Validation of the ABZ Landing Gear System
using ProB

Dominik Hansen, Lukas Ladenberger, Harald Wiegard, Jens Bendisposto,
Michael Leuschel

Universitat Diisseldorf**

Institut fiir Informatik,
Universitatsstr. 1, D-40225 Diisseldorf
{hansen, ladenberger, wiegard, bendisposto,
leuschel}@cs.uni-duesseldorf.de

Abstract. In this paper we present our formalisation of the ABZ land-
ing gear case study in Event-B. The development was carried out using
the Rodin platform and mainly used superposition refinement to struc-
ture the specification. To validate the model we complemented proof with
animation and model checking. For the latter we used the PROB anima-
tor and model checker. Graphical representation of the model turned out
to be crucial in the development and validation of the model; this was
achieved using a new version of BMotion Studio integrated into PrROB
2.0.

1 Introduction

The “classical” B-method [1] and its successor the Event-B method [2] are re-
finement based formal methods. While the B-method is geared towards software
development the Event-B method is more tailored towards systems modelling.
Refinement can be used to structure the development and proofs, and allows to
introduce complexity gradually. In Event-B the concept of refinement has been
considerably extended: events can added, extended, split up or merged, param-
eters can be refined, removed or added, witnesses can be provided for automatic
refinement proofs, event termination (convergence) can be proven or delayed
to other refinement layers, etc. Model structuring on the other hand is much
simpler in Event-B than in classical B: at one particular refinement level an
Event-B model consists of a main machine which contains variables and events
and a series of contexts which contain constants and sets. Composition and de-
composition notions have been developed [9] for Event-B, but are not part of
the core Event-B method and we have not used them in our case study.

In this paper, we present our results and experiences in formalising and val-
idating the ABZ case study in Event-B. To carry out the study, we have chosen

** The work in this paper is partly funded by ADVANCE, an European Commission
Information and Communication Technologies FP7 project.

the Rodin [3], ProB [8] and BMotion Studio [7] tools. The tools are tightly in-
tegrated. Rodin enables the use of the Event-B method and supports rigorous
reasoning by formal proving. ProB can animate and modelcheck Event-B models,
as well as provides a lot of features, for instance to inspect the desired behaviour
of a model. BMotion Studio is a framework for creating visualizations for formal
models.

Structure of the Paper. Section 2 describes the Event-B model of the landing
gear system and its refinement hierarchy. In Section 3 we demonstrate different
approaches to validate our model. Section 4 describes the graphical representa-
tion of the model and outlines its use and benefits. Finally Section 5 contains
the conclusion and discusses future work.

Additional Material

For more information and resources, we refer the reader to our website:
http://stups.hhu.de/ProB/index.php5/ABZ14.
The website contains the model, visualization and video material.

2 The Event-B Model and its Refinement Hierarchy

In this Section, we describe our Event-B model of the landing gear system. This
section may give the impression that the development was a linear process; in
reality we started several times from scratch and adapted prior refinements.
Initially, we also experimented with a classical B model, where structuring is
easier but the stricter refinement concept makes environment modelling more
difficult. We specify both the digital part and the environment in the same
Event-B model. Hence, we obtain a integrated view of the system where we
try to make a clear separation between both parts. Each event is associated
either with the digital part or with the environment. The same applies to the
variables, except for some shared variables (sensors and digital orders) which
are used for the interaction of both parts. Figure 1 shows the interaction of the
digital part and its environment. The figure may look like a clone of a picture
from the original case-study specification, but it is actually part of the interactive
visualization of our model.

