A Multi-Target Code Generator for High-Level B

Fabian Vul0000-0003—2556-5553] ' Tyominik Hansen, Philipp

o 0000—0001—"7256—9560 : 0000—0002—4595—1518
Korner! I, and Michael Leuschel!]

Institut fiir Informatik, Universitat Diisseldorf

Universitatsstr. 1, D-40225 Diisseldorf
{fabian.vu, dominik.hansen, p.koerner, leuschel}Quni-duesseldorf.de

Abstract. Within high-level specification languages such as B, code is
refined in many steps until a small “implementable” subset of the lan-
guage is reached. Then, code generators are used, targeting programming
languages such as C or Ada.

We aim to diminish the number of refinement steps needed, by providing
an improved code generator. Indeed, many high-level operations and data
types, such as sets, can be dealt with in programming languages such as
Java and C++. We present a code generator for B named B2PROGRAM
with two distinct features. Firstly, it targets multiple (high-level) lan-
guages via a template-based approach to compilation. In addition to
flexibility, this also enables one to safeguard against errors in the indi-
vidual compilers and standard libraries, by generating multiple imple-
mentations of the same formal model. Secondly, it supports higher-level
constructs compared to existing code generators. This enables new uses
of formal models, as prototypes, demonstrators or simply as very high-
level programming languages, by directly embedding formal models as
components into software systems. In the article, we discuss the imple-
mentation of our code generator, evaluate it using B models taken from
literature and compare its performance with simulation in PrRoB.

1 Introduction and Motivation

Models written in formal specification languages, such as B, can be verified
via proof obligation generation and proving (e.g. by using ATELIERB [9]) and
animation and model checking (e.g. by using PROB [25]). Once a B model is
verified, it is often desirable to derive executable code from the model. This might
be a standalone binary or code that can be used as a library. Re-implementing
the code by hand, however, is cumbersome and might introduce new errors.
Instead, for safety-critical applications, code generators are typically applied.

Yet, existing code generators do not work on just any B model but only support a
very limited subset of B, often referred to as “B0” [9] or implementation language.
Refining the model to BO often requires many refinement steps and, again, is
very cumbersome. We can make two observations: firstly, translation of higher-
level constructs, e.g. sets, to modern languages is straightforward. This allows
translation of a larger subset than BO and reduction of effort due to refinement
of the model. Secondly, flexible output is desirable: while software can run as low-
level program on some embedded systems, there are safety-critical components

MACHINE Lift
VARIABLES floor
INVARIANT floor : 0..100

INITIALISATION floor := 0
OPERATIONS
inc = PRE floor<100 THEN floor := floor + 1 END;
dec = PRE floor>0 THEN floor := floor - 1 END
END

Listing 1. Example of a State Machine of a Lift Controller in B

implemented in different languages, e.g. web applications written in Java or
software written in C++-.

In this paper, we present BQPROGRAMEL which is a code generator that, tech-
nically, works on any abstraction level and is able to target multiple high-level
programming languages using a template-based approach. Following this ap-
proach, B2PROGRAM supports higher-level B constructs than other code gener-
ators. None of the examples used in Table[2]are in the B0 language, but code can
be generated from these models by B2ZPROGRAM without any refinement steps.
Most other code generators would require refining these models to B0 before
code generation can be applied.

In the following, we briefly introduce the B method and B language as well
as PROB, which is a tool that we build upon. We explain best practices from
compiler engineering that are foundations for our own code generator and dis-
cuss concerns regarding correctness in Section [2] Afterwards, in Section |3 our
template-based approach to code generation is described in detail. In Section [4]
the performance of the generated code is compared to PROB and trade-offs in our
standard libraries are analysed. Finally, we compare our approach with existing
work in Section [l

The B-Method, B and PROB The B-Method [I] is a method that is mainly used
for specification and verification of software systems. The B method enforces
a “correct-by-construction” approach. Many safety-critical system applications,
e.g. the Paris Métro Line 14 [10], the New York Canarsie Line [12] and around
95 installations of Alstom’s U400 CBTC system contain code generated from
verified B models. In some more recent applications such as the FTCS Hybrid
Level 3 Concept [16] formal B models have been executed at runtime.

Part of the B-Method is the B specification language which is based on set theory
and first-order logic. A component in the B language is called a machine, which
contains declaration of constants, variables and sets along with initialisation
and operations to modify the machine’s state. Furthermore, there are constructs
relevant for verification, such as preconditions or invariants, i.e. a predicate that
must be true in each reachable state. Listing [I] shows a simple specification of
a lift in B containing substitutions (aka statements), expressions, preconditions
and an invariant.

! Available at: https://github.com/favul00/b2program

https://github.com/favu100/b2program

PRrROB [25] is an animator, constraint solver and model checker for B models.
It allows automatic animation along with model checking using different tech-
niques [29121]. In particular, PROB supports checking invariants and absence of
deadlocks, but also custom assertions and LTL formulas.

2 Steps of Code Generation

A compiler is typically separated into two
parts [2]: the front-end performing an anal-
ysis, and the back-end performing code syn-
thesis. Within the context of formal methods,
the model must be verified before it is passed
to the code generator. An overview is given in
Figure[l] In the following, these three phases
are described in more detail.

Verification of the B Model Verification can
be done either by proving generated POs [9]
or by model checking [5]. This is of utmost
importance, as generating code from an in-
correct model may eventually lead to un-
desired or incorrect behaviour. Furthermore,
well-definedness, as well as the absence of in-
finite loops and integer overflows has to be
checked. This can be done with tools such as
PRrROB or ATELIERB.

