
Refinement-Animation for Event-B — Towards a
Method of Validation?

Stefan Hallerstede, Michael Leuschel, Daniel Plagge

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{ halstefa, leuschel, plagge } @cs.uni-duesseldorf.de

Abstract. We provide a detailed description of refinement in Event-B,
both as a contribution in itself and as a foundation for the approach to
simultaneous animation of multiple levels of refinement that we propose.
We present an algorithm for simultaneous multi-level animation of re-
finement, and show how it can be used to detect a variety of errors that
occur frequently when using refinement. The algorithm has been imple-
mented in ProB and we applied it to several case studies, showing that
multi-level animation is tractable also on larger models.
Keywords: Refinement, Model Checking, Constraint-Solving, Tools, In-
dustrial Applications.

1 Introduction and Motivation

The Event-B modelling method [1] has been designed to be complemented by a
software tool such as Rodin [2]. The core of the Rodin tool provides automatic
generation of proof obligations that can be analysed to improve understanding
of a model. Often proof obligations give good indications of how to make an
improvement in case of inconsistencies in a model. However, there are also many
occasions where proof obligations do not point directly to a problem or where
a model does not contain inconsistencies but is still “incorrect” (see, e.g., the
Earley parser example discussed in [7]). In these cases animation is a useful tool
to gain further insight into a model. The Rodin plugins ProB [9, 11], Brama1

[13], and AnimB [12] provide animation facilities for Event-B.
When dealing with complex models, refinement can be used to introduce

the many details gradually, achieving a reduced complexity at each refinement
level. It can be difficult to analyse a refinement relationship only by means
of associated proof obligations. All three animation plugins mentioned above
provide some means to animate refinements. In this article we investigate their
relative capabilities and how to advance refinement animation in order to turn it
into a tool for refinement validation. This serves as a blueprint for the evolution
of ProB in terms of animation support.
? Part of this research has been EU funded FP7 project 214158: DEPLOY (Indus-

trial deployment of advanced system engineering methods for high productivity and
dependability).

1 Brama requires an older version (0.9.2.x) of Rodin at the time of writing.

Before starting the investigation we should be clear on the objectives of an-
imation when used for validation. What is the purpose of animating a model
across multiple levels of refinement? In Event-B several concepts play a rôle in
refinement. Most prominently, these are invariants, guards, actions, and wit-
nesses. If a refinement fails, any combination of those concepts may be involved.
Animation should help to locate the cause of a problem in the model pointing to
specific invariants, guards, and so on, if possible. However, even if a refinement
is formally correct, there can still be problems with the model. This concerns,
in particular, properties that have not been formalised. Animation should make
it easy to experiment with a model, visualising potential problems. We try to
integrate this aspect of animation with the first one as far as possible. Otherwise
consistent tool support for both would be difficult to realise.

In Section 2 we give a concise description of the fundamentals of Event-B
refinement. As far as we are aware there is no single place where all the essential
aspects are described and motivated in such detail. All of this is needed in order
to present the basic refinement-animation algorithm in Section 3. The presen-
tation of the algorithm is interspersed with methodical remarks on validation.
In Section 4 we present some concrete examples on how to use ProB for re-
finement validation and some brief description of case studies to which it has
been applied. Finally, Sections 5 and 6 contain a discussion of related work and
a conclusion.

2 Modelling and Refinement in Event-B

Event-B can be used to model complex intricate systems. To understand the
system and the model of the system we need to reason thoroughly about the
model. Such reasoning is the principal purpose of Event-B. The basic concepts
of Event-B are characterised by means of proof obligations; they are the core
of the Event-B method. However, they are not an exclusive means of reasoning.
Based on an operational interpretation of a model we can also animate it to
gain deeper understanding. In this section we parallel the presentation of Event-
B proof obligations, in particular, refinement, with ideas of animation. This
demonstrates well how animation complements proof. Because there is no single
software tool for animation that provides all that is needed, we use the three
tools ProB, Brama, and AnimB at the same time.

