
A Verified Low-Level Implementation of the
Adaptive Exterior Light and Speed Control

System

Sebastian Krings1 , Philipp Körner2 , Jannik Dunkelau2 , and Chris
Rutenkolk2

1 Institute for Information Security
Niederrhein University of Applied Sciences

Mönchengladbach, Germany
sebastian.krings@hs-niederrhein.de

2 Institut für Informatik, Heinrich-Heine-Universität
Universitätsstr. 1, D-40225 Düsseldorf, Germany

{p.koerner,jannik.dunkelau,chris.rutenkolk}@hhu.de

Abstract. In this article, we present an approach to the ABZ 2020 case
study, that differs from the ones usually presented at ABZ: Rather than
using a (correct-by-construction) approach following a formal method,
we use MISRA C for a low-level implementation instead. We strictly
adhere to test-driven development for validation, and only afterwards
apply model checking using CBMC for verification. In consequence, our
realization of the ABZ case study can serve as a baseline reference for
comparison, allowing to assess the benefit provided by the various formal
modeling languages, methods and tools.

1 Introduction

The ABZ 2020 Case Study [18] describes two assistants commonly found in
modern cars. The overall system consists of two loosely coupled components,
namely an adaptive exterior light system (ELS) and a speed control system
(SCS). The ELS controls head- and taillights, setting their brightness depending
on the surroundings and user preference. At the same time, the SCS controls
the vehicle’s speed, again by taking into account the environment as well as
parameters given by the driver. Obviously, both are safety critical components,
rendering safety and security a development priority.

Used Methods and Tools In this article, we present our implementation of the
ABZ 2020 Case Study. Our approach differs from the ones usually followed by
the ABZ community: we do not employ a fully formal development method.
Instead, we attempted an approach closer to what might happen in industries,
where formal methods are not common yet. To do so, we implemented both the
ELS and the SCS directly in (MISRA) C, following a test-driven development
workflow. Only afterwards, we performed formal verification attempts directly on

https://orcid.org/0000-0001-6712-9798
https://orcid.org/0000-0001-7256-9560
https://orcid.org/0000-0003-0819-5554
https://orcid.org/0000-0002-6751-0369

the C code, using the CBMC model checker [11]. Both MISRA C and CBMC will
be introduced more thoroughly in Section 2.1 and Section 4.2 respectively. Test-
driven development and mocking of test objects will be presented in Section 2.2.

Rationale Often, formal methods practitioners claim to hold a high ground over
“traditional” software development or at least that there rarely are disadvan-
tages [14,7]. The argument seems convincing; yet, we are not aware of any (case)
study comparing two teams working on the same project, one employing a formal
approach and the other working “traditionally”. For this case study, we aim at
providing a baseline that can be compared to fully formal approaches or other
approaches combining formal and informal verification, e.g., as suggested for
spacecrafts [21]. We opted to postpone verification as much as possible, as one
would expect a group focusing on embedded systems to work. This allows a fair
evaluation of (dis-)advantages of the individual approaches. Our aim is to exam-
ine, whether a rigorous approach is beneficial in the context of the case study.
If so, we hope to add to the body of evidence that formal methods actually are
beneficial compared to “traditional” software development.

Distinctive Features There are several features rendering our approach unique:
Firstly, as the implementation is written in C, it could be directly deployed to an
embedded system. Models written in formal specification languages would have
to be refined to an implementation level before code can be generated. Further-
more, code generators usually are not proven and might introduce new errors.
In cases where code generation is not easily applicable, side-by-side development
of code is suggested. However, this approach is error-prone as well.

Secondly, the implementation is close to the actual hardware. Code that
interacts with sensors or user input is separated, i.e., it could immediately be
linked to actual hardware. Additionally, our implementation makes use of real
threads, just as the sub-components of the system would run in parallel. We
expect that most specifications using formal methods simply allow some non-
determinism concerning the ordering of state transitions. This has some more
consequences: Our implementation allows real-time simulation of the system,
whereas state transitions using formal methods usually happen instantly and
do not amount for any time elapsed during calculations. This also allows usage
of our implementation for hardware-in-the-loop tests, which are common for
automotive (cf. [13,20]) in order to test the entire system.

Thirdly, MISRA C is a language that stems from the automotive industry.
It is a somewhat formal language, in the sense that certain rules are required to
be followed. Yet, it is also relatively flexible, since other rules are only advisory.