Note that our code generator currently does

B model

’ Prover or Model Checker ‘

1. Verification

Verified B model

Lexer and Parser ‘

lAsT

Semantic Checker ‘

2. Analysis

Semantic AST

|

Code Generator

3. Synthesis

Target code

Fig. 1. B Model to Generated Code

not check that verification has been successfully carried out. This phase is cur-
rently merely an item on the checklist of a user’s workflow.

Analysis Phase The next step assumes that the given B model already is verified.
First, the B model is passed to the lexer, which divides the B code into tokens
defined for B, with categories such as identifiers, separators, operators, keywords,
literals etc. After this step, the tokens are passed to the parser, which applies
the defined context-free grammar rules to create the abstract-syntax tree (AST)
for semantic checks. Semantic analysis consists of scoping and type checking.
Scoping ensures that variables and operations were defined before they are used.
The type checker assigns a type for all appropriate nodes in the AST. After that,
the typed AST is checked for type errors (for more details on best practices of

compiler front-end design, see [2]).

Synthesis Phase During the synthesis phase, the semantic AST of the B model
is used to generate code. We decided to use a template-based approach, which
allows taking advantage of similarities of several programming languages. Com-
pared to an approach with intermediate code generation, this renders it easier

to target different languages and aligns with the best software engineering prin-
ciples, e.g. generic programming [3] and don’t repeat yourself [I8]. Furthermore,
an intermediate code representation does not assist the extensibility of the code
generator concerning additional target languages in any way.

Correctness of Code Generation A big question is: how can one trust the out-
put of the code generator, and the underlying hardware and compiler used to
process the code generator’s output? While there are some efforts to produce
formally verified compilers [24], the industry practice is to use at least two dif-
ferent code generators, developed using different techniques and developed by
different teams. The purpose of the second piece of code is to validate the output
of the main code generator. The second translation is typically run on a different
hardware, safeguarding against faults in the hardware as well. If the output of
the two translations differ, the system has to go into fail-safe, degraded mode.
Our code generator is arguably more complex than the ones derived for B0 [9].
These code generators, however, are also not proven and require to be comple-
mented with a second code generator for high-integrity systems, as described
above. Our code generator would hence have to follow this approach when be-
ing used for SIL-3 or SIL-4 componentsﬂ If performance is sufficient, one could
investigate using, e.g., PROB as the complementary high-level code generator.
One drawback, however, is the dynamic use of heap allocated memory by the
respective standard libraries used by our code generator. This will preclude its
use in some settings, such as embedded systems, in its current form.

Anyway, the main target of our code generator is not embedded systems, but
prototypes, demonstrators, business-critical applications or applications such as
data validation. Still, note that our code generator can target different lan-
guages. By producing multiple translations for different programming languages,
we could safeguard against errors in individual compilers and the respective stan-
dard libraries used (but not against errors in the language independent part of
our code generator).

3 Code Generation in Practice

In this section, we describe code generation with the use of the semantic B
AST generated after the analysis phase and templates written in the language
of STRINGTEMPLATE (https://www.stringtemplate.org).

3.1 Template-based code generation

A template is a document with holes, which are filled by a template engine using
provided parameters. The idea of template-based code generation (cf. Figure
is to provide templates for possible operators of the AST. AST nodes are then

2 SIL stands for Safety Integrity Level. SIL-4 is the highest level of integrity for railway
systems. See https://en.wikipedia.org/wiki/Safety_integrity_level.

https://www.stringtemplate.org
https://en.wikipedia.org/wiki/Safety_integrity_level

lSemantic

Java Templates AST
—
C1 1 Templates Target Code
Generator

/
’ Other Templates ‘

C++ code

Fig. 2. Template-based Code Generation

translated by the template engine to code, by filling out the holes in the associ-
ated template; the content of the holes is derived from the concrete attributes
and parameters of the AST nodes. A new language can be targeted by pro-
viding a new set of templates. Our code generator uses the STRINGTEMPLATE
engine. It was initially applied for generating dynamic web pages [28], but it
now complements the ANTLR parser generator and is well-suited for code gen-
eratiorEl Parameters of templates in STRINGTEMPLATE can also be booleans
that decide which part of the template is used to generate the resulting code.
In STRINGTEMPLATE all templates for a programming language are stored in a
separate file, named group file.

In order to target an additional programming language, the following steps must
be followed:

1. Create all templates for the programming language and implement the map-
ping of semantic AST nodes to the templates. E.g. an operation node is
mapped to the operation template with placeholders for the operation name,
parameters, return type etc. These placeholders are replaced by strings that
are generated from the semantic information of the operation node. So,
rendering the operation template with the required placeholders results in
the generated code for an operation. Two different AST nodes can also be
mapped to the same template e.g. expression nodes and most predicate nodes
with binary operators are mapped to the binary template. Some templates
require information from many AST nodes, as in Section [3.2
Furthermore, templates in two different programming languages that are
associated with the same AST node must have the same name. E.g. an oper-
ation node is mapped to a template with the name “operation” in both Java
and C++. This is required to keep code generation for both programming
languages generic. Thus, there is only one implementation for each AST node
in B2PROGRAM to generate code for many programming languages.

2. Implement B data types in the target language as described in Section [3.4]
These types are used by the generated code.

3. Solve the collision problem between keywords and identifiers as described in

Section [3.6]

3 https://web.archive.org/web/20170723204548/http: //pjmolina.com/
metalevel/2010/11/stringtemplate-a-great-template-engine-for-code-generation/

https://web.archive.org/web/20170723204548/http://pjmolina.com/metalevel/2010/11/stringtemplate-a-great-template-engine-for-code-generation/
https://web.archive.org/web/20170723204548/http://pjmolina.com/metalevel/2010/11/stringtemplate-a-great-template-engine-for-code-generation/

initialisation(machine, properties, values, body) ::= <<
public <machine>() {

<properties; separator="\n">

<values>

<body>
}

>>

Listing 2. Template for Generating from the INITTALISATION, PROPERTIES and VALUES
Clauses in Java

3.2 Code Generation with STRINGTEMPLATE and B AST

Based on Listing [2] we explain how Java code is generated from the INITIALI-
SATION clause of a B machine. The goal is to generate a valid Java class con-
structor.