2.1 Contexts

Event-B models are described in terms of the two basic constructs: contexts and
machines. Contexts specify static parts of a model, that is, carrier sets and con-
stants that are constrained by axioms. Usually, these are quite simple formulas.
Contexts are intended to be used to parametrise machines. We mention contexts
here because of the rôle they play in animation. For any particular animation
specific values for all constants have to be found. ProB does this automati-
cally using constraint-solving techniques to find proper values that satisfy all

axioms. The constraint-solving also determines whether the axioms contain a
contradiction.

2.2 Machines

Machines provide behavioural properties of Event-B models. Machines may con-
tain variables, invariants, events, and variants. Variables v define the state of
a machine. They are constrained by invariants I(v). Possible state changes are
described by means of events. Each event is composed of a guard G(t, v) and
an action S(t, v), where t are parameters of the event. The guard states the
necessary condition under which an event may occur, and the action describes
how the state variables evolve when the event occurs. We denote an event E(v)
by one of the following forms:

any t when
G(t, v)

then
S(t, v)

end

or when
G(v)

then
S(v)

end

or begin
S(v)

end

The second form is used if event E(v) does not have parameters, and the third
form if in addition the guard equals true. A dedicated event of the third form is
used for INITIALISATION. In the formal exposition below, we assume without
loss of generality that the most general first form is used.

The action of an event is composed of several assignments of the form: x :=
E(t, v) or x :∈ E(t, v) or x :| Q(t, v, x′), where x are some variables, E(t, v)
expressions, and Q(t, v, x′) a predicate. The second form assigns x to an element
of a set, and the third form assigns to x a value satisfying a predicate. Without
loss of generality, the first two can be formally defined in terms of the third form:
x := E(t, v) =̂ x :| x′ = E(t, v) and x :∈ E(t, v) =̂ x :| x′ ∈ E(t, v). The
effect of an assignment is described by a before-after predicate:

before-after predicate of “x :| Q(t, v, x′)” =̂ Q(t, v, x′)

A before-after predicate describes the relationship between the state just be-
fore an assignment has occurred, x, and the state just after the assignment has
occurred, x′. All assignments of an action S(t, v) occur simultaneously which
is expressed by conjoining their before-after predicates, yielding a predicate
A(t, v, x′). Variables y that do not appear on the left-hand side of an assign-
ment of an action are not changed by the action. Formally, this is achieved by
conjoining A(t, v, x′) with y′ = y, yielding the predicate:

S(t, v, v′) =̂ A(t, v, x′) ∧ y′ = y .

Running Example. We use the coffee dispenser model in Fig. 1 for illustration
of refinement-animation. In the abstract machine CoffeeM the dispenser can
fill a mug half or fully; the state of the mug is represented by the variable alvl

(abstract level). As a special service the dispenser can also drink the coffee. In the
first refined machine CoffeeR1 a feature is introduced for inserting an arbitrary

machine CoffeeM sees CofCtxt
variables alvl
invariants @inv1 alvl ∈ FILL
variant ({full "→ 2, half "→ 1, empty "→ 0})(alvl)
events

event INITIALISATION
begin

@mf alvl := empty
end

event fill mug
any x when

@g0 alvl = empty
@g1 x $= alvl

then
@a1 alvl := x

end
convergent event drink

when @g1 alvl $= empty then
@a1 alvl :∈ {empty, half} \ {alvl}

end
end

machine CoffeeR1 refines CoffeeM sees CofCtxt
variables alvl coins
invariants @ci coins ∈ N
events

event INITIALISATION extends INITIALISATION
begin

@ai coins := 0
end

event fill mug extends fill mug
when @gc coins > 0 then

@delc coins := coins − 1
end

convergent event drink extends drink
end
anticipated event insert coin

begin
@insc coins := coins + 1

end
end

context CofCtxt
constants full empty half level
sets FILL
axioms

@Ffhe partition(FILL, {full }, {half }, {empty })
@lvl level = (0 .. 2× {empty }) ∪ (3 .. 7× {half }) ∪ (8 .. 11× {full })

end

machine CoffeeR2 refines CoffeeR1 sees CofCtxt
variables clvl coins maxc
invariants