2 Modeling Strategy & Implementation

In the following section, we will discuss how we approached the initial implemen-
tation in C, starting with details on the C dialect we use in Section 2.1. After-
wards, the general structure of our implementation is presented in Section 2.3,

followed by a discussion of the limitations of our approach and implementation
in Section 2.4. For the sake of brevity, we will only show small code snippets in
this paper. The full model is available at

https://github.com/wysiib/abz2020-case-study-in-c-public.

2.1 MISRA C

MISRA C is a set of development and style guidelines for C, introduced by
MISRA, the Motor Industry Software Reliability Association. The standard [1]
defines a subset of C meant to be used for safety critical systems, in particular in
the automotive sector. In fact, both ISO 26262 [19] and the software specification
by AUTOSAR [2] reference or suggest the usage of MISRA C for automotive
applications.

The overall goal of MISRA C is to increase both safety and security by
avoiding common pitfalls. Thus, the rules prohibit or discourage the use of un-
safe constructs, try to avoid ambiguities, and so on. The MISRA C standard
distinguishes between three kinds of rules: those that are mandatory, those that
are required but could be ignored if a rationale is given and rules that are meant
as advisory only. For instance, there is a required rule stating that any switch
statement should have a default label and mandatory rule stating that any path
through a non-void function should end in a return statement.

While of course all coding rules could be checked by hand in theory, we used
cppcheck3 to verify compliance of our code to most of the MISRA rules. However,
given that not all rules can be statically checked the result is only an indication
and some manual review is required as well.

Despite its prevalence in the automotive industry, MISRA C has been crit-
icized regarding both efficiency and ease of use. In particular, the possibilities
of false positives [17] and of introducing new errors by (unreflectingly) changing
code to adhere to the rules [6] should be carefully considered. Both factors again
allow for comparison to the formal development methods present at ABZ. De-
spite the criticism, MISRA C remains the de facto standard in the automotive
industry and is used throughout all production code in this case study.

2.2 Test-driven Development and Mocking

Test-driven Development is an approach to software development, that follows a
certain development cycle: before implementing a new feature of fixing an issue,
an appropriate test case is formulated and execute [4]. Naturally, the test fails,
as no code implementing the scenario has been added yet.

Only afterwards, the code is extended and improved to make the test pass. As
a result, a high confidence can be achieved. Furthermore, the test suite developed
helps during refactoring later on.

To simplify formulating tests and to allow testing program parts in isolation,
mocks can be used. A mock is an object or library that simulates the input
3 http://cppcheck.sourceforge.net

https://github.com/wysiib/abz2020-case-study-in-c-public
http://cppcheck.sourceforge.net

Clock (external)

Time

Sensors (from Car)

Key Status

Brightness

...

ELS

initialize ELS

read sensors

functionality store last state

SCS

initialize SCS

read sensors

functionality store last state

M
oc
ke
d
fo
r
T
es
ts

Input (from Driver)

Pitman Arm

...

Output (to Car)

ELS State

SCS State

rea
ds

reads

reads

reads

re
ce
iv
es

receives

writes

writes

Fig. 1. System Architecture and Internal Communication

and output behavior of program parts [4]. However, rather than implementing
the full functionality, a mock is usually much simpler than the code it replaces.
For instance, mocks are often supposed to behave deterministically or even to
provide constant outputs. For testing purposes, mocks often record the inputs
to them and provide them to assertions.

2.3 Code Structure

The overall architecture of our implementation is depicted in Figure 1. We follow
a structure that is fairly similar to the one the specification provides. Since two
subsystems are specified, the code is separated into two folders, one for the
cruise control and the other for the light system. This is to help ensure that
the systems are independent of each other. Shared type definitions, e.g., the
pedal deflection, the sensor state enumeration, and shared sensors, are stored
separately. An artificial time sensor was introduced for testing, but can easily be
replaced by an actual clock.