Assume that the INITIALISATION, PROPERTIES and VALUES clauses of a B ma-
chine are not implemented in the code generator yet. The template in Listing
contains placeholders for the machine name, the body of the INITTALISATION
clause and the PROPERTIES and VALUES clause. Until the placeholders are sub-
stituted, it only outlines what a Java class constructor may look like.

In addition to the template definition, translation must be implemented for the
target language, which is outlined in Listing [3] After the machine name is ex-
tracted from the AST and the identifier template is applied, the placeholder
machine is replaced with the result. The body of the initialisation, which is
represented by a SubstitutionNode in the AST, is passed to another template
that belongs to the substitution. Code is generated recursively from this node by
generating code from all children of the AST node, each yielding an assignment.
It finally results in a string that replaces the placeholder body. B2PROGRAM has
the restriction that the VALUES and PROPERTIES clauses must assign a value to
all constants via “=". The VALUES clause is represented by a list of substitutions
in the AST. Each of the substitutions are generated like other substitutions. In
contrast, the PROPERTIES clause contains only a single predicate that must be
a conjunction. Then, each conjunct that contains the operator “=" is generated
as an assignment.

The final Java constructor code for the B machine in Listing [1}is as follows:

public Lift() {
floor = new BInteger (0);
}

The generated code uses the type BInteger which has to be implemented as
described in Section [3.4] Variable declarations are generated beforehand when
handling the VARIABLES clause of the B machine.

3.3 Extensibility for Other Programming Languages

Adding support for another language, e.g. C+-+, works similarly to code gener-
ation for Java. Some templates in C++ require only a subset of semantic infor-
mation that is required by the same template in Java. In this case, superfluous

private String visitInitialisation(MachineNode node) {
String machineName =

ST initialisation = group.getInstanceOf ("initialisation");

TemplateHandler.add(initialization, "machine", machineName);

TemplateHandler.add(initialization, "properties",
generateConstantsInitializations (node));

TemplateHandler.add(initialization, "values", generateValues(node));

if (node.getInitialisation() != null) {
TemplateHandler.add(initialization, "body",

machineGenerator.visitSubstitutionNode (...));
}

return initialisation.render ();

}

Listing 3. Implementation within B2PROGRAM for the INITIALISATION, PROPERTIES
and VALUES Clauses

// Java

tuple_create(argl, arg2) ::= <<

new BTuple\<>(<argl>, <arg2>)

>>

// C++

tuple_create(leftType, rightType, argl, arg2) ::= <<
(BTuple\<<leftType>, <rightType> >(<argl>, <arg2>))
>>

Listing 4. Template for Creating a Tuple in Java and C++

information is simply ignored. For some constructs however, additional semantic
information may be required to generate C++ code, e.g. type information for
the C++ STL. Thus, supporting another programming language requires writ-
ing templates for this language and extending the TemplateHandler only. So
code generation for different programming languages is done by the same Tem-
plateHandler, but with different templates. A concrete example are maplets (aka
tuples), which are represented by the type BTuple in the generated code. BTuple
is a class containing two generic types (one for the first entry and another for
the second). Both templates need placeholders for the actual values. While Java
can infer both types from the arguments of the constructor, C+-+ requires both
types written in the code explicitly, as shown in Listing [

Listing [f] shows the implementation in B2PROGRAM for generating code from a
tuple. The highlighted code is added in order to support C++. The additional
semantic information does not affect handling the Java template as the function
add in TemplateHandler ensures that there are no additional arguments passed
to the Java template. So code generation from a tuple for both languages is done
by the same function generate Tuple. Code generation for the tuple 1|->2 to Java
and C++ finally results in:

/% Java */ new BTuple<>(new BInteger (1), new BInteger (2))
/* C++ ¥/ (BTuple<BInteger, BInteger >((BInteger (1)), (BInteger(2))))

private String generateTuple(List<String> args, BType leftType, BType rightType) {
ST tuple = currentGroup.getInstanceOf ("tuple_create");
TemplateHandler.add (tuple, "leftType", typeGenerator.generate(leftType));
TemplateHandler.add(tuple, "rightType", typeGenerator.generate(rightType));
TemplateHandler.add(tuple, "argl", args.get(0));
TemplateHandler.add(tuple, "arg2", args.get(1));
return tuple.render();

Listing 5. Implementation in B2PROGRAM to Generate Code from a Tuple

ld_x X3
ld_y Vs
_ld_y;
_ld_x;

<Moo

Listing 6. Translation of x :=y || y := x

3.4 Implementation of B Data Types

The B data types are implemented and provided as a library that is included in
the generated code. B2PROGRAM supports the scalar types Integer and Boolean
and compound types such as Set, Tuple, Relation, Sequence, Struct and Record.
Instead of implementing these types ourselves, it would also be possible to
use existing equivalent types in the target language (e.g. implementations of
java.util.Set). But the API of the B types library must contain all opera-
tions that can be used in B, e.g. the operation relational image in the class
BRelation. This approach enables the support for high-level data structures,
which are not part of BO.