@imc maxc ∈ N1

@ifl clvl ∈ 0 .. 11
@lvl alvl = level(clvl)

variant maxc − coins
events

event INITIALISATION
begin

@mc maxc := 4
@cci coins := 0
@fli clvl := 0

end
event fill mug refines fill mug

when
@gc2 coins > 0
@ml clvl ∈ level−1[{empty }]

with
@x x = level(clvl′)

then
@delc2 coins := coins − 1
@ffl clvl :∈ level−1[{full }]

end
convergent event drink refines drink

when
@dgfl clvl /∈ level−1[{empty}]

with
@alvl’ alvl′ = level(clvl′)

then
@dfl clvl :∈ level−1[{empty, half} \ {level(clvl)}]

end
convergent event insert coin extends insert coin

when
@gmc coins < maxc

end
end

Fig. 1: Coffee dispenser model (using syntax of the Event-B text editor “Camille”)

number of coins into the dispenser. A coin is consumed each time a mug is filled.
In the second refined machine CoffeeR2, the number of coins maximally accepted
is limited and the amount of coffee contained in a mug is represented numerically
by a the variable clvl (concrete level).

Animation in ProB. The before-
after predicate can be used to compute
the state space of a machine, a graph
where each node represents a state of
the machine and each arc the execu-
tion of an event. Fig. 2 contains the
state space of the CoffeeM machine
from Fig. 1, as computed by the ProB
tool. The triangle represent a special
root node, where the variables and con-

CoffeeM:alvl = empty

CoffeeM:alvl = full

fill_mug(full)

CoffeeM:alvl = half

fill_mug(half)

drink

drink

drink

INITIALISATION

Fig. 2: State space for CoffeeM (with ad-
ditional mugshots)

stants of a machine have not yet been set. An animator lets the user navigate

the state space by choosing the events to be fired. A model checker will system-
atically explore the state space, looking for various errors in the machine.

2.3 Machine Consistency

Invariants are supposed to hold initially and whenever variable values are changed
by an event. Obviously, this does not hold a priori and, thus, needs to be proved.
The corresponding proof obligation for every event is called invariant preserva-
tion, formally, I(v) ∧ G(t, v) ∧ S(t, v, v′) ⇒ I(v′). There is a special form of
this proof obligation, without invariant and guard in the hypothesis, for the
INITIALISATION. By proving action feasibility for an event, I(v) ∧ G(t, v) ⇒
(∃v′ · S(t, v, v′)), as well, we achieve that S(t, v, v′) provides an after state when-
ever G(t, v) holds. This means that the guard indeed represents the enabling
condition of the event.

2.4 Machine Refinement

A machine N can refine at most one other machine M . We call M the abstract
machine and N a concrete machine. The state of the abstract machine is related
to the state of the concrete machine by a gluing invariant J(v, w) associated
with the concrete machine N , where v are the variables of the abstract machine
and w the variables of the concrete machine.

Each event E(v) of the abstract machine is refined by one or more concrete
events F (w). Let abstract event E(v) and concrete event F (w) be:

E(v) =̂ any t when G(t, v) then S(t, v) end

F (w) =̂ any u when H(u, w) with W (t, v′, u, v, w,w′) then T (u, w) end

Informally, concrete event F (w) refines abstract event E(v) if, whenever the
gluing invariant J(v, w) is true: (i) the guard of F (w) is stronger than the guard
of E(v), and (ii) for every possible execution of F (w) there is a corresponding
execution of E(v) which simulates F (w) such that the gluing invariant remains
true after execution of both events. In Fig. 1 some events carry the attribute
“extended”. This means that all parameters, guards, and actions are copied
literally from the abstract event.2 Note that the event F (w) contains one more
component W (t, v′, u, v, w,w′) following the keyword with, called the witnesses.
We return to its rôle in Section 2.6 below.
Refinement Animation. To check
whether the guard of a concrete event
is stronger, we also need to animate
the corresponding abstract machine.
Fig. 3 shows a graphical visualisation
(created with Brama) of an anima-
tion of the coffee dispenser model de-
scribed earlier. Green boxes signal en-

Fig. 3: Coffee dispenser refinement-
animation in Brama

2 In Event-B it is also possible for an event to refine more than one abstract event,
merging these events into one concrete event [3]. Such events cannot be extended.

abled events, red boxes disabled events. As can be seen, all the refinement levels
are animated concurrently. Brama’s representation also shows at a glance that
whenever a refined event is enabled, then all of its ancestor events are also en-
abled.