Each of the subsystems is split into three header files and implementations.
The first header file declares the accessible and shared sensors for the subsys-
tem, and contains relevant type definitions. Another header file defines the user
interface, e.g., how the pitman arm may be moved or what input the pedals
for gas and brakes may yield. The last header file contains definitions for the
actuators, i.e., what the system is allowed to do. Only the latter two header files
are actually implemented, eventually resulting in three C files:

Table 1. Development Time

Task Time in Hours

basic implementation and code structure 2
ELS implementation, tests and scenarios 30
SCS implementation, tests and scenarios 22
model checking 3
refactoring and code cleanup 2
state visualization 6

– A state struct that contains all the data relevant to the subsystem.
– The user interface such that user input can be simulated. This changes some

internal variables that keeps track of the state of the UI; in a deployed system,
this can be replaced by additional sensors. The attributes correspond to the
signals that the subsystem has to communicate.

– The realization of the state machine with several guarded state transitions.
This is the actual implementation of the specified safety properties.

For the test cases, sensors are mocked. In order to get an actual executable,
real sensors have to be linked during compilation. The time spend for develop-
ment, validation and verification is given in Table 1.

2.4 Limitations

Due to time constraints, we opted not to implement every single requirement
but tried to cover as much as possible. Aside from the emergency brake light,
all requirements have been taken into account for the ELS. For the SCS, we
implemented about two-thirds of the requirements, up to (including) SCS-28.
While it would be nice to have a more complete implementation, we do not
think that it would impact our gathered conclusions.

A feature of the requirements that is not addressed satisfyingly are timers. We
are convinced that any modern CPU to be used in cars is fast enough to execute
an iteration of the state machine withing a reasonable time frame. Thus, any real
system realized following our approach should be able to guarantee execution
within the smallest time resolution that is relevant to the subsystems and their
respective requirements.

Yet, it is hard to give any real-time guarantees. The only evidence that can
be given is to run the system often enough and measure whether execution is
kept in the specified tolerances. However, this is still better than what we expect
of more formal approaches, which usually do not account for wall time at all.

2.5 Formalization Approach

As mentioned earlier, we postponed actual verification work as much as possible.
Instead, as our first step, we set up the validation sequences as unit tests first.

Then, in a test-driven development manner, we added to the implementation
code by only considering the next assertion in a scenario. Once the test passed,
we moved on to the next. In a second step, we added test cases that are directly
related to one or sometimes several requirements.

Finally, we set up CBMC and tried to verify the properties described by
the requirements. As stated, we use the same code for testing and formal ver-
ification, avoiding any translation between formal verification and testing en-
vironment as done for instance by Chen et al. [10] and others. However, both
approached remain distinct rather than being combined into a single verification
procedure [22].

As part of possible future work, we intend to use CBMC to try to provide
real-time guarantees and to verify the correct behavior in presence of scheduling
and limited by the actual specifications of an embedded device. Both could be
verified by providing a Verilog model of the hardware, sensors and connections.
Afterwards, co-verification of the implementation in C with the Verilog circuit
model can be performed by CBMC [12]. Additionally, we would like to consider
other tools that work directly on the C code, e.g., Symbiotic [9] or Klee [8].

3 Model Details

In the following, we will detail our implementation idioms we employed to ensure
easier handling and verification of the involved state machine, and explore some
crucial snippets of our code to show these idioms in practice. Contrary to the
proposed outline, we will present key snippets as well in Section 4.

3.1 Idioms

Types We opted to define all types as enumeration types. This is to be expected
for some data types, which are true enumerations, such as:

typedef enum {Ready, Dirty, NotReady} sensorState;

Yet, we also defined integer types as enumerations, e.g.:

typedef enum {
percentage_low = 0,
percentage_high = 100

} percentage;

The reasons for this are twofold: first, we can easily identify thresholds and the
value range for each type. While percentages are straightforward to everyone,
e.g., the translation of the steering wheel angle into human-understandable se-
mantics is hard. An excerpt of the corresponding type definition is as follows
(analogously for turning the steering wheel to the right):

typedef enum {
st_calibrating = 0,
st_hard_left_max = 1, /* 1.0 deg */ st_hard_left_min = 410,
st_soft_left_max = 411, /* 0.1 deg */ st_soft_left_min = 510,
st_neutral_maxl = 511, st_neutral = 512, ...

} steeringAngle;

Such a type definition renders it easier to identify, e.g., in what direction the
steering wheel is turned and how far, i.e., To check if it is turned far to the left,
st_hard_left_max <= angle && angle <= st_hard_left_min can be used.