2.1 Door and Landing Gear

We start by specifying the mechanical part of the landing gear system. The top-
level abstraction of our development only model one door and one landing gear.
The door is represented as a variable with the following possible states:

— closed,

— door_moving, and

— open.
The states of the landing gear variable are:

11l

gear extended not extended

gear retracted not retracted
door open not open
door closed not closed

shock absorber ground flight

Digital part

orders to electro-valves

General electro-valve

Analogical switch

Aircraft hydraulic circuit

Electro-valve {close doors)

{retraction circuit)

Door cylinder

Al

Electro-valve (open doors)

A8

(extension circuit)

Electro-valve (retraction gears)

{retraction circuit)

)<

Gear cylinder

Electro-valve (extended gears)

(extension circuit)

A8

Fig. 1. Interaction of the digital part and the environment

w

— retracted,

— gear_moving, and

— extended.
In addition, we define events to change the states of these variables as illustrated
in figure 2. Thus, at this point we only forbid direct jumps from closed (resp.
retracted) to open (resp. extended) or back. We do not define a fixed sequence
of states, and the behaviours of the gear and the door are fully independent of

each other.
closed Q retracted
door_moving Q gear_moving

open O extended

Fig. 2. Possible Door and Landing Gear States and Transitions

OO0

2.2 Electro-valves

In the first refinement step we add hydraulic elements to our specification. For
each valve except for the general valve! we add a variable with the possible
states valve_open and wvalve_closed. We define events to change the state of
each valve. Moreover, we connect the behaviour of the door and the gear to the
states of the corresponding valves. This is done by adding additional guards to
the events that change state of the door and the gear. For example, the event
that moves the door from the closed position to the moving positing can only be
executed if the variable open_door_valve has the state valve_open. No movement
of the door/gear is possible if two contrary valves (e.g. open_door_valve and
close_door_valve) are simultaneously open. In this case the door/gear remains in
its current position.

2.3 Outputs of the digital part

Next, we connect the electric orders of the digital part to the electro-valves of
the hydraulic part. The electric orders are modelled as boolean variables. In this
refinement we only regard the electric orders stimulating the the electro-valves
introduced in the last refinement step. We add events to change the states of
electric orders. Now, we only allow a behaviour of the electric-valves if the cor-
responding orders come from the digital part. Moreover we forbid to stimulate

! The general valve is introduced in a later refinement step.

simultaneously two contrary orders (open door/close door, extend/retract gear)
by adding additional guards to the events. We specify the requirement R4 ex-
plicitly as these two invariants:

invariants
R41: —(open_EV = TRUE A close_.EV = TRUE)
R42: —(retract_.EV = TRUE A extend_EV = TRUE)

Note that the electric orders only enable events that change the states of the
valves and do not execute them. This is important in order to later introduce
failing electro-valves.

2.4 Controller Sensors

In this refinement step we introduce the input sensors of the digital part. We
abstract the sensors by only considering the common value of the different chan-
nels. We add the following sensors:

door_closed

— door_open

— gear_extended

gear_retracted

The sensors are set by the events which change the state of the door and
the gear. They directly reflect the state of the mechanical part but it would
also be possible to introduce new events to update the sensor states according
to their mechanical counterpart. After this refinement the controller only allows
moving orders to the gear when the door is open, i.e. the door_open sensor is
TRUE (R31). Analogously, the controller only allows moving orders for the door
when the gear is extended or retracted (Rgz). These requirements are modelled
as guards.

2.5 Controller Behaviour

In this refinement we define the sequence of output orders produced by the
digital part. We abstract the digital part to consist of one controller producing
the synthesized outputs of both computing modules. The sequence executed by
the controller depends on the handle that can be moved by the pilot. We add a
variable representing the handle and an event to change the state of the handle
from up to down and vice versa. The handle event can be executed at any time.
Moreover, the shock absorber sensor affects the behaviour of the controller. There
must not be an order to retract the gear if the shock absorber is not relaxed,
i.e., the aircraft is landed.

It is not difficult to define the uninterrupted outgoing and retraction se-
quence. However, allowing an interruption of the sequences by a counter order
of the handle at any time makes this refinement step complex and tricky. We
managed this by using some additional internal variables and adding guards to
the events which change the states of the output orders. For example, the electric

order towards the retraction valve can not occur if the handle is in the down
position (Rg1) and the order towards the extension valve can not occur if the
handle is in the up position (Raz).

