Loop-Aware Optimizations in PyPy’s Tracing JIT

Hakan Ardo

Centre for Mathematical Sciences, Lund
University

hakan@debian.org

Abstract

One of the nice properties of a tracing just-in-time compiler (JIT)
is that many of its optimizations are simple, requiring one forward
pass only. This is not true for loop-invariant code motion which is a
very important optimization for code with tight kernels. Especially
for dynamic languages that typically perform quite a lot of loop
invariant type checking, boxed value unwrapping and virtual method
lookups.

In this paper we explain a scheme pioneered within the context
of the LualIT project for making basic optimizations loop-aware by
using a simple pre-processing step on the trace without changing
the optimizations themselves.

We have implemented the scheme in RPython’s tracing JIT
compiler. PyPy’s Python JIT executing simple numerical kernels
can become up to two times faster, bringing the performance into
the ballpark of static language compilers.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, incremental compilers, inter-
preters, run-time environments

General Terms Languages, Performance, Experimentation

Keywords Tracing JIT, Optimization, Loop-Invariant Code Motion

1. Introduction

A dynamic language typically needs to do quite a lot of type
checking, wrapping/unwrapping of boxed values, and virtual method
dispatching. For tight computationally intensive loops a significant
amount of the execution time might be spent on such tasks instead of
the actual computations. Moreover, the type checking, unwrapping
and method lookups are often loop invariant and performance could
be increased by moving those operations out of the loop. We explain
a simple scheme to make a tracing JIT loop-aware by allowing it’s
existing optimizations to perform loop invariant code motion.

One of the advantages that tracing just-in-time compilers (JITs)
have above traditional method-based JITs is that their optimizers
are much easier to write. Because a tracing JIT produces only linear
pieces of code without control flow joins, many optimization passes
on traces can have a very simple structure: They often consist of one
forward pass replacing operations by faster ones or even discarding
them as they walk along it. This makes optimization of traces very

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS’12, October 22, 2012, Tucson, Arizona, USA.

Copyright © 2012 ACM 978-1-4503-1564-7/12/10. .. $10.00

Carl Friedrich Bolz

Heinrich-Heine-Universitit Diisseldorf

Maciej Fijatkowski

fijall@gmail.com

cfbolz@gmx.de

similar to symbolic execution. Also, many difficult problems in
traditional optimizers become tractable if the optimizer does not
need to deal with control flow merges.

One disadvantage of this simplicity is that such forward-passing
optimizers ignore the only bit of control flow they have available,
which is the fact that most traces actually represent loops. Making
use of this information is necessary to perform optimizations that
take the whole loop into account, such as loop-invariant code motion
or optimizations that improve several iterations of the loop. Having
to deal with this property of traces complicates the optimization
passes, as a more global view of a trace needs to be considered when
optimizing.

Mike Pall pioneered a solution to address this problem in
the context of a dynamic language using a tracing JIT compiler.
He published his algorithm and its rationale in 2009 [19] and
implemented it in LuaJIT 2.0', an open source JIT compiler for
the Lua language. His approach allows to reuse all forward pass
optimizations to achieve loop invariant code motion and other loop-
related optimizations, which greatly simplifies the implementation.
We have implemented the same approach in RPython’s tracing JIT
compiler, the results of which we present here.

The resulting optimizations one gets using this scheme are in
no way novel, most of them are well-known loop optimizations.
However, the way to implement them is a lot simpler than directly
implementing loop-aware optimizations.

2. Background: RPython and PyPy

The work described in this paper was done in the context of the PyPy
project.? PyPy is a framework for implementing dynamic languages
efficiently [20]. When implementing a language with PyPy, one
writes an interpreter for the language in RPython [2]. RPython
(“Restricted Python®) is a subset of Python chosen in such a way
that it can be efficiently translated to a C-based virtual machine
(VM) by performing type inference.

Many low-level aspects of the final VM are not contained within
the interpreter implementation but are inserted during translation to
C. Examples for this are a garbage collector and also a tracing JIT
compiler [6].

RPython’s tracing JIT compiler traces on the level of RPython
programs. Thus it actually traces the execution of an interpreter
written in RPython, not of the program itself. This makes the details
of the object model of the implemented language transparent and
optimizable by the tracing JIT. In the context of this paper, this aspect
of RPython’s tracing JIT can be ignored. Instead, it is sufficient to
view RPython’s tracing JIT as a JIT for RPython.

Uhttp://luajit.org/
Zhttp://pypy.org

3. Motivation

To motivate the approach we propose here, let’s look at a trivial
(unrealistic) trace which corresponds to an infinite loop:

Lo (i0):

i1 =19 + 1
print(z)
jump(Lo, o)

2w o -

The first line is a label Lo with argument 7. Every label has a list
of arguments. The print operation just prints its argument (it is not
an operation that RPython’s tracing JIT really supports, we just use
it for this example). The jump operation jumps back to the beginning
of the trace, listing the new values of the arguments of the trace. In
this case, the new value of ¢g is i, making it a loop-invariant.

Because 9 is loop-invariant, the addition could be moved out of
the loop. However, it is desirable to get this effect using our existing
optimization passes without changing them too much. Optimizations
with one forward pass cannot directly achieve this effect: They
just look at the trace without taking into account that the trace
executes many times in a row. Therefore to achieve loop-invariant
code motion, we peel one iteration off the loop before running the
optimizations. This peeling gives the following trace:

Lo (i0):

11 =19 + 1
print(zq)
jump(L1, i0)

L1 (i) :

12 =19 + 1
print(ig)
jump(L1, o)

© K N AW o —

The iteration of the loop that was peeled off (lines 1-4) is called
the preamble, the loop afterwards (lines 6-9) the peeled loop.