C behavior is undefined if a value that is out of range of the corresponding
enumeration is passed. Thus, our second intention was that model checking tools
could easily deduce the actual value range and do not consider, e.g., the full range
of 32-bit integers in their stead. This will be discussed further in Section 4.3.

Do Not Expose Mutability It is easy to write broken code when using muta-
ble structs, especially if they are used in order to communicate between threads.
Instead, we pass values to and from interface functions. This means, that values
are copies of the data which are not referenced from anywhere else in the pro-
gram and the receiver may do however they please with it. An example is that
the state from the light sub-system can be queried (for test cases). The returned
value will never change unless the test case chooses to do so; no action in the
ELS influences it. This also allows reading multiple output variables consistently.

On the other hand, internal variables that may change frequently, which are
not meant to be read by anyone else, are declared as local (using the static
keyword). They are always stored in the same “place” and may not be exposed;
in particular, there are no getter functions for these variables.

3.2 Timers

When writing code that takes time into account, one is easily tempted to access
the current time provided by the operating system. This is a bad idea when
such time properties shall be tested: then, tests would have to be enriched with
additional sleep statements in order to achieve proper timing for the situation
under test.

Instead, we introduced an artificial sensor that may be accessed by both
sub-systems. The sensor reports the current time in milliseconds, comparable to
a common unix timestamp. During test cases, this sensor is mocked and some
artificial time is provided. The code does not know anything about time, but
just reads a sensor returning an integer value.

The implementation only assumes that one cannot go back in time, no fur-
ther assumptions regarding the progression of time are made. In consequence,
the step functions can simply be called in a continuous loop, independent of the
computing speed and time needed for a single iteration. On fast hardware, there
might even be several executions within the same timestamp (e.g., if the reso-
lution is milliseconds) or timestamps might pass without an execution following

(e.g., when using nanoseconds). Mocking the sensor also has the advantage that
test scenarios, that would take several minutes of wall time, can be executed in
milliseconds instead.

If the entire piece of software was to be shipped, it would be trivial to swap
out the sensor: One only has to link an implementation that provides the real
time, which may be the provided by the operating system.

4 Validation & Verification

We tried to validate our implementation throughout the whole development
process by using test-driven development, as we will discuss in Section 4.1. In
addition, we used the CBMC model checker to fully verify different properties
of our implementation directly on the C code as we will describe in Section 4.2.

4.1 Test-Driven Development Using cmockery

We used test-driven development based on the provided scenarios. For this, we
rely on Google’s cmockery library4, which provides a unit testing framework and
allows mocking functions. Since we did not want to execute all tests in real-time,
we mocked functions that extract sensor data as well as the current time in our
test cases.

We used two different kinds of test cases for a first quick validation:

– The provided scenarios were automatized and used as integration tests.
– In addition, we implemented unit tests for all requirements given in the spec-

ification document. Of course, each unit test only covers a minimal scenario
that shows how the requirement is supposed to be understood and automa-
tizes the verification of that single scenario.

A snippet taken from the test case of the requirement ELS-3 is show in
Listing 1. The system is initialized to belong to an EU-based car with left-
hand drive and without any extras such as ambient light. Initialization and
assertions regarding the correctness of the initial state are not shown in the
snippet. Afterwards, in lines 2 to 9, we update the sensors to the values they
should hold at the start of the test scenario and the code setting up the mocked
functions is called. In particular, we set the time sensor that is used to simulate
the actual clock as described in Section 3.2. Overall, the test setup phase ensures
that our artificial sensors inside the mock report the required values if and when
the system reads them.

Line 10 shows the difference between sensors and driver interaction: While
sensors have to be mocked in order to simulate an actual system, user input is
given directly. This corresponds to what will happen in an actual car: the system
has to react to user input immediately and at any time, while it can read sensor
data arbitrarily.
4 https://github.com/google/cmockery