In addition to sequential substitutions, which evaluate statements one after an-
other, B also allows parallel substitutions. The latter is not part of BO and
poses two interesting challenges for code generation. First, it means we need
to keep access to the original, unmodified data structures; we cannot modify
sets or relations in place. For efficiency, we have used immutable data structures
(aka persistent data structures, see [20]). Take, for example, the assignment
x := x \/ {max(x)+1}, where z is a very large set. Using a traditional muta-
ble data structure, we would have to generate a copy of x for read access for
other parts of the B operation. With an immutable data structure we can create
a new version of x, while keeping the old value of x and while sharing values be-
tween the old and new value of z. Second, B variables that are re-used in another
expression are assigned to temporary variables first before the actual assignment
is executedﬁ An example is the parallel substitution x := y || y := x. This
statement swaps both values, where a sequential substitution would ensure both
x and y have the same value afterwards. Instead, it is translated to the Java
code shown in Listing [6]

4 Note that assignment does not copy the data structure; it copies just the reference.

Table 1. Supported Subset of B Types and Operators

B Type Class Supported Operators

Integer Blnteger z+y,z—y, xxy, x mody, z/y, -z, c <y, <y, =y, #Y,
x>y, x>y, succ(x), pred(x)

Boolean BBoolean pAgq,pVyq, "p,p=¢,pSqp=q PpFq

Set BSet sUL Upes t 8Nt st s\, sxt, [s|, z €5, € 5, ..y, min(s),
maz(s), P(s), P1(s), s Ct,sZt,sCt, st s=t,s#t

Tuple BTuple prj;, priy, s=1t, s #t

Relation BRelation r(s), r[S], dom(r), ran(r),r~, S<r, S<r,r> S, re S, r< s,
r®s, 7| s, id, ros, r;s, 7.0, v, T, prjy, priy, fne(r), rel(r),
r=s,r#s

Sequence BRelation first(s), last(s), size(s), rev(s), front(s), tail(s), take(s,n),
drop(s,n), s*t, conc(S), E — s, s+ E

Scalar Types Integers have functions for arithmetic operations and compar-
isons as shown in Table [I} The execution of B2ZPROGRAM has the option to use
primitive integers, where the language primitive is used, or big integers, which
allows arbitrary-sized integer values, for the generated code. Creating BInteger
as a big integer is done by invoking the constructor with a String. The use of
big integers avoids exceptions or unsound behaviour in the presence of under- or
overflows, at the cost of performance (memory and speed-wise). If it is proven
that in a machine integer overflows cannot occur, primitive integer can be used
for better performance. Booleans implement functions for logical operations. All
operations on integers and booleans that are part of the B language are sup-
ported by B2PROGRAM.

Compound Types A set in B is represented by a BSet in the supported
programming languages. The BSet class consists of functions for operations on
sets (e.g. union, intersection, difference) and an immutable data structure. Thus,
applying a binary set operation creates a new BSet without changing any of the
provided arguments. Deferred sets are also supported by B2PROGRAM. The size
of each deferred set is fixed and either defined in the PROPERTIES clause or taken
from the settings for code generation. This makes it possible to interpret deferred
sets as enumerated sets.

A relation in B is represented as BRelation. As a relation is a set of tuples in
B, all implemented operators for a set are available for relations as well. API
functions that are exclusive to relations are implemented in BRelation, but not
in BSet. In earlier implementations, BRelation extended BSet. But representing
BRelation as a persistent set of tuples resulted in slow performance of operations
on relations. In the current version of B2PROGRAM, BRelation is implemented
as a persistent map where each element in the domain is mapped to a persistent
set containing all belonging mapped elements in the range. This makes it possible
to improve the performance of operations on relations significantly.

Functions are special cases of relations where each element in the domain is
mapped to at most one element in the range. As long as a function call is well-
defined, the associated value of the only matching tuple is returned.

There are two possible errors when applying a function; normally these should
be caught during verification (see Section . Firstly, invoking a function with
an argument that is outside of the domain raises an exception at runtime. In
contrast, calling a function with a value mapped to more than one element
returns the first associated value, without raising an error.

Sequences in B are instances of BRelation where the domain is always a con-
tiguous set of integers starting at 1. The implementation of sequence operations
assumes that this property is fulfilled. Applying sequence operations on relations
that are not sequences should also be caught during verification (see Section
lest they lead to undefined behaviour at runtime.

Structs and Records are also supported in the generated code. While a struct
declares the given fields and field types, a record is an instance of a construct
with the given field and the belonging values. In contrast to other compound
types, structs are generated at code generation. The generated structs must ex-
tend BStruct where the needed functions of all structs are implemented. As a
struct can have a various number of fields, it would also be possible to imple-
ment BStruct as a hash map. In this case, each field with its value in a record
would be represented as a key-value pair in the hash map. But as the fields can
have different types, the implementation would not fulfil type safety. The gener-
ated class for a struct contains the belonging fields and functions for accessing
or overriding them. The function for overriding is implemented having no side
effects on the fields. Instead, a new instance with updated values is returned.
All compound types apart from structs are implemented using generics (aka
templates in C++) to specify the type of the elements in BSet, BTuple and
BRelation. For example, BRelation is a type containing two generic types, one
for the type of the elements in the domain and another for the elements in
the range. It extends BSet where the elements are tuples with the same generic
types as the corresponding BRelation. Using generics avoids casting and ensures
type safety. Table [1] also shows all operations on sets, tuples (i.e., nested pairs),
relations and sequences that are supported in B2PROGRAM now. The operations
that are not listed in Table [I] are not implemented yet.

3.5 Quantified and Non-Deterministic Constructs

Quantified constructs are set comprehensions, lambdas, quantified predicates,
quantified expressions as well as ANY and “becomes such that” substitutions.
They consist of variables constrained by a predicate.