2.6 Analogical switch and general electro-valve

The analogical switch is intended to prevent the hydraulic part against abnormal
behaviour. We add a variable for analogical switch and two events to change its
state from open to closed and back. Moreover, we need an internal controller
variable to record a handle movement and add this boolean variable as guard to
the event which closes the switch. The general electro-valve is needed to supply
the other electro-valves with hydraulic power from the aircraft hydraulic circuit.
We add a variable for the electrical order (general_EV') coming from the digital
part and events to change its state. The order for the general electro-valve must
occur before the controller can produce an order to the other electro-valves.
Hence, we add guards to all events which stimulate the other electro-valves. The
following invariants ensure this behaviour:

invariants
R511: open_.EV = TRUE = general_ EV = TRUE
R512: close.EV = TRUE — general EV = TRUE
R513: extend_.EV = TRUE = general EV = TRUE
R514: retract_.EV = TRUE = general_ EV = TRUE

Furthermore we add a variable for the general electro-valve and events to
change it state. A behaviour of the gear/door can only occur if the general
electro-valve and the corresponding maneuvering valve is open.

2.7 Cockpit lights

Besides the orders to the hydraulic part, the controller produces three further
output signals to the cockpit:

— gears_locked _down

— gears_maneuvering

— anomaly
We add three boolean variables to represent these output signals and events
to change it state. The two signals representing the state of gear can be eas-
ily computed by regarding the input sensors from the mechanical part. The
gears_locked_down output directly correspond to the gear_extended input sen-
sor. The gears_maneuvering output equals TRUE if the gear_extended and
gear_retracted sensors are both FALSE.

In this refinement we abstract all possible inconsistent behaviours by one
anomaly variable. We introduce a single event to set the variable to TRUE
(without any guards). This event represents that the controller has detected an
inconsistent behaviour.

In addition to the signals produced by the controller, we add three variables
to represent the signal lights in the cockpit. The events to switch the lights on/off
are connected to the output signals of the controller.

2.8 Further refinement steps

Several further refinement steps are needed to cover the complete specification
of the landing gear system. For example, a further refinement step should in-
troduce time and timing constraints. We experimented by introducing discrete
time and an environment event (tick) incrementing the time. This approach
works well from a theoretical point of view. Whenever an event with a time-
based requirement is executed, the current time is saved in a designated vari-
able. When the handle is pushed up, the current time will be saved to the
variable t¢émer HandleUp. This variable will be set to —1 if the handle is moved
down. This allows us to formulate liveness conditions such as the requirement
R; (stronger version) as an invariant:

invariants
R11s: anomaly = FALSE A timerHandleUp>—1A
time > timerHandleUp+150 —>
gear_retracted = TRUE A door_closed = TRUE

However, in practice, it is very complex to introduce timer for each timing
constraint of the specification. Hence, we did not finished this refinement step
due to the lack of time. Another refinement step should break up the abstractions
we did so far (e.g. triplicating the sensors). We stopped at this point by getting
a sufficient model to control the graphical visualization we made. Moreover, our
model allows us to validate some of the “normal mode” requirements of the
specification.

3 Validating the Model

This Section describes validations carried out using PROB. In that setting the
graphical visualization of the landing gear system was important. The latter is
described separately in Section 4.

3.1 Invariants

As already mentioned, the requirements R4 and Ry are specified as invariants
on different refinements levels. Our approach to validate an invariant is as fol-
lows: Before proving the invariants, we always run the model checker PROB.
Sometimes the model checker provides us with a counter-example violating an
invariant. In such cases we revisited and fixed our model by adding or modify-
ing some guards. Moreover, we used another feature of PROB which is called
constrained based model checking. In this mode of operation, PROB does not
explore all reachable states starting from the initial state(s), but checks whether
applying a single operation can result in a invariant independently of the partic-
ular initialization of the Event-B machine. If the constraint based checker finds
a counter-example, this indicates that the model may contain a problem. The
sequence of operations discovered by the constraint based checker leads from a

valid state (satisfying the invariant) to a invariant violation, meaning that the
B machine may have to be corrected. The valid state is not necessarily reach-
able from a valid initial state. However, this situation indicates that it will be
impossible to prove the machine using the Event-B proof rules.