https://github.com/google/cmockery

Listing 1. Test of Requirement ELS-3
1 // ignition: key inserted + ignition on
2 sensor = update_sensors(sensor, sensorTime, 1000);
3 sensor = update_sensors(sensor, sensorBrightnessSensor, 500);
4 sensor = update_sensors(sensor, sensorKeyState, KeyInIgnitionOnPosition);
5 sensor = update_sensors(sensor, sensorEngineOn, 1);
6
7 mock_and_execute(sensor_states);
8
9 sensor = update_sensors(sensor, sensorTime, 2000);
10 pitman_vertical(pa_Downward5);
11 mock_and_execute(sensor_states);
12
13 assert_partial_state(blinkLeft, 100, blinkRight, 0);
14 pitman_vertical(pa_ud_Neutral);
15 sensor = update_sensors(sensor, sensorTime, 2000);
16 mock_and_execute(sensor);
17
18 pitman_vertical(pa_Upward7);
19
20 progress_time_partial(2000, 2499, blinkLeft, 100, blinkRight, 0);
21 progress_time_partial(2500, 2999, blinkLeft, 0, blinkRight, 0);
22
23 int i;
24 for (i = 3; i < 6; i++) {
25 progress_time_partial(i * 1000, i * 1000 + 499,
26 blinkLeft, 0, blinkRight, 100);
27 progress_time_partial(i * 1000 + 500, i * 1000 + 999,
28 blinkLeft, 0, blinkRight, 0);
29 }

Line 13 asserts that the left blinker is on 100% and the right one is on
0% once the step function was executed after the user input was given. We
use assert_partial_state, since we only make an assertion regarding the two
variables blinkLeft and blinkRight, rather than making an assertion over all
state variables.

Finally, Lines 20–21 as well as 25–28 assert that for each millisecond in the
time interval, the provided values remain the same, i.e., that the step function
does not change output values during that time frame.

As can be seen, we have implemented different C macros to simplify test case
development:

– assert(_partial)_state which checks if the internal states of ELS and
SCS correspond to given assertions. The assertions can specify the state
both partially, as done in the listing, and fully.

– progress_time(_partial) combines assertions on the state with a progres-
sion of time as reported by the time sensor.

Validation Results As expected, using unit and integration testing as parts of
a test-driven development workflow helped us during the initial development.
Using test-driven development provided the usual benefits:

– having to formulate test cases helped us gain an understanding of the re-
quirements and how they are supposed to work,

– refactoring was made easier and more secure, and
– the implementation was closer to the actual specification from the start.

The fact that we are working with an actual implementation made test-driven
development come naturally. However, different ways of combining formal meth-
ods with test-driven development have been discussed [3] as well. In addition,
developing specifications using continuous testing has been suggested for former
ABZ case studies in the context of the B method [15,16].

Influences on Code Using the macros above, our initial design of splitting sensors,
user input and actuators did not have to be adapted further to be testable. Yet, it
created a vast amount of code entirely dedicated to testing. Of 5223 source code
lines (which also contain a Makefile and code for state (graph) visualization),
3786 lines are test code. Comments and blank lines are already excluded.

4.2 Model Checking Using CBMC

As stated above we used CBMC [11] to verify properties of our implementation
directly on the MISRA C code. CBMC is a model checker for programs written
in C. It uses bounded model checking [5] to verify a default set of properties,
mostly related to common programming errors, such as: memory safety, including
bounds checks and pointer safety, occurrence and treatment of exceptions, and
presence of undefined behavior due to C quirks.

Additionally, it can be used to verify user-given assertions stated as C-style
assertions using the macros in assert.h. Depending on where they are placed
in the code, they correspond to different kinds of properties commonly used in
state-based formal methods:

– If placed at the end of the loop implemented by the ELS and the SCS state
machines depicted in Figure 1, assertions correspond to safety invariants that
have to hold in every state reachable by one of the subsystems.

– If placed anywhere inside the loop, assertions can be used as invariants on
intermediate states.

– If placed outside the loop, we can check if properties hold after a certain
number of iterations (controlled by CBMC’s unrolling preferences).

– By using additional variables, we can communicate between states and im-
plement a lightweight verification of temporal properties. Of course, this is
not as powerful as LTL or CTL, as we have to rely on unrolling.

