan; Riguzzi, Fabrizio; Kowalski, Robert A.; Lager, Torbjorn; Sadri, Fariba;
Calejo, Miguel: Using SWISH to Realize Interactive Web-based Tutorials for Logic-based
Languages. Theory and Practice of Logic Programming, 19(2):229-261, 2019.

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://jupyterlab.readthedocs.io/en/stable/
https://jupyterlab.readthedocs.io/en/stable/
https://nbviewer.org/
https://sicstus.sics.se/sicstus/docs/latest/html/sicstus.html/Predicate-Index.html
https://sicstus.sics.se/sicstus/docs/latest/html/sicstus.html/Predicate-Index.html
https://github.com/yuce/pyswip
https://jupyter-console.readthedocs.io/en/latest/
https://jupyter-console.readthedocs.io/en/latest/
https://qtconsole.readthedocs.io/en/stable/index.html
https://qtconsole.readthedocs.io/en/stable/index.html
https://voila.readthedocs.io/en/stable/
https://voila.readthedocs.io/en/stable/
https://swish.swi-prolog.org/