Let ai...a, be the bounded variables with n € N. B2PROGRAM has the re-
striction that the first n sub-predicates must be joined as a conjunction where
the i-th conjunct must assign or constrain (e.g. via C, C, €) the i-th bounded
variables with i € {1,...,n}. Moreover, the sets that are used to constrain the
bounded variables must be finite in order to avoid infinite loops. Additional con-
ditions are joined to the other n sub-predicates as a conjunction. Furthermore,

BSet <BInteger> _ic_set_0 = new BSet<>();
for (BInteger _ic_x : BSet.interval(new BInteger (0),new BInteger(5))) {
if ((_ic_x.modulo(new BInteger (2)).equal(new BInteger (1))).booleanValue ()){
_ic_set_0 = _ic_set_0O.union(new BSet<>(_ic_x));
}
}

set = _ic_set_0;

Listing 7. Generated Java Code for Set Comprehension

the sub-predicates constraining or assigning a variable are only allowed to use
other bounded variables if the used bounded variables are constrained or assigned
before. These properties provide the opportunity to generate each of the first n
predicates as an assignment or a for-loop to iterate over the sets with a condi-
tional check whether the values of the constrained variables satisfy the entire
predicate. The restriction is also necessary because otherwise a constraint solver
would be needed to solve all quantified constructs in the generated code. E.g. the
predicate x: INTEGER & x > z & x < z*z can be solved by a constraint solver
but is not supported in a quantified construct for this code generator; the type
of x is infinite and a generated loop would not terminate. We decided against
the usage of a constraint solver as it cannot give any performance guarantees.
A fresh variable storing the result of a quantified construct is defined when nec-
essary. Primed variables in “becomes such that” substitutions are generated to
temporary variables that are assigned to their belonging variables before con-
straining the results. Once a solution for the constraint is found, it is assigned or
added to the result. The substitution set := {x|x : 0..5 & x mod 2 = 1},
for example, results in the Java code shown in Listing [7]

Non-deterministic constructs such as “becomes element of”, “becomes such that”
and ANY substitutions are also implemented in B2PROGRAM. “Becomes element
of” substitutions generate invocations of a special function nondeterminism on
the given BSet or BRelation on the right-hand side. The implementation of
nondeterminism chooses an element randomly. ANY and “becomes such that”
substitutions are generated in the same way as quantified constructs with one
difference: they are executed with the solution of the predicate that is found
first.

3.6 Identifier Clash Problem with Keywords

Different programming languages use different keywords and different regular
expressions for identifiers. In particular, some identifiers in B can be keywords
in other languages, e.g. new in Java. We store the keywords for each target
language in a keywords template. Identifiers themselves can collide with each
other as well, e.g., local variables due to machine inclusion or other local variables
and operation names. Thus, some identifiers have to be re-named during code
generation, in case scoping rules differ with B.

4 Performance Considerations and Evaluation

In this section, we discuss the performance of the generated code. We target
two languages, Java and C++. The actual implementation of the B types, i.e.
the representation of integer, boolean and set, has a major impact on perfor-
mance. This will be discussed in more detail before we compare the results with
simulation in PROB.

B Data Type Implementation There are many subtleties when aiming for
a suitable implementation of B Data Types.

Boolean Values are fairly straightforward. They are implemented as classes that
wrap a native boolean in both C+-+ and Java.

Integers can be implemented similarly as long as the absence of over- and un-
derflows is guaranteed. Otherwise, e.g. in C++4, this might trigger undefined
behaviour. To avoid overflow issues, our code generator also supports arbitrary-
sized integer values. In Java, we use the big integer implementation from Clo-
jure [I7], as we found operations to be about twice as fast as the one from the
Java Class Library. For C++-, we use the big integer implementation provided
by the GMP library (GNU Multiple Precision Arithmetic Library) [I4].

Sets are, as discussed in Section [3.4] assumed to be immutable to render a cor-
rect translation easier. Java hash sets or sets from the C++ STL, however, are
mutable. Initial versions of our code generator used these along with copying
upon modification, which did not perform WellE| Yet, there are immutable set
implementations based on Bagwell’s Hash Array Mapped Tries [4]. Due to struc-
tural sharing, only a small amount of internal nodes has to be copied in order
to create a “changed” copy, e.g. where an element is added. Copying six nodes
suffices for a perfectly balanced hash trie with 10 billion elements. We have con-
sidered several immutable set implementations for Java. By default, we use sets
as provided by Clojure, while we use the state-of-the-art library Immer [30] for
immutable sets in C++. They are both stable implementations providing very
good performance. For both Java and C++, there is the opportunity to change
the set implementation at compile-time.

Analogous to the representation of Sets, we use persistent hash maps provided
by Clojure and the library Immer for relations.

Empirical Evaluation The B data types used in the generated code for the
performance analysis are implemented as described above. Generated Java code
was executed on the Java HotSpot(TM) 64-Bit Server VM (build 12.0.1+12,
mized mode, sharing). In order to compile C++ code, the clang compiler (Ver-
sion: Apple LLVM wversion 10.0.1 (clang-1001.0.46.4)) was used with the opti-
misation options -01 and -02 respectively. As a baseline, we use PROB in the
version 1.9.0-nightly (c5a6e9d31022d0bfe40cbcdf68¢910041665ec1). The com-
plete benchmark code can be found in the B2PROGRAM repository.

5 Several benchmarks ran slower than simulation with ProB.

These benchmarks range from simple machines such as Lift and TrafficLight
to complex machines with large state spaces such as CAN bus, Train or Cruise
Controller. While Lift and TrafficLight contain arithmetic and logical operations
only, Train and CAN bus consist of many set operations. Again, Cruise Controller
is a machine having many assignments and logical operations which are more
complicated in comparison to other machines. The performance of set operations
is also investigated by the benchmarks Sieve, sort m2 datal000 and scheduler.
So the selected benchmarks cover different aspects of the performance.