If PROB does not provide a counter-example we start proving the invari-
ants. For the invariants specified in our model the Rodin’s provers are able to
automatically discharge all generated proof obligations.

3.2 Animation and Model Testing

The animation feature of PROB had a major impact on our modelling process.
Each time we added some new events to our Event-B model we ran the an-
imator to check the new behaviour. To validate the complex behaviour of the
controller (Sec. 2.5) we automated this approach. We used the animator to create
valid traces (sequence of executed events) of the controller interacting with the
environment. For example, we animated the complete outgoing and retraction
sequence by letting the environment react in regular way. Additionally, we create
traces by interrupting both sequences at each position by a counter order of the
handle. All traces were saved and used as regression tests to validate further
modifications of the model.

3.3 Temporal formulas

The requirements Rj; and Rio (weaker version) describe a temporal behaviour
of the system. The desired goal is to show that if the handle is pushed up/down
the end of the retraction/extension sequence will be reached. Normally we would
write such a liveness condition using the following simple LTL pattern:

Ot = <©g)

where t is a trigger (handle movement) and g is the goal state which should be
finally reached (gear are retracted/extened and the door is closed). However on
the path from the handle movement to the end of the corresponding sequence
several conditions must to be ensured. For example the handle must stay in its
position and no anomaly should occur. To ensure these conditions we use a more
complex LTL pattern:

Ot = ((g Rs) = ©g))

In this pattern, we only regard the paths (after the handle movement) that
satisfy the condition s. The condition s must be satisfied only until the goal
state is reached. Therefore the goal predicate releases (R) the condition s. Note
that the release operator does not require that the goal state is finally reached.
For example, the whole LTL formula for R4 is as follows:
O(handle = up =
(((gear_retracted = TRUE A door_closed = TRUE)
R (handle = up A gear_shock_absorber = flight A anomaly = false))
= O gear_retracted = TRUE A door _closed = TRUFE))

In contrast to invariants, LTL formulas are not automatically satisfied by
further refinement steps and we have to re-check them at each level. Sometimes
this requires some additional conditions such as fairness for certain events. We
use the LTL model checker of PROB to validate the LTL formulas for the re-
quirements Ry; and Rjs.

3.4 Relative Deadlock Freedom and Determinism Checking

The classical deadlock notion is not very useful for our model as the environment
contains events that are always enabled. Instead we developed and used a new
feature of PROB to check if a controller event is always possible. The feature is
called relative deadlock checking and is able to only regard a certain selection
of events. We checked the refinement described in Sect. 2.3 for relative deadlock
freedom. In this refinement step, the controller does not have to wait for an
environment behaviour, hence a controller event should always be possible.

Another important point is that the controller should behave in a determin-
istic way. In our model the controller behaviour is divided into several events.
Therefore we have to ensure that for the same inputs the controller always pro-
duces the same outputs. To verify this, we developed and used another new
feature of PROB checking that only one controller event is enabled at the same
time (see figure 3). More formally, the user selects a set of events ey, ..., e, and
the PROB model checker verifies that for every reachable state exactly one event
e; is enabled. We believe that this feature will be of interest for other Event-B
system developments. In particular, it would have been handy for the case study
reported in [6].

LN Controller State Violation Search

Select events that should be enabled by the controller (exactly one
in every state):

oggle_handle
start_open
finish_open
start_extending
finish_extending
start_close
finish_close
lgear_retracted
start_retracting
finish_retracting

Deselect all Select all

Cancel oK

Fig. 3. Controller Violation Search Dialog

4 Graphical Visualization

To visualize our model we used the new version of BMotion studio in ProB 2.0.
We have not yet released ProB 2.0 officially, but the source code is available
from [4]. Nightly builds are available from a Rodin updatesite [5]. One of the

main differences between the current ProB Plug-in for Rodin and ProB 2.0 is
that the latter is no longer based on Eclipse but rather uses standard Browser
technology as its GUIL. This allows to integrate ProB into a wide range of tools.
Rodin is one of them but it is also possible to integrate ProB into a regular
website or a presentation tool.