The view underlying Fig. 3 is operational. It
focuses solely on event execution. If we wanted
to use it for analysing a formal model, we would
need to add information. In particular, infor-
mation about gluing invariants would be useful
(Fig. 4). Note, that this is not a purely cosmetic

CoffeeR2 CoffeeR1 CoffeeM
INITIALSATION
fill_mug
drink

insert_coin

INITIALSATION
fill_mug
drink

insert_coin

INITIALSATION
fill_mug
drink

Inv Inv

⟲
↓
↓ →

↓
⟲

↓
⟲

Fig. 4: Improved coffee dis-
penser refinement-animation

change: the animator must supply all necessary information.

2.5 Common Variables and Common Parameters

As far as animation and model checking are concerned, refinement introduces a
new challenge: we no longer have just a single machine that needs to be animated
as in Fig. 2, but a series of machines, each with its own state.3

In order to check the gluing invariant, we need to access variables from various
machines. This raises a new issue. In Section 2.4 we have simply assumed that all
variables v are refined by new variables w, and all parameters t are refined by new
parameters u. The variables v and parameters t “disappear” in the refinement.
In practice, variables and parameters can be repeated in a refinement. Abstract
machines and concrete machines can have variables in common, and abstract
events and concrete events parameters. By convention, when repeating variables
and parameters abstract and concrete counterparts are assumed to be equal.4

Animation. For refinement animation of machines this means that variables
must be renamed in each machine and gluing invariants generated. If the ani-
mation would operate on variables shared between different machines, it would
not be possible to visualise machines with deviating behaviour. This also affects
the witnesses described in the following section.
Example. In the example from Fig. 1, the machine CoffeeM and CoffeeR1 have
the variable alvl in common. Fig. 5 shows ProB animating the Coffee example.
As can be seen in the newly developed hierarchical “State View”, the variable
alvl occurs twice, once in CoffeeM and once in CoffeeR1. We can also see that
the variable alvl disappears when going to CoffeeR2. In Fig. 6 we show how the
AnimB animator displays a state of multiple refinement-levels; each refinement
level is given its own tab.

3 Earlier versions of ProB avoided this problem by animating each refinement level
separately, at the cost of not being able to check the gluing invariant and of less user
feedback.

4 Once a variable has disappeared in the course of several refinements it cannot reap-
pear. The reason for this is that the equality cannot be established by means of a
machine that does not contain the variable. Furthermore, invariants are accumulated
in Event-B. So it is not possible to reintroduce a variable with a different meaning.

Fig. 5: ProB Operations and State View after the trace insert coin, fill mug, drink

Fig. 6: AnimB View after insert coin,insert coin, fill mug, drink

2.6 Refined Events and Witnesses

The predicate W (t, v′, u, v, w,w′) denotes witnesses. Somewhat simplified, they
link the abstract parameters t and the abstract variables v′ to concrete param-
eters u and variables and w′ (see also Fig. 7). Witnesses describe for each event
separately how the refinement is achieved. Let K(v, w) =̂ I(v) ∧ J(v, w).

Aside. As described in [4], in order to verify that F (w) refines E(v) we have to
prove K(v, w) ∧ H(u, w) ∧ T(u, w,w′)⇒ ∃t, v′ ·G(t, v) ∧ S(t, v, v′) ∧ J(v′, w′).
In a proof of this statement we prefer to instantiate the quantified parameters
and variables t and v′ by expressions that can in some way inferred from the
premises. This idea is generalised to the witnesses used in Event-B. Witnesses
are predicates that provide values to satisfy the conclusion of the statement.

The proof obligations for concrete machines are called guard strengthening :
K(v, w) ∧ H(u, w) ∧ T(u, w,w′) ∧ W (t, v′, u, v, w,w′) ⇒ G(t, v), action simu-
lation: K(v, w) ∧ H(u, w) ∧ T(u, w,w′) ∧ W (t, v′, u, v, w,w′) ⇒ S(t, v, v′), and
invariant preservation: K(v, w) ∧H(u, w) ∧ T(u, w,w′) ∧W (t, v′, u, v, w,w′)⇒
J(v′, w′). We have to prove witness feasibility in order to be able to add the wit-
ness predicate W (t, v′, u, v, w,w′) to the premises in the proof obligations above:
K(v, w) ∧ H(u, w) ∧ T(u, w,w′) ⇒ (∃t, v′ ·W (t, v′, u, v, w,w′)).