For the empirical evaluation, an execution trace with a cycle is used for each
machine listed in Table 2| The cyclic part of the trace is executed several times
within a while loop. Cycles are selected such that each operation is executed
at least once. The exceptions are CAN bus and sort m2 datal000. While
the cycle in CAN bus does not contain all operations, sort m2 datal000 is
a quadratic sorting algorithm and does not have any cycles. The state space in
sort _m2 datal000 consists of one path from a state representing an unsorted
array of 1000 elements to a state representing a sorted array.

Each generated program is executed ten times measuring runtime and memory
(maximum resident set size). Table [2[shows the median of all measurements for
both runtime and memory. We set a timeout at 30 minutes execution time. The
speedup relative to PROB is given as well. As the translation is only run once, the
time utilised by B2PROGRAM is not measured. Since execution is long enough,
the start-up and parsing time of PROB are not relevant (but are included). Note
that PROB does variant checking when executing while loops; this cannot be
turned off. PROB was run using the command-line version probcli using the
-execute command. All measurements are done on a MacBook Air with 8 GB
of RAM and a 1.6 GHz Intel i5 processor with two cores.

As can be seen, for most machines, generated Java and C++ code can be one
to two orders of magnitudes faster than execution in PROB. This comes to no
surprise, as interpretation overhead can be quite large. Furthermore, generated
C+-+ code uses only a small percentage of memory compared to Java and PROB.
The reason is that both Java and SICStus Prolog make use of garbage collection
and both were running in unconstrained memory. Memory consumption can be
heavily reduced at the cost of enormous penalties concerning runtime in Java.
The difference between primitive and big integers concerning runtime is com-
paratively low impact for most machines. For the traffic light and lift examples
however, there is an approximately 5x speed-up. Because the considered loops
in the machines are very small, significant overhead is caused by incrementing
the loop counter which is also a BInteger. There can also be significant perfor-
mance increases depending on compiler optimisations: as there is neither user
input during execution nor program parameters, clang is able to optimise ag-
gressively. Similarly, most parts of the cruise controller and the sorting example
can be optimised. In the other benchmarks, optimisation is more conservative
and increases performance up to a factor of two.

Table 2. Runtimes of PROB and Generated Code in Seconds with Number of Oper-
ation Calls (OP calls), Speed-Up Relative to PRoB, Memory Usage in KB, BI = Big

Integer, PI = Primitive Integer

Lift ProB Java BI JavaPI C++ PI-O1 C++ PI-0O2

(2 x 10° Runtime > 1800 156.63 27.43 78.42 0.00
op calls) Speed-up 1 > 11.49 > 65.62 > 22.95 > 180000
Memory - 735188 785628 756 736

Traffic ProB Java BI Java PI ~ C++ PI-O1 C++ PI-02
Light Runtime > 1800 47.04 9.05 69.09 0.00
(1.8 x 10? Speed-up 1 > 38.27 > 198.9 > 26.05 > 180000
op calls) Memory - 855112 447828 756 736
Sieve ProB Java BI Java PI ~ C++ PI-O1 C++ PI-02

(1 op call, Runtime 76.31 7.71 6.49 14.63 8.94
primes until Speed-up 1 9.9 11.76 5.22 8.54
2 Million) Memory 398 980 1415428 1096 284 32472 35732
Scheduler ProB Java BI Java PI C++ PI-O1 C++ PI-02
(9.6 x 10° Runtime 786.74 10.62 10.49 21.57 10.32
op calls) Speed-up 1 74.08 74.99 36.47 76.23
Memory 5341316 414772 398924 816 820

sort_ m2 ProB Java BI Java PI ~ C++ PI-O1 C++ PI-02
datal000 [32] Runtime 17.27 3.27 2.10 0.2 0.03
(500 x 10° Speed-up 1 5.28 8.22 86.35 575.67
op calls) Memory 577808 191280 143 864 1192 1104
CAN Bus ProB Java BI Java PI C++ PI-O1 C++ PI-02
(J. Colley, Runtime 273.58 7.23 6.81 7.23 2.91
15 x 10° Speed-up 1 37.84 40.17 37.84 94.01
op calls) Memory 167284 428084 402432 968 952
Train [I] ProB Java BI Java PI C++ PI-O1 C++ PI-02
(940 x 10® Runtime 241.16 13.31 12.83 18.55 8.10
op calls) Speed-up 1 18.11 18.8 13 29.77
Memory 163476 377292 376 540 984 1016

Cruise ProB Java BI Java PI C++ PI-O1 C++ PI-02
Controller Runtime > 1800 21.26 15.26 11.90 0.30
(136.1 x 10° Speed-up 1 > 84.67 > 117.96 > 151.26 > 6000
op calls) Memory - 750816 484948 864 820

5 Related Work

Low-Level Code Generators There are a variety of code generators that work
on a low-level subset of B or Event-B and emit low-level code. This includes
the code generators in ATELIERB [9], which emit C, low-level C++ or Ada
code, B2LLVM |[7], which generates the LLVM intermediate representation and
jBTools [33] that generates low-level Java code. In contrast to B2PROGRAM,
these code generators usually only support primitive integers, boolean values as
well as enumerated sets which are translated to enums. Higher-level constructs
are not supported in order to avoid run-time memory allocation. This also means
that most B models cannot be translated without (several) additional refinement
steps. Apart from B2LLVM, which can use the LLVM infrastructure in order to
emit code in many programming languages, these code generators feature only
a single output language.