Another very important difference between ProB 2.0 and its predecessor is the
tight integration with the Groovy scripting language. ProB 2.0 is implemented
as if it was a library for Groovy. Basically everything from the constraint solver
to the user interface is exposed to the scripting language. This makes it very
easy to programatically control ProB 2.0.

The graphical interface consists of HTML, CSS and optionally JavaScript.
This makes the user interface very flexible and compositional. We can design
and implement each bit of the application separately and compose them in
almost arbitrary ways. For the Rodin integration we bundle information into
components, that are then displayed inside an Eclipse view. For instance, one
component consists of the the list of events that can be executed in a given state
and some control buttons to execute random animation steps and to go back
and forth in time. This component is shown in the Events view within Rodin.

The new version of BMotion Studio [7] is just a view like every other view. It
translates a state into a graphical representation. Once an animation is started,
BMotion Studio is notified about every state change and then updates the graph-
ical representation according to the state of the animation.

Originally BMotion Studio [7] was developed as a separate plug-in for Rodin.
It used the Eclipse Graphical Editing Framework (GEF) to provide an editor to
create visualizations of a model. While this was a very convenient approach to
create simple visualizations the visual editor makes it hard to create complex
visualizations. For instance, creating a large table or a railroad track layout is
very cumbersome.

BMotion Studio for ProB 2.0 follows the same principles as ProB 2.0. Most
parts of BMotion Studio are accessible via the Groovy scripting language. Ad-
ditionally the user interface can make use of JavaScript. This makes ist much
easier to create complex or dynamic visualizations. A track layout, for example,
can be created by any graphic program that is able to produce a SVG vector
graphic. One advantage of the SVG format is that it is very easy to manipulate
graphical components.

4.1 Visualization of the Landing Gear System

Our landing gear visualization consists of two parts, a graphical part and an
observer part. Simple SVG widgets, like shapes represent the different aspects
of the architecture of the hydraulic part of the landing gear system as shown
in Figure 1. The observer part acts as the link between the formal model and
the graphical part. It defines expressions and predicates written in B that are
evaluated by PROB in the current state of the simulation. The results of the
expressions and predicates are used by the observers to update the visualization.
For instance, the colour of the lines that represent the electric orders to the

10

elector-valves is switched from red to green and from green to red whenever
the corresponding variable is set to true or false respectively. This is shown in
Figure 1, where the electric order to the open door electro valve is coloured in
green whereas the other electric orders are coloured in red. The blue coloured
lines represent the current circulation of pressure.

Another example is the position of the door cylinder: It is shifted in respect
of the state of the door (closed, door-moving and open). In Figure 1 the door
cylinder illustrates the door_moving state. We also created a separate view of
the physical environment as shown in Figure 4 that represents beside the state
of the cylinders, the current state of the physical door and gear.

The strict separation into a graphical part and an observer part makes the
visualization reusable for other Event-B or even Classical B models of the landing
gear system. Indeed, to adapt the visualizations for a different formal model one
simply has to change the the observer part of the visualization, but not the
graphical part.

Fig. 4. Visualization of the physical environment

In addition, the visualization is subdivided into components, where each com-
ponent reflects a specific refinement level of the model. A component is only
displayed if the corresponding refinement level is part of the running simulation.
The visualization shown in Figure 1 illustrates the last refinement step that is de-
scribed in Section 2.7. In that sense the visualization is created to be extensible,
for instance with new refinement levels.

The visualization can be used for different purposes. For instance, BMotion
Studio is able to replay user defined traces within the visualization. This feature
helped us to check whether the two basic scenarios: the outgoing sequence and
the retraction sequence are realized accurately in our model. Beside analysing
the two basic scenarios, we also used this feature to replay traces that lead to

11

invariant violations found by PROB. A stepwise visualization of door behaviour
while simulating the retraction sequence is demonstrated in Figure 5.

It was also used to communicate the model between the people involved in
this case study.

5 Conclusion

In this paper we presented our Event-B model of the ABZ landing gear case
study. By using refinement we were able to add stepwise more details to our
model and make a formal development of system manageable. Even if our model
does not cover the complete specification of the system, we were able to validate
some “normal mode” requirements of the system. Moreover, we presented some
suggestions to specify the missing parts of the specifications.