Listing 2. Partial CBMC Output
State 59 file light/light-impl.c line 242 function light_do_step thread 0
--
ks=/*enum*/NoKeyInserted (00000000000000000000000000000000)

State 63 file light/light-impl.c line 242 function light_do_step thread 0
--
ks=/*enum*/KeyInIgnitionOnPosition (00000000000000000000000000000010)

State 65 file light/light-impl.c line 244 function light_do_step thread 0
--
engine_on=FALSE (00000000)

State 69 file light/light-impl.c line 244 function light_do_step thread 0
--
engine_on=TRUE (00000001)

4.3 Example: Verification of ELS-22

Requirement ELS-22 is a great example for an invariant. It states “Whenever
the low or high beam headlights are activated, the tail lights are activated, too”.
For this, we can add an assertion such as:

assert(implies(get_light_state().lowBeamLeft > 0,
get_light_state().tailLampLeft > 0 ||

get_light_state().tailLampRight > 0));

The disjunction in the second part of the implication is important for American
cars: as tail lamps are used for indicators, it is accepted behavior if one tail lamp
is temporary deactivated during a flashing cycle. When running CBMC, it im-
mediately came up with a counterexample. A snippet can be found in Listing 2.

The counterexample shows how the two system variables ks, i.e., the key
state, and engine_on, i.e., the engine’s ignition state, change while our main
step function light_do_step is executed.

The main issue with such a counterexample is that each variable assignment,
function call and return from a function introduces a new state. While this
representation mimics the internal workings of the C code, it does not correspond
to the mental model: comparable to common state-based formal methods, we
regarded a state change to include multiple variables at once.

Hence, as we were only interested in comparing state variables per full iter-
ation of light_do_step, the output was barely readable to us (the counterex-
ample consists of more than 200 lines).

CBMC can optionally reduce the output by removing assignments that are
unrelated to the property. This did not work well for us, as the assignment of
signals for the low beam headlights was removed as well. We ended up manually

Table 2. Example Trace Violating ELS-22.

State Variable Iteration 1 Iteration 2

key_state NoKeyInserted KeyInIgnitionOnPosition
engine_on FALSE TRUE
all_doors_closed FALSE TRUE
brightness 0 37539
speed 0 936

daytime_light_was_on FALSE TRUE
low_beam_left 0 100
low_beam_right 0 100
last_engine FALSE TRUE
last_key_state NoKeyInserted KeyInIgnitionOnPosition
last_all_door_closed FALSE TRUE

writing state variables in a spreadsheet to comprehend the scenario. A (con-
densed) version can be found in Table 2. Here, the state changes between two
full iterations of our step function are shown, rather than changes of individual
variables during the execution. This representation aligned better to our mental
model of the implementation and was thus more helpful for debugging.

The error in our code was that, based on ELS-17, only the low beam head-
lights were activated due to activated daytime running light. This was not uncov-
ered by the test scenarios, since daytime light was only tested by night, where,
coincidentally, other triggers activated the tail lamps.

Verification Results However, the assertion still failed to verify. Upon further
analysis of the property, we discovered a conflict between ELS-22 and hazard
blinking in Canadian and US cars. In those cases, hazard blinking deactivates
both tails lights for the dark cycle, thus violating the property. We extended our
assertion by checking our variable for blinking direction beforehand:

assert(implies(blinking_direction != hazard, /* old assertion */));

Afterwards, we were able to successfully verify the property using CBMC.

Influences on Code At first glance, using CBMC only required to add assertions
to the code. As assertions are often introduced as part of understanding certain
scenarios, this does not change the modeling strategy itself. Yet, CBMC comes
with a flaw: it is not able to detect integer ranges given by enumerations. This
means it frequently finds errors with values for enumerations, that are out of
scope. As a consequence, one has to add assumptions about value ranges to the
code, which cannot be compiled to actual code. Another assumption that needs
to be added is that consecutive timestamps cannot get smaller. Thus, for useful
verification, some form of conditional compilation is required.

5 Specification Ambiguities and Flaws

During development, we identified several shortcomings or ambiguities within
the specification. These issues were found during analysis of the requirements
and during implementing test cases for test-driven development. As we only
performed validation steps after implementation, the validation steps just un-
covered shortcomings of our own implementation and non-compliances w.r.t. the
specification. Due to page limitations, we will only present some of them:

ELS-37 is somewhat broken or at least highlights an incompleteness in the
specification. For now, there is no way to discern whether an adaptive cruise
control is part of the vehicle; from the specification, we had to assume that it is
installed in every system. Then, according to SCS-1, there does not even have
to be a desired speed. We think that, in order to make sense at all, it rather
should be “is active” than “is part of the vehicle”. Also, this is the only part of
the specification that refers to an advanced cruise control.