Automatic Refiner ATELIERB also provides an automatic refiner called BART [31]
which can help perform data-refinement and makes it much easier to reach the
BO level. BART can be used to generate code for SIL4 components, as the re-
finement steps are still validated by ATELIERB like regular refinement steps.
BART, however, still requires user interaction and may require discharging of
proof obligations. We also doubt that BART can be applied to the high-level
models in our experiments (cf. Table [2)).

Event-B Code Generators There are also code generators for Event-B to other
programming languages. The code generators in the EB2ALL tool-set presented
in [27] generate code from Event-B to Java, C, C++ and C#. Like the other
code generators for B, these code generators only support a subset of Event-B
at implementation level.

In contrast, the code generator EventB2Java presented in [8[32] generates B mod-
els from all abstraction levels to Java just like B2PROGRAM. While EventB2Java
generates JML contracts additionally to Java code, B2PROGRAM requires a ver-
ified B model as input. JML supports quantified constructs, which is used by
EventB2Java to generate code for B quantifications. In contrast to B2ZPROGRAM,
EventB2Java does not support non-deterministic constructs and it uses muta-
ble data structures (e.g., java.util. TreeSet). Note that the sorting example from
Table [2[stems from [32]@

Another code generator for Event-B [11] generates Java, ADA and C for OpenMP
and also C for the Functional Mock-up Interface. Code Generation depends on
manual annotation of tasks via a Rodin plugin. This code generator also uses a
template-based approach to store boilerplate code in templates and re-use them.
B2PROGRAM does not only use templates to store boilerplate code only, but also
to target various programming languages.

Finally, [13] is focused on extracting a scheduling of events from an Event-B
model. It does not seem to be publicly available (see Section 3.6.2 of [26]).

Ezxecution in PROB and TLC Another approach to utilise formal models in
software is to skip code generation altogether and to directly execute the model
using an animator, such as PROB and its Java API [22]. An example model
and application is an implementation of the ETCS Hybrid Level 3 principle [16].
There, a Java application interacted with a non-deterministic model using input
from different sources in order to calculate new signal states.

The TLC model checker also has library for TLA operators [23]. [I5] provided
a translation from B to TLA+ and has added some TLC libraries for B data
types. The way TLC deals with quantification is reminiscent of Section [3.5
On the other hand, the translation provides limited support for composition
and refinement and allows no sequential composition. The speed for lower-level

5 But note that the timings reported in [32] are incorrect. In our experiments the
EventB2Java generated code seems to be about twice as fast as execution with PrROB,
taking in the order of 8.15 seconds to sort 1000 elements. In [32] it is reported that
sorting a 100,000 element array takes 0.023 seconds, and a 200,000 element array
0.028 seconds which is impossible using a quadratic insertion sort.

models of TLC is faster than PROB, but one cannot easily use TLC to execute
a formal model.

Code Generators for other state-based formal methods [6] uses the Xtend technol-
ogy provided by the Xtext framework for domain specific languages to generate
C++ code for ASM formal models. This work [I9], contains a code generator
for VDM capable of producing Java and C++ code. There seem to be no code
generators available for Z, see Section 3.9.2 of [26]. The commercial products
Matlab/Simulink and Scade come with code generators, which are widely used
(despite any guarantees of correctness).

6 Discussion, Conclusion and Future Work

In this paper, we presented B2PROGRAM, a code generator for high-level B
models. Compared to existing work, more data types can be translated: e.g.,
sets, tuples, relations, sequences, records, many quantified constructs, and even
some instances of non-determinism. Our code generator makes use of efficient
immutable data structures to encode sets and relations.

B2PROGRAM does not cover the entirety of B. Table [I] shows all supported
operators for the supported B types. Those constructs that would require con-
straint solving techniques to deal with, e.g. infinite sets, are intentionally not
supported; we do not wish to embed a constraint solver into the generated code
as explained in Substitutions are covered by B2PROGRAM completely, ex-
cept for becomes such that constructs that would require a constraint solver. For
now, the only supported machine inclusion clauses are INCLUDES and EXTENDS.
Supporting other machine inclusion clauses will be implemented in the future.
The generated code often runs one or two orders of magnitude faster than inter-
pretation using PROB. For some benchmarks, making heavy use of set operations
on large sets, the difference is less marked. Initial versions of our code genera-
tor used mutable data structures, and was in many cases slower than PROB.
Representing relations as a set of tuples using persistent sets was still slower
than PROB for the sorting example, possibly because operations on relations
such the override operator were still inefficient. But in the current version of
B2PROGRAM, the performance for operations on relations is improved by rep-
resenting relations as a persistent map.

Another aspect that makes B2PROGRAM unique is the flexible output: using
templates with STRINGTEMPLATE provides the opportunity, to exploit similari-
ties of programming languages. This results in code generation for several target
languages with less effort. In the future, we want to explore code generation for
other target languages, including declarative languages such as Haskell, Clojure
and Prolog. Finally, B2PROGRAM might be used to rewrite B models by target-
ing the B language itself, potentially allowing optimisations for model checking.
To be able to use B2PROGRAM for SIL-3 or SIL-4 systems, the independent
development of another high-level code generator would be required. But we
hope that our code generator will already on its own enable new applications of

formal models, putting formal models into the loop and connecting them with
other software components and controlling or monitoring systems in real time.

References

1.

2.

S Ttk W

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

J. Abrial and A. Hoare. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005.

R. S. Alfred V. Aho, Monica S. Lam. The Structure of a Compiler. In Compilers
Principles, Techniques € Tools 2nd Edition. Addison Wesley, 1986.