In general, witnesses would be required for all parameters p of an event but
when a parameter is repeated in a refined event, by convention, it is assumed
to be equal to the corresponding abstract parameter. If a parameter is not re-
peated an explicit witness is required. (The Rodin tool creates the default witness

“true” if none is specified in the latter case. This witness does not constrain the
relationship between abstract and concrete parameters and variables. Hence,
usually default witnesses are not sufficient to establish the refinement relation-
ship.) For variables the rule when witnesses are needed is more complicated:
whenever a variable x that disappears occurs in a non-deterministic assignment
in the abstract event, in the refined event a witness for the post-state variable
v′ is required.
Animation. For animation we have to take care that as a consequence of vari-
able and parameter renaming (resulting from repeated variables), some witnesses
may have to be generated. Combined with the generated gluing invariant (as
described in Section 2.5) they provide an opportunity to locate refinement mis-
matches and provide meaningful feedback to the user.
Example. Event fill mug in CoffeeR2 contains the witness x = level(clvl′) for
the abstract parameter x of fill mug in CoffeeR1. This means intuitively, that
every execution of fill mug in CoffeeR2 corresponds to an execution of fill mug
in CoffeeR1 with parameter x set to level(clvl′). Event fill mug in CoffeeR1
must be enabled for x = level(clvl′) and the gluing invariant alvl = level(clvl)
must hold after executing the abstract and concrete event. Similarly, drink in
CoffeeR2 contains a witness alvl′ = level(clvl′) for the abstract variable alvl.
(Note, that it is just invariant @lvl in Fig. 1 with all variables primed.)
Animation in ProB. Witnesses
are the key concept that makes
refinement animation possible. In-
deed, refinement animation and re-
finement checking in classical B re-
quire for every concrete state to
keep track of the set of all ab-
stract states for which the gluing
invariant holds. Only if this set be-
comes empty, have we found an er-
ror in the refinement. The size of
state space necessary for simula-
tion grows exponentially. In Event-
B, by contrast, the witnesses pin-

abstract
state

concrete
state clvl = 8, ...fill_mug

clvl := 8

alvl=half, ...

alvl=full, ...

fill_mug
x=full

Witness
x=level(clvl')

glueing
invariant

alvl = level(clvl)
alvl = level(clvl)

fill_mug
x=half

...

CoffeeR1

CoffeeR2

Fig. 7: Witnesses and Multi-Level Animation

point the states which have to satisfy the refinement relationship (see Fig. 7).

2.7 New Events and Convergence

In the course of refinement, often new events F (w) are introduced into a model.
New events must be proved to refine the implicit abstract event skip that does
nothing. Moreover, it may be proved that new events do not collectively diverge
by proving that a specified variant V (w) is bounded from below: K(v, w) ∧
H(u, w) ⇒ V (w) ≥ 0 and is decreased by each new event K(v, w) ∧H(u, w) ∧
T(u, w,w′) ⇒ V (w′) < V (w) where we assume that the variant is an integer
expression. (Instead of an integer expression also a finite set expression can
be used.) We call events that satisfy these two proof obligations convergent.

Anticipated events can be used to prove convergence on a lexicographic order or
just to delay convergence proofs. Anticipated events can be refined by anticipated
or convergent events, but must ultimately be refined by a convergent event.
For an anticipated event the second proof obligation is replaced by K(v, w) ∧
H(u, w) ∧ T(u, w, w′) ⇒ V (w′) ≤ V (w).
Example. Event insert coin in Fig 1 is anticipated in CoffeeR1 and is then
proven convergent in CoffeeR2 by introducing an upper bound on the number
of inserted coins.

2.8 Enabledness of Refined and New Events

We may prove that whenever the abstract machine may continue by means
of event E(v) with guard G(t, v) then the concrete machine may continue by
means of concrete event F (w) or some other events F1(w), . . . , Fk(w), K(v, w) ∧
G(t, v) ⇒ (∃u·H(u, w)) ∨ (∃u1 ·H1(u1, w)) ∨ . . .∨ (∃uk ·Hk(uk, w)). The Rodin
tool does not support enabledness proof obligations at the moment. But ProB
supports analysis of liveness properties and animation can show a deadlock
(where all events except for the initialisation are disabled).