ELS-42 does not specify what should happen in case of sub-voltage. The
only given information is that the adaptive high beam headlight is not available.
Should manual high beam headlight be triggered instead? Should the high beam
remain dark? This remains absolutely unclear.

ELS-19 contains a contradiction: first, it states that ambient lighting prolongs
already active low beam headlights. Later, it says that the headlamps “remain
active or are activated ”. We think that some actions are reasonable to activate
the headlight even if it was not on before (e.g., opening the doors). Others
definitely should not activate the headlight (e.g., if the brightness falls below
the specified threshold, as passing cars and the setting sun might trigger the
brightness sensor). Also, it does not have any constraints regarding the light
rotary switch: if the switch is in the “off” position, we think the ambient light
should not activate at all. This requirement needs some serious polishing.

While currentSpeed is specified as a sensor in the ELS, it is not clear how the
SCS accesses this value. No sensor is provided according to the specification, and
only the brake pressure is mentioned as actuator but not the gas pedal. Thus, the
SCS as specified appears to only be responsible for determining the desired speed
but not for actually deploying it to the current speed? To our understanding,
the measured current speed should be a sensor to the SCS, let alone for the
possibility to ensure whether more acceleration is required to maintain it or not.

SCS-23 specifies a safety distance of 2.5s · currentSpeed for the adaptive
cruise control when the current speed is below 20 km/h. It further specifies an
absolute distance of 2m if both vehicles are standing. Assuming currentSpeed ∈
]0, 2.88[however, the safety distance according to SCS-23 is below 2m and ef-
fectively approaches 0 the closer the vehicle gets to a standstill. But once a
standstill is reached, the safety distance is set to 2m and thus is violated in-
stantly. It remains unclear whether these 2m distance is meant as minimum or
is intended to delay the reaction to eventual acceleration of the vehicle in front.

SCS-28 references a maximum deceleration value, which was only described
for the adaptive cruise control in SCS-20 and SCS-21. We assume that it refer-
ences the same maximum deceleration of 5 m/s2. It further specifies the acoustic

Fig. 2. Ad-hoc Visualization

signal which is to be played if the time to reach a standstill with maximum
deceleration (5 m/s2) is greater than the time until impact. This acoustic signal
however may overlap with the signal specification given in SCS-21.

6 Conclusions

To summarize, we have implemented a low-level version of the ABZ 2020 case
study in MISRA C, a language commonly used in the automotive industry. We
relied both on common programming techniques such as test-driven development
and formal verification using model checking. As we have not followed a fully
formal development method, our implementation can serve as a baseline for
comparison with the more formal approaches usually presented at ABZ.

We suspect that more rigorous approaches to software development will show
both advantages and disadvantages to our approach. In particular, our approach
stays close to the actual system and can easily be deployed to an actual car.
Furthermore, our code can be used for simulation and hardware-in-the-loop tests.

However, we certainly missed the expressiveness and mathematical clarity
that comes with more rigorous approaches. Compared to a formal method, we
could only do very lightweight verification of temporal properties and would
certainly have favored to be able to model check LTL or CTL properties. Thus,

while we were able to verify our implementation to a certain degree, we suspect
that a more thorough approach would be able to provide stronger guarantees.

In particular, our approach has only very limited support for verifying tem-
poral properties (i.e., just by unrolling properties to a certain degree). Further-
more, we currently do not validate any properties on time constraints aside from
simulating an external clock in the test cases.

That aside, all state properties given in the specification could in theory
be verified using our approach even though we have not fully implemented all
of them. Furthermore, given that we can place assertions everywhere in our C
source code, we could reason about intermediate states as well.

Method and Tool Review We are surprised how easy it was to implement the case
study in C, especially as none of the authors is a professional C developer. While
we were unsure during implementation, given our test harness and the results of
CBMC, we now have more confidence in the correctness of our implementation.

CBMC was a great tool that found counterexamples, e.g., to the requirement
ELS-22. Yet, we have to make the following observations: first, the output was
barely readable, i.e., 52 state transitions represent two high level states after the
initialization. As a result, we wrote our own state graph visualization tool based
on plantuml5 (cf. Figure 2). Second, for the initial error, a simple assertion would
already have tripped the test case.