Our main goal was to verify that our toolchain is able to deal with the case
study. We used the following techniques to validate our model:

— Model checking
— Constraint based model checking
— Proving
LTL model checking
— Animation based simulation
Trace checking
— Determinism checking
— Relative deadlock checking

Initiated by the requirements of the case study, we developed a determinism
checker and relative deadlock checker. We believe these new PROB features are
also useful for future projects.

We used BMotion Studio to create a visualization of the model that was
crucial in the development and validation of the model. Conversely, we used the
case study to experiment with the development version of BMotion Studio and
ProB 2.0.

Although developing a visualization required extra effort, the benefits of the
visualization were tremendous. The visualization helped to get a common un-
derstanding about the model. It revealed problems and errors in the model. The
arrangement of the visualization into different refinement steps allowed us to
hide some of the complexity of the system and to focus on a specific problem.
We strongly believe that the ability to animate and visualize the system is cru-
cial for correctness and for reducing modelling effort when developing non-trivial
formal models.

6 Possible Future Work

As part of the FP7 ICT project Advance we have developed a co-simulation
framework that allows to use PROB together with another simulator for con-
tinuous systems. The framework uses the Functional Mock-up Interface (FMI)

12

w env_start_open_door() %
e
/

env_opgn_door()

env_close_valve_open_door()
«—

env_start|close_door()

env_close_door()
e

env_close_valve_close_door()

Fig. 5. Physical door behaviour while simulating retraction sequence

standard to exchange information between the simulators. We could use the
framework to simulate the controller of the landing gear system in ProB and the
environment (or parts of it) in another simulator, e.g. Dymola.

13

Another interesting work would be to combine our visualizations with the
formalisations of the other groups including those that are specified using CSP,
TLAY or Z. The visualization could be also enhanced with interactive compo-
nents (e.g. buttons) to drive the simulation.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

2. J.-R. Abrial. Modeling in FEvent-B: System and Software Engineering. Cambridge
University Press, 2010.

3. J.-R. Abrial, M. Butler, and S. Hallerstede. An open extensible tool environment
for Event-B. In Z. Liu and J. He, editors, Proceedings ICFEM’06, LNCS 4260, pages
588-605. Springer-Verlag, 2006.

4. J. Bendisposto, M. Birkhoff, J. Clark, I. Dobrikov, M. Fontaine, F. Fritz,
R. Goebbels, D. Hansen, P. Kantner, P. Koerner, S. Krings, L. Ladenberger, L. Luo,
M. Leuschel, D. Plagge, and C. Spermann. ProB 2.0 source code. Available at
http://github.com/bendisposto/prob2.

5. J. Bendisposto, M. Birkhoff, J. Clark, I. Dobrikov, M. Fontaine,
F. Fritz, R. Goebbels, D. Hansen, P. Kantner, P. Koerner,
S. Krings, L. Ladenberger, L. Luo, M. Leuschel, D. Plagge, and
C. Spermann. ProB 2.0 Update Site for Rodin. Available at
http://nightly.cobra.cs.uni-duesseldorf.de/experimental/updatesite/.

6. R. Gmehlich, K. Grau, S. Hallerstede, M. Leuschel, F. Losch, and D. Plagge. On
fitting a formal method into practice. In S. Qin and Z. Qiu, editors, Proceedings
ICFEM’2011, volume 6991 of Lecture Notes in Computer Science, pages 195-210.
Springer, 2011.

7. L. Ladenberger, J. Bendisposto, and M. Leuschel. Visualising Event-B models with
B-Motion Studio. In Proceedings FMICS’2009, LNCS 5825, pages 202-204. Verlag,
20009.

8. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185-203, 2008.

9. R. Silva and M. Butler. Shared event composition/decomposition in event-b. In
B. K. Aichernig, F. S. de Boer, and M. M. Bonsangue, editors, FMCO, volume 6957
of Lecture Notes in Computer Science, pages 122-141. Springer, 2010.

14