3 Description of the Multi-Level Animation Algorithm

In this section we describe the validation and animation algorithm in detail.
We point out in the presentation of the algorithm how it indicates problems
with particular proof obligations. We also show how feedback to the user needs
to be considered. Producing informative output from an animation with good
performance is a challenge. For this reason the algorithm makes heavy use of
ProB’s existing functionality. In particular, ProB provides methods to find
values for variables that satisfy predicates occurring in Event-B models.

Below we limit discussion to animation; but the algorithm is identical for
model checking: the model checker uses the same technique to determine the
state space.

3.1 Preprocessing

The algorithm is applied to a particular refinement machine Mi of a model. In
a pre-processing step, all ancestor machines M0, . . . ,Mi−1 of Mi are loaded and
all contexts seen by M0, . . . ,Mi are merged by collecting the declared constants
and joining the axioms. All variables and constants are tagged according to the
model or context where they are defined. The invariant is obtained by conjoining
all invariants of M0, . . . ,Mi.

We transform each event of Mi to an internal representation. The represen-
tation is outlined on the right hand side of Fig. 8. Usually the list of abstract
events contains just one entry. If an event refines skip or belongs to the most
abstract machine M0, the list of abstract events is empty. If the event refines
several events, it will contain all of those events.

3.2 The Animation Algorithm

The animator executes events depending on the current state of a model. It
maintains a state consisting of all constants of the seen contexts as well as all
variables of the machines M0, . . ., Mi.
In a first step the ani-
mator tries to find val-
ues for the constants
that satisfy all axioms.
Subsequently, the ani-
mator executes in each
step an event of the
most concrete machine
Mi; then it executes
the corresponding ab-
stract events from the
concrete event to the
most abstract event.
When all of this has

Name of Concrete Event
Parameters
Guard Predicate
List of Actions
List of Witness Predicates

Abstract Events

Abstract Events
...

Abstract Events
...

1
2

3

4

CoffeeR2:drink
no parameters
guard:fill_level≠empty
actions: fill_level ≔ empty
no witnesses

Abstract Events

CoffeeR1:drink
no parameters
guard: mug_level>0
actions: mug_level ≔ 0
no witnesses

Abstract Events
...

CoffeeM:drink
no parameters
guard: mug_level>0
actions: mug_level ≔ 0
no witnesses

No Abstract Events

Fig. 8: Illustration of the algorithm and one particular
event structure

been done, the animator is ready for the next step.
The algorithm to animate a particular event works as follows (item numbers
correspond to those of Fig. 8, left hand side):5

1. Search for possible values for the parameters by evaluating its guard. If no
values are found, the event is disabled.

2. Execute each action by evaluating the respective before-after predicate. If no
solution is found, report an error. The possible reasons for a failing action
are:
a. The predicate P of an action v :| P is not satisfiable or the set S of an

action v :∈ S is empty. Both cases show violations of the event feasibility
proof obligation.

b. The new value v′ of a variable v was previously determined by a witness
of a refined event (see step 3), but the abstract action cannot assign the
same value to v′. This indicates a violation of the action simulation proof
obligation.

3. For each witness evaluate its predicate and try to find values for the witnessed
variable. If no value is found for a witness, report an error, because a witness
should have at least one solution (by the witness feasibility proof obligation).

4. a. If the list of abstract events is empty, a complete solution has been found
for this event that leads to a new state. It consists of the values newly
assigned by the actions plus the variables unchanged by the actions.

b. If there are one or more abstract events, choose one nondeterministically
and evaluate its guard like in step 1. If it evaluates to true, continue
recursively with step 2, otherwise try the next event.

5 With respect to animation INITIALISATION is not treated differently from any
other events (see left of Fig. 8) except that it is enforced to occur once upon start
of an animation.

If no guard evaluates to true, report an error, because the guard of the
refinement is weaker than that of the abstract event (violation of the
guard strengthening proof obligation).