Now the optimizer optimizes both of these two iterations of the
loop together, disregarding the jump and the label in lines 4-6. Doing
this, common subexpression elimination will discover that the two
additions are the same, and replace i2 with ¢;. This leads to the
following trace:

Lo (ig): 1
11 =149 + 1 2
print(iq1) 3
jump(L1, o) 4

5
L1 (ig): 6
print(iq) 7

8

jump(L1, o)

This trace is malformed, because 7, is used after the label L,
without being passed there, so we need to add 4; as an argument to
the label and pass it along the jumps:

Lo (i9): 1
11 =149 + 1 2
print(z1) 3
jump(L1, @0, 41) 4

5
L (ig, i1): 6
print(éq1) 7

8

jump(Ly, o, 41)

The final result is that the loop-invariant code was moved out
of the loop into the peeled-off iteration. Thus the addition is only
executed in the first iteration, while the result is reused in all further
iterations.

This scheme is quite powerful and generalizes to other optimiza-
tions than just common subexpression elimination. It allows linear
optimization passes to perform loop-aware optimizations, such as
loop-invariant code motion without changing them at all. All that is
needed is to peel off one iteration, then apply one-pass optimizations

class Base(object):
pass

class BoxedInteger(Base):
def __init__(self, intval):
self.intval = intval

def add(self, other)
return other.add__int(self.intval)

def add__int(self, intother)
return BoxedInteger(intother + self.intval)

def add__float(self, floatother):
floatvalue = floatother + float(self.intval)
return BoxedFloat(floatvalue)

class BoxedFloat(Base):
def __init__(self, floatval):
self.floatval = floatval

def add(self, other)
return other.add__float(self.floatval)

def add__int(self, intother)
floatvalue = float(intother) + self.floatval
return BoxedFloat(floatvalue)

def add__float(self, floatother):
return BoxedFloat(floatother + self.floatval)

def f(y):
step = BoxedInteger(-1)
while True:
y = y.add(step)

Figure 1. An “Interpreter” for a Tiny Dynamic Language Written
in RPython

and make sure that the necessary extra arguments are inserted into
the label of the loop itself and the jumps afterwards.

This is the key insight of the implementation scheme: If an
optimization is given two iterations together at the same time, the
optimization has enough context to remove operations from the
peeled loop, because it detects that the operation was performed
in the preamble already. Thus at runtime these moved operations
are only executed once when entering the loop and the results are
reused in further iterations.

4. Running Example

The last section gave a motivating but unrealistically small example.
This section will define a slightly larger example that the rest of the
paper uses to demonstrate the effect of optimizations. For this we
are going to use a tiny interpreter for a dynamic language with a
very small object model, that just supports an integer and a float type
(this example has been taken from a previous paper [4]). The objects
support only one operation, add, which adds two objects (promoting
ints to floats in a mixed addition). The implementation of add uses
classical double-dispatching. The classes can be seen in Figure 1
(written in RPython).

Using these classes to implement arithmetic shows the basic
problem of many dynamic language implementations. All the num-
bers are instances of either BoxedInteger or BoxedFloat, therefore
they consume space on the heap. Performing many arithmetic op-
erations produces lots of garbage quickly, putting pressure on the
garbage collector. Using double dispatching to implement the nu-

Lo(po, p1): 1
inside f: y = y.add(step) 2
guard_class(pi, BoxedInteger) 3
inside BoxedInteger.add 4

12 = get(pi, intval) 5
guard_class(po, BoxedInteger) 6

inside BoxedInteger.add__int 7

i3 = get(po, intval) 8

9

G4 = 12 + 13
ps = new(BoxedInteger) 10
inside BoxedInteger.__init__ 11
set(ps, intval, i4) 12
jump(Lo, po, p5) 13

Figure 2. An Unoptimized Trace of the example interpreter

meric tower needs two method calls per arithmetic operation, which
is costly due to the method dispatch.

Let us now consider an “interpreter” function f that uses the
object model (see the bottom of Figure 1). Simply running this
function is slow, because there are lots of virtual method calls inside
the loop, two for each call to add. These method calls need to check
the type of the involved objects every iteration. In addition, a lot of
objects are created when executing that loop, many of these objects
are short-lived. The actual computation that is performed by f is
simply a sequence of float or integer additions (note that f does not
actually terminate, but it is still instructive to look at the produced
traces).

If the function is executed using the tracing JIT, with y being
a BoxedInteger, the produced trace looks like the one of Figure 2
(lines starting with a hash “#” are comments). The trace corresponds
to one iteration of the while-loop in f.

The operations in the trace are indented corresponding to the
stack level of the function that contains the traced operation. The
trace is in single-assignment form, meaning that each variable is
assigned a value exactly once. The arguments po and p; of the loop
correspond to the live variables y and step in the while-loop of the
original function.

The label of the loop is Lo and is used by the jump instruction
to identify it’s jump target.

The operations in the trace correspond to the operations in the
RPython program in Figure 1:

® new creates a new object.
e get reads an attribute of an object.

® set writes to an attribute of an object.

® guard_class is a precise type check, not checking for subclasses.

Inlined method calls in the trace are preceded by a guard_class
operation, to check that the class of the receiver is the same as the
one that was observed during tracing. These guards make the trace
specific to the situation where y is really a BoxedInteger. When the
trace is turned into machine code and afterwards executed with
BoxedFloat, the first guard_class instruction will fail and execution
will continue using the interpreter.