The majority of our time, we spent implementing test cases for the individual
requirements. Being aware of typical formal method workflows, we think that
this must be done in every case study. Otherwise, without using animation to
verify that the behavior is correct, one cannot have sufficient confidence in the
model. This, combined with the tooling that is available for C code, makes us
excited to see other case studies, and challenge them to name benefits of their
individual approaches, as we now know the extent of access to (semi)-formal
development the embedded software community has.

Nonetheless, we think these tools allow for interesting research for code gener-
ators: proven invariants on a high-level model could be compiled to C assertions.
Then, they could be verified on the low-level code as well. It remains open how
hard the translation process is and whether the power of these tools is sufficient.

References

1. MISRA C:2012 – Guidelines for the use of the C language in critical systems.
MISRA, 2013.

2. General Specification of Basic Software Modules. AUTOSAR, Munich, 2019.
3. H. Baumeister. Combining Formal Specifications with Test Driven Development.

In Proceedings XP/Agile Universe, volume 3134 of LNCS. Springer, 2004.
4. K. Beck. Test-driven Development: By Example. Kent Beck signature book.

Addison-Wesley, 2003.

5 https://plantuml.com/

https://plantuml.com/

5. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings TACAS, volume 1579 of LNCS, pages 193–207. Springer,
1999.

6. C. Boogerd and L. Moonen. Assessing the Value of Coding Standards: An Empir-
ical Study. In Proceedings ICSM, pages 277–286. IEEE, 2008.

7. J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods. IEEE
software, 12(4):34–41, 1995.

8. C. Cadar, D. Dunbar, D. R. Engler, et al. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In Proceedings
OSDI, volume 8, pages 209–224. USENIX Association, 2008.

9. M. Chalupa, M. Vitovská, and J. Strejček. Symbiotic 5: Boosted Instrumentation.
In Proceedings TACAS, volume 10806 of LNCS, pages 442–446. Springer, 2018.

10. M. Chen, A. P. Ravn, S. Wang, M. Yang, and N. Zhan. A Two-Way Path Between
Formal and Informal Design of Embedded Systems. In Proceedings UTP, volume
10134 of LNCS, pages 65–92. Springer, 2017.

11. E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In
Proceedings TACAS, volume 2988 of LNCS, pages 168–176. Springer, 2004.

12. E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and Verilog
programs using bounded model checking. In Proceedings DAC, pages 368–371.
IEEE, 2003.

13. H. K. Fathy, Z. S. Filipi, J. Hagena, and J. L. Stein. Review of hardware-in-the-loop
simulation and its prospects in the automotive area. In Modeling and simulation
for military applications, volume 6228. SPIE, 2006.

14. A. Hall. Seven myths of formal methods. IEEE software, 7(5):11–19, 1990.
15. D. Hansen, L. Ladenberger, H. Wiegard, J. Bendisposto, and M. Leuschel. Vali-

dation of the ABZ Landing Gear System using ProB. In ABZ 2014: The Landing
Gear Case Study, volume 433 of CCIS, pages 1–17. Springer, 2015.

16. D. Hansen, M. Leuschel, D. Schneider, S. Krings, P. Körner, T. Naulin, N. Nayeri,
and F. Skowron. Using a Formal B Model at Runtime in a Demonstration of the
ETCS Hybrid Level 3 Concept with Real Trains. In Proceedings ABZ 2018, volume
10817 of LNCS, pages 292–306. Springer, 2018.

17. L. Hatton. Language subsetting in an industrial context: A comparison of MISRA
C 1998 and MISRA C 2004. Information and Software Technology, 49(5):475–482,
2007.

18. F. Houdek and A. Raschke. Adaptive Exterior Light and Speed Control System.
19. ISO. Road vehicles – Functional safety, 2011.
20. M. Short and M. J. Pont. Assessment of high-integrity embedded automotive

control systems using hardware in the loop simulation. Journal of Systems and
Software, 81(7):1163–1183, 2008.

21. M. Yang and N. Zhan. Combining Formal and Informal Methods in the Design of
Spacecrafts, volume 9506 of LNCS, pages 290–323. Springer, 2016.

22. J. Yuan, J. Shen, J. Abraham, and A. Aziz. On combining formal and informal
verification. In Proceedings CAV, volume 1254 of LNCS, pages 376–387. Springer,
1997.

	A Verified Low-Level Implementation of the Adaptive Exterior Light and Speed Control System