All four steps can be nondeterministic and we generate all solutions (limited
to a maximum number) with backtracking.
Animation of convergent and anticipated events. If we have successfully
found a possible event leading from one state to another, we can easily check
if the convergence criteria are satisfied. The principle is quite simple: for each
convergent event of an animated model, we check if the variant V is decreased
and non-negative by the predicates V > V ′ and V ≥ 0 resp. V ⊃ V ′ when the
variant is a set. If the event refines another convergent event, we omit the test
because in the lexicographic order constructed by refinement, events that have
been shown to decrease a variant in an abstraction of some concrete machine may
increase the variant of the concrete machine. Similarly, we can check anticipated
events (with V ≥ V ′ and V ≥ 0 resp. V ⊇ V ′), but we cannot omit the test if
an event is a refinement of an anticipated event.
Animating only a part of the refinement chain. Above we presumed that
the user wants to animate a refinement Mi and all its ancestors M0, . . . ,Mi−1.
But we also permit the user to limit the animation to the refinements between
Mi and an “upper” refinement Mk with 0 ≤ k ≤ i instead of M0. Then variables
of not animated models and predicates that contain references to those variables
will be removed.

4 Refinement-Validation with ProB

Refinement animation can be used to validate models. We present some specific
problems that can be analysed by animation and discuss a selection of case
studies to which it has been applied to.

4.1 Detection of specific problems

Below we show on various modified versions of the coffee model (Fig. 1), how
the new multi-level animation algorithm allows ProB to detect a variety of
refinement errors. Note that in contrast to AnimB and Brama, ProB can be
driven by a model checker so as to systematically detect refinement errors.
Guard Weakening. If we re-
move the guard @ml from the
event fill mug in CoffeeR2, we
violate the guard strengthen-
ing proof obligation. As can
be seen in Fig. 9, ProB’s
model checker using our new
algorithm detects this prob-
lem straightaway (case ?? of
our algorithm), leading us to Fig. 9: Violation of Guard Strengthening (ProB)

a state where fill mug is enabled in CoffeeR2 but not in the abstract machines.
Witness disables abstract guard. A similar error message appears if we keep
the guards as they are, but inject an error in the witness. E.g, when using
x = empty as witness for fill mug, ProB detects that there is a solution for the
witness, but that the witness does not enable the abstract event.
Witness not feasible. Next, let us use the witness x = level(clvl′)∧x = empty
for event fill mug. Here case (3) of our algorithm detects an error for fill mug
(after executing insert coin), and ProB displays the error message: “No solution
found for witness of the abstract parameter x in event CoffeeR2:fill mug”. The
animator AnimB does not detect this error (but it did detect the previous two
errors).
Witness violates invariant. Fi-
nally, we try to specify the wit-
ness alvl′ ∈ {empty, half }−{alvl}
for the event drink, which does not
guarantee that the abstract event
will satisfy the gluing invariant.
As can be seen in Fig. 10, ProB
finds an invariant violation error
(alvl = level(clvl) is false) directly
after the drink event.

Note that, AnimB detects an

Fig. 10: Violation of Gluing Invariant
(ProB)

error in the model, but only later when trying to execute the fill mug event
after the erroneous drink event.

In practice, validation by animation complements the proof-based methodol-
ogy of core Event-B. Corresponding methodological benefits of using animation
of Event-B models are discussed in more detail in [8].

4.2 Application to case studies

We have successfully applied the new multi-level animation of ProB on a two-
level model of SAP service choreographies [14]. We have also tested the tool on
the CDIS air traffic control case study carried out in the EU project Rodin. Fig-
ure 11 contains a screenshot of the first two levels; we have successfully animated
all 7 levels of the full model concurrently.

Another case study was a complete development of the quicksort algorithm
in Event-B, consisting of ten machines and two contexts. We have successfully
animated and model checked all the ten levels concurrently. Animation showed
how the algorithm “works” at different abstraction levels. This is valuable for
explaining an otherwise static model of an algorithm.

We have also successfully animated concurrently 14 levels of an elevator
model solution by ETH Zürich. This has uncovered a potential problem in the
model, namely that starting at a certain refinement level, the lift is no longer
able to move (but the doors can be opened and closed and the buttons can be
pressed; so there is no deadlock in the conventional sense).