5. Making Trace Optimizations Loop Aware

Before a trace is compiled to machine code by the backend, it
is optimized to achieve better performance. One goal of that is
to move operations out of the loop to execute them only once
and not every iteration. This can be achieved by loop peeling. It
leaves the loop body intact, but prefixes it with one iteration of the
loop. This operation by itself will not achieve anything. But if it is
combined with other optimizations it can increase the effectiveness
of those optimizations. For many optimizations of interest only a

Original Loop: After Loop Peeling:
Ly (I, Iip) Ly (I, I;p))
Preamble
ops - ops -

Jump (L2A,J1~,‘ "ﬁJ\,i\)

jump (Ll..h, e v']IJ\)

Loy (Ji,- . J)g)

Peeled Loop

copy of ops ---

jump (L2, K1, -+, K|x|)

Figure 3. Overview of Loop Peeling

few additional details have to be considered when they are combined
with loop peeling. These are described below by explaining the loop
peeling optimization followed by a set of other optimizations and
how they interact with loop peeling.

5.1 Loop Peeling

Loop peeling is achieved by appending a copy of the traced iteration
at the end of itself. See Figure 3 for an illustration. The first part
(called preamble) finishes with a jump to the second part (called the
peeled loop). The second part finishes with a jump to itself. This
way the preamble will be executed only once while the peeled loop
will be used for every further iteration. New variable names have
to be introduced in the entire copied trace in order to maintain the
SSA-property.

When peeling the loop, no assumptions are made that the
preamble is the first iteration, when later executing the loop. The
preamble stays general enough to correspond to any iteration of
the loop. However, the peeled loop can then be optimized using
the assumption that a previous iteration (the preamble) has been
executed already.

When applying optimizations to this two-iteration trace some
care has to taken as to how the arguments of the two jump operations
and the input arguments of the peeled loop are treated. It has to be
ensured that the peeled loop stays a proper trace in the sense that the
operations within it only operate on variables that are either among
its input arguments or produced within the peeled loop. To ensure
this we need to introduce a bit of formalism.

The original trace (prior to peeling) consists of three parts. A

vector of input variables, I = (I1,I2,- - -, I)7|), alist of non- jump
operations and a single jump operation. The jump operation contains
a vector of jump variables, J = (J1, Jo, e, JUI)? that are passed

as the input variables of the target loop. After loop peeling there will
be a second copy of this trace with input variables equal to the jump
arguments of the preamble, J, and jump arguments K. Figure 3
illustrates the general case. The running example in Figure 2 has
I = (po,p1) and J = (po, ps). The result of applying loop peeling
to it is shown in Figure 4 with K = (po, p9).

To construct the second copy of the trace (the peeled loop)
from the first (the preeamble) we need a function m, mapping
the variables of the preamble onto the variables of the peeled loop.
This function is constructed during the copying. It is initialized by
mapping the input arguments, /, to the jump arguments J,

m(I;) = J;fori =1,2,---|I]. (1)

Lo(po, p1): 1
inside f: y = y.add(step) 2
guard_class(pi, BoxedInteger) 3
inside BoxedInteger.add 4

12 = get(pi, intval) 5
guard_class(po, BoxedInteger) 6

inside BoxedInteger.add__int 7

i3 = get(po, intval) 8

iq4 = 12 + i3 9

ps = new(BoxedInteger) 10

inside BoxedInteger.__init__ 11

set(ps, intval, i4) 12

jump(L1, po, p5) 13
14

Li(po, ps5): 15
inside f: y = y.add(step) 16
guard_class(ps, BoxedInteger) 17
inside BoxedInteger.add 18

16 = get(ps, intval) 19
guard_class(po, BoxedInteger) 20

inside BoxedInteger.add__int 21

i7 = get(po, intval) 22

ig = is —+ i7 23

P9 = new(BoxedInteger) 24

inside BoxedInteger.__init__ 25

set(pg, intval, ig) 26

jump(L1, po, po) 27

Figure 4. A peeled trace of the example interpreter

In the example that means:

m(po) = po
. 2
m(p1) = ps @
Each operation in the trace is copied in order. To copy an oper-
ation v = op (Al, Ag, .- ,A‘A|) a new variable, 7, is introduced.
The copied operation will return ¢ using
f):op(m(Al),m(Ag),~~,m(A‘A‘)). 3)

Before the next operation is copied, m is extend by assigning
m (v) = 0. For the example above, that will extend m with

m(Z:2) = 'L:G
me 2 E @
m(ps) = po

6. Interaction of Optimizations with Loop Peeling
6.1 Redundant Guard Removal

Redundant guard removal removes guards that are implied by other
guards earlier in the trace. The most common case is the removal of
a guard that has already appeared. No special concern needs to be
taken when implementing redundant guard removal together with
loop peeling. The guards from the preamble might make the guards
of the peeled loop redundant and thus removed. Therefore one effect
of combining redundant guard removal with loop peeling is that
loop-invariant guards are moved out of the loop. The peeled loop of
the example reduces to the trace in Figure 5.

The guard on ps on line 17 of Figure 4 can be removed since ps
is allocated on line 10 with a known class. The guard on pg on line
20 can be removed since it is identical to the guard on line 6.

Note that the guard on ps is removed even though ps is not loop
invariant, which shows that loop invariant code motion is not the
only effect of loop peeling. Loop peeling can also remove guards
that are implied by the guards of the previous iteration.