R. Backhouse and J. Gibbons. Generic Programming. Springer-Verlag, 2003.

P. Bagwell. Ideal Hash Trees. Es Grands Champs, 1195, 2001.

C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

S. Bonfanti, M. Carissoni, A. Gargantini, and A. Mashkoor. Asm2C++: A Tool
for Code Generation from Abstract State Machines to Arduino. In Proceedings
NFM 2017, volume 10227 of LNCS, pages 295-301. Springer-Verlag, 2017.

R. Bonichon, D. Déharbe, T. Lecomte, and V. Medeiros Jr. LLVM-based code
generation for B. In Proceedings SBMF 201/, volume 8941 of LNCS, pages 1-16.
Springer-Verlag, 09 2014.

N. Catafio and V. Rivera. EventB2Java: A Code Generator for Event-B. In Pro-
ceedings NFM 2016, volume 9690 of LNCS, pages 166—171. Springer-Verlag, 2016.
ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France, 2016.
Available at http://www.atelierb.eu/.

D. Dollé, D. Essamé, and J. Falampin. B dans le transport ferroviaire. L’expérience
de Siemens Transportation Systems. Technique et Science Informatiques, 22(1):11—
32, 2003.

A. Edmunds. Templates for Event-B Code Generation. In Proceedings ABZ 2014,
volume 8477 of LNCS, pages 284-289, 2014.

D. Essamé and D. Dollé. B in Large Scale Projects: The Canarsie Line CBTC
Experience. In Proceedings of the 7Tth International B Conference (B2007), LNCS
4355, pages 252-254, Besancon, France, 2007. Springer-Verlag.

A. Fiirst, T. S. Hoang, D. A. Basin, K. Desai, N. Sato, and K. Miyazaki. Code
Generation for Event-B. In Proceedings 1F'M 201/, volume 8739 of LNCS, pages
323-338. Springer-Verlag.

T. Granlund. GNU MP. The GNU Multiple Precision Arithmetic Library, 2(2),
1996.

D. Hansen and M. Leuschel. Translating B to TLA + for Validation with TLC.
In Proceedings ABZ 2014, volume 8477 of LNCS, pages 40-55. Springer-Verlag.
D. Hansen, M. Leuschel, D. Schneider, S. Krings, P. Kérner, T. Naulin, N. Nayeri,
and F. Skowron. Using a Formal B Model at Runtime in a Demonstration of the
ETCS Hybrid Level 3 Concept with Real Trains. In M. Butler, A. Raschke, T. S.
Hoang, and K. Reichl, editors, Proceedings ABZ 2018, volume 10817 of LNCS,
pages 292-306. Springer-Verlag.

R. Hickey. The Clojure programming language. In Proceedings DLS. ACM, 2008.
A. Hunt and D. Thomas. The Evils of Duplication. In The Pragmatic Programmer:
From Journeyman to Master, page 26. The Pragmatic Bookshelf, 1999.

P. W. V. Jgrgensen, M. Larsen, and L. D. Couto. A Code Generation Platform
for VDM. In N. Battle and J. Fitzgerald, editors, Proceedings of the 12th Over-
ture Workshop. School of Computing Science, Newcastle University, UK, Technical
Report CS-TR-1446, January 2015.

http://www.atelierb.eu/

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

H. Kaplan. Persistent Data Structures. In Handbook of Data Structures and Ap-
plications. 2004.

S. Krings. Towards Infinite-State Symbolic Model Checking for B and Event-B.
PhD thesis, Heinrich Heine Universitat Diisseldorf, Aug. 2017.

P. Korner, J. Bendisposto, J. Dunkelau, S. Krings, and M. Leuschel. Embedding
High-Level Formal Specifications into Applications. In Proceedings FM 2019, vol-
ume 11800 of LNCS. Springer-Verlag.

L. Lamport. Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In 33rd symposium Principles of Programming Languages,
POPL, pages 42-54. ACM Press, 2006.

M. Leuschel and M. Butler. ProB: A Model Checker for B. In A. Keijiro, S. Gnesi,
and M. Dino, editors, FFME, volume 2805 of LNCS, pages 855-874. Springer-Verlag,
2003.

A. Mashkoor, F. Kossak, and A. Egyed. Evaluating the suitability of state-based
formal methods for industrial deployment. Softw., Pract. Exper., 48(12):2350-2379,
2018.

D. Méry and N. K. Singh. Automatic code generation from event-B models. In
Proceedings SoICT 2011, pages 179-188. ACM ICPS.

T. Parr. Enforcing Strict Model-View Separation in Template Engines. https:
//www.cs.usfca.edu/ parrt/papers/mvc.templates.pdf. Accessed: 2019-05-14.
D. Plagge and M. Leuschel. Seven at a stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. International Journal on Software Tools for
Technology Transfer, 12:9-21, 01 2007.

J. P. B. Puente. Persistence for the Masses: RRB-vectors in a Systems Language.
Proc. ACM Program. Lang., 1(ICFP):16:1-16:28, 2017.

A. Requet. BART: A tool for automatic refinement. In Proceedings ABZ 2008,
volume 5238 of LNCS, page 345. Spirnger-Verlag.

V. Rivera, N. Catano, T. Wahls, and C. Rueda. Code generation for Event-B.
STTT, 19(1):31-52, 2017.

J.-C. Voisinet. JBTools: an experimental platform for the formal B method. Pro-
ceedings of the naugural International Symposium on Principles and Practice of
Programming in Java, pages 137-139, 01 2002.

https://www.cs.usfca.edu/~ parrt/papers/mvc.templates.pdf
https://www.cs.usfca.edu/~ parrt/papers/mvc.templates.pdf

	A Multi-Target Code Generator for High-Level B