Fig. 11. Animating the Rodin CDIS case study

5 Related Work

As already indicated above, the tools Brama and AnimB are also capable of per-
forming multi-level animation of Event-B models, and have partially inspired this
work. Unfortunately there is little scientific or technical documentation available
for both of these tools. A few notable differences are
- Both Brama and AnimB require to specify explicitly values for constants; i.e.,

we had to “calculate” the cartesian products for the level constant in Fig. 1
by hand.

- ProB can be driven by a model checker to systematically search for errors,
and to validate LTL formulas.

- ProB uses a constraint solving approach to find solutions for predicates, while
AnimB and Brama seem to rely on pure enumeration. As such, ProB can
evaluate much more complicated guards and predicates than AnimB or Brama.

Another animator for Event-B is [5]; but it does not yet seem to support
refinement animation. The same is true for the animator in [6] for classical B.
Another related work is the refinement checking algorithm in [10]. This algorithm
does not have access to Event-B’s witnesses and hence has to keep track of sets
of states in the abstract model (and does not check the gluing invariant as the
traces of the abstract and refined model are computed separately).

6 Conclusion

We have presented a description of refinement in Event-B and have shown how
a suitable animation and validation algorithm can be developed. The key in-
gredient that makes the algorithm tractable are the witnesses of Event-B. We
have implemented the algorithm within ProB, and have shown how a variety of
refinement errors can now be detected effectively. We have applied the technique
to various case studies, and have animated up to 14 levels simultaneously.

In future work, we plan combining the graphical representation of Brama of
Fig. 3 with the validation features of ProB. As we have sketched in Fig. 4, we
also would like to be able to see when an event is disabled in a concrete machine
but enabled in an abstract machine (Brama does not compute this information),
and also to visualize the gluing invariant of each refinement level individually. We
would also like to visualise the errors found by ProB inside the Rodin models,
e.g., so that the offending proof obligations can be marked as “not provable.”

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2009. To appear.

2. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool
environment for Event-B. In ICFEM06, LNCS 4260, pages 588–605, 2006.

3. J.-R. Abrial, D. Cansell, and D. Méry. Refinement and Reachability in EventB.
In H. Treharne, S. King, M. Henson, and S. Schneider, editors, ZB 2005, volume
3455 of LNCS, pages 222–241, 2005.

4. J.-R. Abrial and S. Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to event-B. Fundam. Inform, 77(1-2):1–28, 2007.

5. I. Aı̈t-Sadoune and Y. A. Ameur. Animating event b models by formal data models.
In T. Margaria and B. Steffen, editors, ISoLA, volume 17 of Communications in
Computer and Information Science, pages 37–55. Springer, 2008.

6. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, M. Ut-
ting, and N. Vacelet. BZ-testing-tools: A tool-set for test generation from Z and B
using constraint logic programming. In Proceedings of FATES’02, pages 105–120,
August 2002. Technical Report, INRIA.

7. J. Bendisposto, M. Leuschel, O. Ligot, and M. Samia. La validation de modèles
Event-B avec le plug-in ProB pour RODIN. Technique et Science Informatiques,
27(8):1065–1084, 2008.

8. S. Hallerstede and M. Leuschel. How to explain mistakes. In J. Gibbons and J. N.
Oliveira, editors, TFM 2009, LNCS 5846, pages 105–124. Springer, 2009.

9. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003, LNCS 2805, pages 855–874, 2003.

10. M. Leuschel and M. Butler. Automatic refinement checking for B. In K.-K. Lau
and R. Banach, editors, ICFEM’05, LNCS 3785, pages 345–359, 2005.

11. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185–203, 2008.

12. C. Métayer. http://www.animb.org/index.xml. AnimB Homepage.
13. T. Servat. Brama: A new graphic animation tool for B models. In J. Julliand and

O. Kouchnarenko, editors, B 2007, LNCS 4355, pages 274–276, 2006.
14. S. Wieczorek, V. Kozyura, A. Roth, M. Leuschel, J. Bendisposto, D. Plagge, and

I. Schieferdecker. Applying Model Checking to Generate Model-based Integration
Tests from Choreography Models. In Proceedings TESTCOM/FATES 2009, LNCS
5826, pages 179–194. Springer-Verlag, 2009.