Li(po, ps):
inside f: y = y.add(step)
inside BoxedInteger.add
i = get(ps, intval)
inside BoxedInteger.add__int
i7 = get(po, intval)
ig = ig + i7
P9 = new(BoxedInteger)
inside BoxedInteger.__init__
set(pg, intval, ig) 10
jump(L1, po, po) 11

© % N AW —

Figure 5. Peeled loop after redundant guard removal

Lo(po, p1): 1
inside f: y = y.add(step) 2
guard_class(pi, BoxedInteger) 3
inside BoxedInteger.add 4

io = get(py, intval) 5
guard_class(po, BoxedInteger) 6

inside BoxedInteger.add__int 7

i3 = get(po, intval) 8

14 = 19 + 13 9

ps = new(BoxedInteger) 10

inside BoxedInteger.__init__ 11

set(ps, intval, i4) 12

jump(L1, po, ps, %3) 13
14

Li(po, ps, i3): 15
inside f: y = y.add(step) 16
guard_class(ps, BoxedInteger) 17
inside BoxedInteger.add 18

i = get(ps, intval) 19
guard_class(pg, BoxedInteger) 20

inside BoxedInteger.add__int 21

i8 = 14 + 13 22

P9 = new(BoxedInteger) 23

inside BoxedInteger.__init__ 24

set(pg, intval, ig) 25

jump(L1, po, P9, %3) 26

Figure 6. Trace after common subexpression elimination

6.2 Common Subexpression Elimination and Heap
Optimizations

If a pure operation appears more than once in the trace with the same
input arguments, it only needs to be executed the first time and then
the result can be reused for all other appearances. This is achieved by
common subexpression elimination. RPython’s optimizers can also
remove repeated heap reads if the intermediate operations cannot
have changed their value.?

When that is combined with loop peeling, the single execution
of the operation is placed in the preamble. That is, loop invariant
pure operations and heap reads are moved out of the loop.

Consider the get operation on line 22 of Figure 4. The result of
this operation can be deduced to be ¢3 from the get operation on
line 8. The optimization will thus remove line 22 from the trace
and replace i7 with ¢3. Afterwards the trace is no longer in the
correct form, because the argument i3 is not passed along the loop
arguments. Therefore ¢3 needs to be added to the loop arguments.

Doing this, the trace from Figure 4 will be optimized to the trace
in Figure 6.

After loop peeling and redundant operation removal the peeled
loop will typically no longer be in SSA form but operate on variables

3 We perform a type-based alias analysis to know which writes can affect
which reads [11]. In addition writes on newly allocated objects can never
change the value of old existing ones.

that are the result of operations in the preamble. The solution is
to extend the input arguments, J, with those variables. This will
also extend the jump arguments of the preamble, which is also J.
Implicitly that also extends the jump arguments of the peeled loop,
K, since they are the image of J under m. For the example [has to
be replaced by I which is formed by appending ¢3 to I. At the same
time K has to be replaced by K which is formed by appending
m (i) = i7 to K. The variable i7 will then be replaced by i3 by
the heap caching optimization as it has removed the variable i7.

In general what is needed is to keep track of which variables
from the preamble are reused in the peeled loop. By constructing a
vector, H, of such variables, the input and jump arguments can be
updated using

j:(JlaJQ"'.7J‘J|7H17H2a'.'7H‘H‘) (5)
and

K = (K1, K2, K|y, m(H1),m(Hz), - ;m(Hm)) -
(6)
In the optimized trace .J is replaced by Jand K by K.

It is interesting to note that the described approach deals correctly
with implicit control dependencies, whereas in other approaches this
needs to be carefully programmed in. A commonly used example
for a control dependency is a division operation that needs to be
preceded by a check for the second argument being 0. In a trace,
such a check would be done with a guard. The division operation
must not be moved before that guard, and indeed, this is never done.
If the division is loop invariant, the result computed by the copy
of the division operation in the preamble is reused. This division
operation is preceded by a copy of the guard that checks that the
second argument is not 0, which ensures that the division can be
executed correctly. Such control dependencies are common in traces
produced by dynamic languages. Reading a field out of an object is
often preceded by checking the type of the object.

6.3 Allocation Removal

RPython’s allocation removal optimization [4] makes it possible to
identify objects that are allocated within the loop but never escape
it. That is, no outside object ever gets a reference to them. This is
performed by processing the operations in order and optimistically
removing every new operation. Later on if it is discovered that
a reference to the object escapes the loop, the new operation is
inserted at this point. All operations (get, set and guard_class) on
the removed objects are also removed and the optimizer needs to
keep track of the value of all used attributes of the object.

Consider again the original unoptimized trace of Figure 4. Line
10 contains the first allocation. It is removed and ps is marked as
allocation-removed. This means that it refers to an object that has
not yet been (and might never be) allocated. Line 12 sets the intval
attribute of ps. This operation is also removed and the optimizer
registers that the attribute intval of ps is i4.

When the optimizer reaches line 13 it needs to construct the
arguments of the jump operation, which contains the reference to the
allocation-removed object in ps. This can be achieved by exploding
ps into the attributes of the allocation-removed object. In this case
there is only one such attribute and its value is ¢4, which means that
ps is replaced with ¢4 in the jump arguments.

In the general case, each allocation-removed object in the jump
arguments is exploded into a vector of variables containing the
values of all registered attributes.* If some of the attributes are them-
selves references to allocation-removed objects they are recursively
exploded to make the vector contain only concrete variables. Some
care has to be taken to always place the attributes in the same or-

4 This is sometimes called scalar replacement [16].

Lo(po, p1): 1
inside f: y = y.add(step) 2
guard_class(pi, BoxedInteger) 3
inside BoxedInteger.add 4

12 = get(pi, intval) 5
guard_class(po, BoxedInteger) 6

inside BoxedInteger.add__int 7

i3 = get(po, intval) 8

iq4 = 12 + i3 9

inside BoxedInteger.__init _ 10

jump(L1, po, i4) 1

Li(po, i4): 13
inside f: y = y.add(step) 14
inside BoxedInteger.add 15
guard_class(po, BoxedInteger) 16

inside BoxedInteger.add__int 17

17 = get(po, intval) 18

18 = 14 + 17 19

inside BoxedInteger.__init__ 20

jump(L1, po, i8) 21

Figure 7. Trace after allocation removal

Lo (po, p1): 1
inside f: y = y.add(step) 2
guard_class(pi, BoxedInteger) 3
inside BoxedInteger.add 4

12 = get(pi, intval) 5
guard_class(po, BoxedInteger) 6

inside BoxedInteger.add__int 7

i3 = get(po, intval) 8

14 = 12 + i3 9

inside BoxedInteger.__init _ 10

jump(L1, po, %4) 11

Li(po, i3, t4): 13
ig = 14 + 13 14
jump(L1, po, i3, ig) 15

Figure 8. The fully optimized loop of the example interpreter

der when performing this explosion. Notation becomes somewhat
simpler if every concrete variable of the jump arguments is also
exploded into a vector containing itself. For every variable, Jj, of
the original jump arguments, J, let

o) _ (Jx) if Jy is concrete @
H® if J, is allocation-removed ’

where H™ is a vector containing all concrete attributes of Jj. The

arguments of the optimized jump operation are constructed as the

concatenation all the J*) vectors,
J=(JO j® JIIn Y. ®)

The arguments of the jump operation of the peeled loop, K, is

constructed from J using the map m,

K=(m(i)m(3)m(in). ©
In the optimized trace J is replaced by J and K by K. The trace
from Figure 2 will be optimized to the trace in Figure 7.

If all the optimizations presented above are applied, the resulting
loop looks as in Figure 8. The resulting optimized peeled loop
consists of a single integer addition. That is it will become type-
specialized to the types of the variables step and y, and the overhead
of using boxed values is removed.

[14.9x

FFT(1024,32768)

FFT(1048576,2)

4.3x
[10.1x

LU(100,4096)

LU(1000,2)

[12.2x
MonteCarlo(268435456)

SOR(100,32768)

SOR(1000,256)

[13.2x
SparseMatMult(1e4,5e3,262144)

SparseMatMult(1e5,1e6,1024)

conv3(1e6)

.0x
.4x

INE

sart(int) E—

Il PyPynolLP
I PyPy

0 LuaJlTno LP
3 LuadlT

0 2 4 6 8 10

Figure 10. Benchmark results normalized to the runtime of the C
version. The CPython results have been omitted to make the plot
readable.

7. Benchmarks

The loop peeling optimization was implemented in RPython’s
tracing JIT in about 450 lines of RPython code. That means that
the JIT-compilers generated for all interpreters implemented with
RPython now can take advantage of it. Benchmarks have been
executed for a few different interpreters and we see improvements
in several cases.

An example of an RPython interpreter that is helped greatly
by this optimization is our Prolog interpreter [7]. Prolog programs
often contain tight loops that perform for example list processing.
Furthermore we experimented with a Python library for writing
numerical kernels doing array manipulation.

The ideal loop for this optimization is short and contains numeri-
cal calculations with no failing guards and no external calls. Larger
loops involving many operations on complex objects typically bene-
fit less from it. Loop peeling never makes the generated code worse,
in the worst case the peeled loop is exactly the same as the preamble.
Therefore we chose to present benchmarks of small numeric kernels
where loop peeling can show its use.

The Python interpreter of the RPython framework is a complete
Python version 2.7 compatible interpreter. A set of numerical

calculations were implemented in both Python, C and Lua and their
runtimes are compared in Figure 10 and Figure 9.° For benchmarks
using larger Python applications the times are unaftected or only
slightly improved by the loop optimization of this paper.

The benchmarks are

e conv3(n): one-dimensional convolution with fixed kernel-size 3.
A single loop is used to calculate a vector b = (b1, -+ ,bp—2)
from a vector a = (a1, - ,an) and a kernel k = (k1, ko, k3)
using b; = ksa; + kzai+1 -+ k1a¢+2 forl < i <n — 2.Both
the output vector, b, and the input vectors, a and k, are allocated
prior to running the benchmark. It is executed with n = 105,

conv3x3(n,m): two-dimensional convolution with a kernel
of fixed size 3 X 3 using a custom class to represent two-
dimensional arrays. It is implemented as two nested loops that
iterates over the elements of the m x n output matrix B = (b ;)
and calculates each element from the input matrix A = (a; ;)
and a kernel K = (k; ;) using b; ; =

+ kspaii4 +
+ k2iai541 +
+ ki11Git1,5+41

+ k32ai-1,;
+ k2p2a;;
+ ki2ait1,;

k33ai—1,5-1
k2,3ai -1
k1,3ai+1,5-1
(10)
for2 <i<m-—1and 2 < j < n — 1. The memory for
storing the matrices are again allocated outside the benchmark
and (n,m) = (1000, 1000) was used.

dilate3x3(n): two-dimensional dilation with a kernel of fixed
size 3 x 3. This is similar to convolution but instead of summing
over the terms in Equation 10, the maximum over those terms is
taken. That places a external call to a max function within the
loop that prevents some of the optimizations for PyPy.

sobel(n): a low-level video processing algorithm used to locate
edges in an image. It calculates the gradient magnitude using
sobel derivatives. A Sobel x-derivative, D, of an X n image,
1, is formed by convolving I with

-1 0 1
K=| -2 0 2], (11)
-1 0 1

and a Sobel y-derivative, D,, is formed convolving I with K T
The gradient magnitude is then formed for each pixel indepen-
dently by /D2 + D2. The two convolutions and the pixelwise
magnitude calculation are combined in the implementation of
this benchmark and calculated in a single pass over the input
image. This single pass consists of two nested loops with a some-
what larger amount of calculations performed each iteration as
compared to the other benchmarks.

sqrt(7T'): approximates the square root of y. The approxi-
mation is initialized to o = y/2 and the benchmark con-
sists of a single loop updating this approximation using
x; = (xi—1 +y/xi—1) /2 for 1 < i < 10°. Only the lat-
est calculated value x; is kept alive as a local variable within the
loop. There are three different versions of this benchmark where
x; is represented with different type 1" of objects: int’s, float’s
and Fix16’s. The latter, Fix16, is a custom class that implements
fixpoint arithmetic with 16 bits precision. In Python and Lua
there is only a single implementation of the benchmark that gets
specialized depending on the class of it’s input argument, y. In
C, there are three different implementations.

5The benchmarks and the scripts to run them can be found in the
repository for this paper: https://bitbucket.org/pypy/extradoc/src/
tip/talk/dls2012/benchmarks

CPython PyPy PyPy LualIT LualIT GCC

no LP no LP -03

FFT(1024,32768) 469.07 | 20.83 £0.039 | 12.73 £0.029 | 4.45+0.019 | 2.74 +£0.021 1.40 4 0.082
FFT(1048576,2) 58.93 4.12 £ 0.020 2.0540.007 | 1.25£0.019 | 1.07 £ 0.050 | 0.83 4+0.044
LU(100,4096) 1974.14 | 32.22 £0.281 13.39 £ 0.063 | 8.57 £0.018 | 1.52+0.010 | 1.33 +0.070
LU(1000,2) 955.31 14.98 4+ 0.436 5.99 £ 0416 | 4.00£0.018 | 0.67 +0.014 | 0.65 % 0.077
MonteCarlo(268435456) 618.89 | 20.60 £0.097 | 1533 +0.163 | 3.924+0.013 | 2.82+£0.010 | 1.69 4 0.096
SOR(100,32768) 1458.12 8.24 4+ 0.002 2.66 +0.002 | 2.02 £0.011 1.31 £0.010 | 1.76 £ 0.088
SOR(1000,256) 1210.45 6.48 4+ 0.007 2.10 £0.005 | 1.63£0.006 | 1.08 £0.014 | 1.49 4+0.042
SparseMatMult(1e4,5e3,262144) 371.66 | 24.25+0.074 | 1652+ 0.077 | 9.69 +0.033 | 4.49 £0.036 | 1.84 £ 0.061
SparseMatMult(1e5,1e6,1024) 236.93 | 17.01 £ 0.025 8.754+0.149 | 7.19 £0.019 | 2.43 4+ 0.031 1.20 4+ 0.053
conv3(le6) 49.20 1.13 £0.043 0.51 +0.008 | 0.70 £0.009 | 0.18 +0.009 | 0.60 &£ 0.064
conv3x3(1000,1000) 138.95 0.70 4 0.007 0.20 +0.009 | 0.22 £0.009 | 0.1540.010 | 0.17 £ 0.079
dilate3x3(1000,1000) 137.52 4.3540.014 391 £0.037 | 0.224+0.008 | 0.16 £0.010 | 0.17 & 0.061
sobel(1000,1000) 104.02 0.49 4+ 0.009 0.21 +0.004 | 0.37 £0.014 | 0.24 +0.017 | 0.17 £ 0.061
sqrt(float) 14.99 1.37 4 0.001 0.89 +0.000 | 1.06 £0.010 | 0.83 +0.014 | 0.85 & 0.088
sqrt(int) 13.91 3.22 £0.033 2.65 £ 0.001 - - | 1.254+0.053
sqrt(Fix16) 463.46 5.12 £ 0.005 2.96 £0.007 | 4.00+0.040 | 1.47 £0.014 | 1.34 + 0.061

Figure 9. Benchmark results in seconds with 95% confidence intervals. The leftmost column gives the name of each benchmark and the
values of the benchmark parameters used. The different benchmarks and the meaning of their parameters are described in Section 7.

The Fix16 type is a custom class with operator overloading in
Lua and Python. The C version uses a C++ class. The goal of
this variant of the benchmark is to check how large the overhead
of a custom arithmetic class is, compared to builtin data types.

In Lua there is no direct support for integers so the int version is
not provided.

The sobel and conv3x3 benchmarks are implemented on top
of a custom two-dimensional array class. It is a straightforward
implementation providing 2 dimensional indexing with out of
bounds checks and data stored in row-major order. For the C
implementations it is implemented as a C++ class. The other
benchmarks are implemented in plain C. All the benchmarks except
sqrt operate on C double-precision floating point numbers, both in
the Python, C and Lua code.

In addition we also ported the SciMark® benchmarts to Python,
and compared their runtimes with the already existing Lua’ and C
implementations.

SciMark consists of:

¢ FFT(n, c¢): Fast Fourier Transform of a vector with n elements,
represented as an array, repeated ¢ times.

LU(n, ¢): LU factorization of an n x n matrix. The rows of
the matrix is shuffled which makes the previously used two-
dimensional array class unsuitable. Instead a list of arrays is
used to represent the matrix. The calculation is repeated c times.

MonteCarlo(n): Monte Carlo integration by generating n
points uniformly distributed over the unit square and computing
the ratio of those within the unit circle.

SOR(n, ¢): Jacobi successive over-relaxation on an x n grid
repreated c times. The same custom two-dimensional array class
as described above is used to represent the grid.

SparseMatMult(n, z, ¢): Matrix multiplication between a nxn
sparse matrix, stored in compressed-row format, and a full
storage vector, stored in a normal array. The matrix has z non-
zero elements and the calculation is repeated c times.

Benchmarks were run on Intel Xeon X5680 @3.33GHz with
12M cache and 16G of RAM using Ubuntu Linux 11.4 in 64bit mode.

6 http://math.nist.gov/scimark2/
Thttp://luajit. org/download/scimark.lua

The machine was otherwise unoccupied. We used the following
software for benchmarks:

e PyPy 1.9
e CPython 2.7.1
e GCC 4.5.2 shipped with Ubuntu 11.4

e LualIT 2.0 beta, git head of August 15, 2012, commit ID
0dd175d9

We ran GCC with -O3 -march=native, disabling the automatic
loop vectorization. In all cases, SSE2 instructions were used for
floating point operations. We also ran PyPy and LualJIT with loop
peeling optimization and without (but otherwise identical).

For PyPy and LualIT, 10 iterations were run, prefaced with 3
iterations for warming up. Due to benchmarks taking large amounts
of time on CPython, only one run was performed. For GCC, 5
iterations were run. In all cases, the standard deviation is very low,
making benchmarks very well reproducible.

We can observe that PyPy (even without loop peeling) is orders
of magnitude faster than CPython. This is due to the JIT compilation
advantages and optimizations we discussed in previous work [4, 5],
the main improvement for these concrete benchmarks comes from
the allocation removal/unboxing optimization.

The geometric mean of the speedup of loop peeling is 70%,
which makes benchmark times comparable with native-compiled
C code. We attribute the performance gap to C code to the relative
immaturity of RPython’s JIT machine code backend and the naive
register allocator. Also, in case of nested loops, operations are
only moved out of the innermost loop. That is an issue when the
innermost loop is short and a significant amount of time is spent in
the outer loops. This is the case with for example SparseMatMult.

The large input parameters of the SciMark benchmarks are
chosen in such a way to make the problem not fit into the CPU
cache. This explains why PyPy is doing relatively better on them.
The cache miss penalties are large relative to the time needed to
perform the actual computations, which hides problems of the less
efficient code generated by PyPy.

The speedups that LualJIT gains from the loop optimization pass
are similar to those PyPy gains. In general, LualIT is even closer to
C performance, sometimes even surpassing it. LuaJIT is generating

machine code of higher quality because it has more optimizations®
and produces much better machine code than PyPy.

The performance of sqrt(Fix16) compared to the C version gives
an indication of the overhead of using a custom class with operator
overloading for arithmetic. For CPython the overhead over C is a lot
larger than that of sqrt(int). In LuaJIT, the overhead is very small. For
PyPy, sqrt(Fix16) 2.2 times slower than the C version. However, that
is not actually due to the overhead of operator overloading but due to
the additional overflow checking necessary for integer arithmetic in
Python. The JIT does not manage to prove that the integer operations
in these benchmarks cannot overflow and therefore cannot optimize
away the overflow checking. This is also the reason why sqrt(float) is
so much faster than sqrt(int) for PyPy. The fact that LuaJIT and PyPy
do so well on sqrt(Fix16) shows that the allocation removal/sinking
optimizations work well in both JITs.

8. Related Work

Loop invariant code motion optimizations are a well-known ap-
proach to optimize loops [18]. Therefore, the effects that the opti-
mizations described here achieve are not in any way new. However,
we think that achieving them in the way described in this paper is
simpler than writing explicit algorithms.

Loop invariant code motion has been part of early compilers
since the 1960s [1]. A common approach for achieving loop in-
variant code motion is to perform partial redundancy elimination.
The approach was first proposed by Morel and Renvoise [17]. It
involves solving data flow problems of bidirectional data flow equa-
tions. After improvements [9, 10] this approach was followed by the
work of Knoop et.al. [15] who cleanly separated the problem into a
backward and forward data flow analysis. Implementing partial re-
dundancy elimination in compilers that use SSA form [8] simplified
the algorithms, because no iterative data flow analysis was needed
any more.

As described in the introduction, Mike Pall pioneered the ap-
proach described in this paper. He showed that, unlike traditional
loop-invariant code motion (LICM), this approach is effective, even
in the presence of many guards and global control dependencies,
which are caused by the semantics of dynamic languages.

He writes on the Lua-users mailing list: “The LOOP pass does
synthetic unrolling of the recorded IR, combining copy-substitution
with redundancy elimination to achieve code hoisting. The unrolled
and copy-substituted instructions are simply fed back into the
compiler pipeline, which allows reuse of all optimizations for
redundancy elimination. Loop recurrences are detected on-the-fly
and a minimized set of PHIs is generated.” [19]

Both the Hotpath VM [14] and SPUR [3] implement loop-
invariant code motion directly, by explicitly marking as loop-
invariant all variables that stay the same along all looping paths
and then moving all pure computation that depends only on these
variables out of the loop. SPUR can also hoist loads out of the loop
if nothing in the loop can ever write to the memory location. It can
also move allocations out of the loop, but does not replace the object
by its attributes. This saves only the allocation, not the access to the
object attributes.

The type specialization described by Gal et al. [12] can be seen
as doing a similar optimization (again by manually implementing it)
as the one described in Section 6.3: The effect of both is that type
checks are fully done before a loop is even entered.

9. Conclusions

In this paper we have studied loop invariant code motion during
trace compilation. We claim that the loop peeling approach of

8 See http://wiki.luajit.org/Optimizations

LualIT is a very convenient solution since it fits well with other
trace optimizations and does not require large changes to them.
The approach improves the effect of standard optimizations such
as redundant guard removal, common subexpression elimination
and allocation removal. The most prominent effect is that they all
become loop invariant code motion optimizations.

By using several benchmarks we show that the proposed algo-
rithm can significantly improve the run time of small loops contain-
ing numerical calculations.

The described approach still has some limitations which we plan
to address in the future. In particular loop peeling works poorly in
combination with trace trees [13] or trace stitching [12]. The side
exits attached to guards that fail often currently have to jump to the
preamble.

Acknowledgments

We would like to thank Samuele Pedroni, Sven Hager, David
Schneider, and the anonymous reviewers for helpful comments
on drafts of this paper. We owe gratitude to Mike Pall for making
his impressive work on LualIT publicly available and for detailed
reviews on drafts of the paper.

References

[1] F. Allen and J. Cocke. A catalogue of optimizing transformations. In
R. Rustin, editor, Design and Optimization of Compilers, pages 1-30.
Prentice-Hall, 1971.

[2] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: a step
towards reconciling dynamically and statically typed OO languages. In
DLS, Montreal, Quebec, Canada, 2007. ACM.

[3] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,
N. Tillmann, and H. Venter. SPUR: a trace-based JIT compiler for
CIL. In OOPSLA, Reno/Tahoe, Nevada, USA, 2010. ACM.

[4] C. F. Bolz, A. Cuni, M. Fijatkowski, M. Leuschel, S. Pedroni, and
A. Rigo. Allocation removal by partial evaluation in a tracing JIT. In
PEPM, Austin, Texas, USA, 2011.

[5] C. F. Bolz, A. Cuni, M. Fijalkowski, M. Leuschel, A. Rigo, and
S. Pedroni. Runtime feedback in a meta-tracing JIT for efficient
dynamic languages. In ICOOOLPS, Lancaster, UK, 2011. ACM.

[6] C. F. Bolz, A. Cuni, M. Fijatkowski, and A. Rigo. Tracing the meta-
level: PyPy’s tracing JIT compiler. In ICOOOLPS, pages 18-25,
Genova, Italy, 2009. ACM.

[7] C.F. Bolz, M. Leuschel, and D. Schneider. Towards a jitting VM for
Prolog execution. In PPDP, Hagenberg, Austria, 2010. ACM.

[8] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. A new
algorithm for partial redundancy elimination based on SSA form. In
Proceedings of the ACM SIGPLAN 1997 conference on Programming
language design and implementation, PLDI *97, page 273-286, New
York, NY, USA, 1997. ACM.

[91 F. C.-T. Chow. A portable machine-independent global opti-
mizer—design and measurements. PhD thesis, Stanford University,
Stanford, CA, USA, 1984. AAI8408268.

[10] D. M. Dhamdhere. Practical adaption of the global optimization
algorithm of Morel and Renvoise. ACM Trans. Program. Lang. Syst.,
13(2):291-294, Apr. 1991.

[11] A.Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias analysis.
SIGPLAN Not., 33(5):106-117, May 1998.

[12] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruder-
man, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz.
Trace-based just-in-time type specialization for dynamic languages.
In PLDI, PLDI *09, New York, New York, 2009. ACM. ACM ID:
1542528.

[13] A. Gal and M. Franz. Incremental dynamic code generation with
trace trees. Technical Report ICS-TR-06-16, Donald Bren School of

Information and Computer Science, University of California, Irvine,
Nov. 2006.

[14] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective JIT
compiler for resource-constrained devices. In VEE, Ottawa, Ontario,
Canada, 2006. ACM.

[15] J. Knoop, O. Riithing, and B. Steffen. Lazy code motion. SIGPLAN
Not., 27(7):224-234, July 1992.

[16] T. Kotzmann and H. Mossenbock. Escape analysis in the context of
dynamic compilation and deoptimization. In Proceedings of the Ist
ACM/USENIX international conference on Virtual execution environ-
ments, VEE ’05, page 111-120, New York, NY, USA, 2005. ACM.
ACM ID: 1064996.

[17] E. Morel and C. Renvoise. Global optimization by suppression of
partial redundancies. Commun. ACM, 22(2):96-103, Feb. 1979.

[18] S. S. Muchnick and Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, Sept. 1997.

[19] M. Pall. LuaJIT 2.0 intellectual property disclosure and research oppor-
tunities, Nov. 2009. http://lua-users.org/lists/lua-1/2009-11/
msg00089.html.

[20] A.Rigo and S. Pedroni. PyPy’s approach to virtual machine construc-
tion. In DLS, Portland, Oregon, USA, 2006. ACM.

