
Structured Event-B Models and Proofs
Corrected Version

Stefan Hallerstede

University of Düsseldorf, Germany, stefan.hallerstede@wanadoo.fr

Abstract. Event-B does not provide specific support for the modelling
of problems that require some structuring, such as, local variables or se-
quential ordering of events. All variables need to be declared globally and
sequential ordering of events can only be achieved by abstract program
counters. This has two unfortunate consequences: such models become
less comprehensible — we have to infer sequential ordering from the use
of program counters; proof obligation generation does not consider order-
ing — generating too many proof obligations (although these are usually
trivially discharged).
In this article we propose a method for specifying structured models
avoiding, in particular, the use of abstract program counters. It uses a
notation that mainly serves to drive proof obligation generation. How-
ever, the notation also describes the structure of a model explicitly. A
corresponding graphical notation is introduced that visualises the struc-
ture of a model.

1 Introduction

Recently, we have argued that the benefits of the minimalist approach of Event-
B [1] to formal modelling are sometimes balanced by complications that result,
in particular, from more complicated invariants [11]. The reason for this is the
necessity to introduce abstract program counters when dealing with models that
require (sequential) ordering of some events. However, we have argued in an ear-
lier article [9] that, specifically, structuring constructs like sequential composition
or if-statements lead to complications. Thus, the problem we face is keeping the
simplicity resulting from the minimalism while providing some means to struc-
ture Event-B models. The solution we propose is to move more information
about what is to be proved into the models — a solution we have already cho-
sen before by introducing witnesses to Event-B. We do not introduce sequential
composition or if-statements but a notation that allows us to state properties
to prove about them. The usual approach in program verification would be to
derive proof obligations from a program following its structure. We do not have
a program but work exclusively with the proof obligations.

We need to specify control flow in Event-B models without having to re-
sort to implementing abstract program counters. In principle proof outlines [16]
can accomplish this. However, similarly to [14], we want to avoid introducing a
concrete syntax of a programming notation.

Proof outlines are a compact representation of correctness proofs using Hoare
triples [12]. A Hoare Logic states what is to be proved about a program S.
For predicates p and q we write {p}S {q} to state that “starting from a state
satisfying p program S leads to a state satisfying q”. Sequential composition of
programs S and T is proved to satisfy {p}S ;T {q} by a rule

{p}S {r} {r}T {q}
{p}S ;T {q}

Proof outlines [16] represent this more succinctly,

{p} S ; {r} T {q}
annotating the program S ;T with all predicates involved in the proof. This
notation is used extensively in [4] to present correctness proofs of programs.

Similarly to proof outlines, temporal verification diagrams [14] specify al-
ternating sequences of assignments and assertions. In addition, they provide
hierarchical structuring based on state charts. Certain “patterns” of diagrams
are identified that are instrumental in proofs of temporal properties of reac-
tive systems. We combine ideas of [16] and [14] in our proposal for structured
Event-B.
Overview. We introduce structured Event-B in Section 2. A small example in
Section 3 describes the relationship between Event-B and structured Event-B. In
Section 4 we develop a simple sequential program to show how the method could
be used in practice. Section 5 points to related and future work and Section 6
contains a conclusion.

2 Event-B with Structure

We introduce a structuring notation for Event-B that maintains the simplicity of
the original Event-B proof obligations. In this article, we identify two concepts
that are missing from Event-B: sequentiality and locality. Event-B is strongest at
proving properties of highly concurrent systems that mostly use global variables.
Our structured notation supports sequentiality and locality while keeping the
ease of use of Event-B. Concurrency can be modelled explicitly in the style of
[16]. Here, we focus on sequentiality as this is at the moment difficult to model
in Event-B.

2.1 Notation

Before introducing the notation in detail, we provide some small examples of
terms of the notation together with a graphical notation that we use for illustra-
tion. (The graphical notation is not an exact representation. It’s main purpose
is to clarify a model. See also [6].) The structure notation is based on assertions
p, q and r, and events e and f . We write p � e � q for “starting from asser-
tion p event e establishes q”, Figure 1a; we write p � e − for “assertion p is an

2

invariant of event e”, Figure 1b, and p � e � if e is convergent using the same
graphical representation; we write p � (e � q 8 f � r) for “starting from p event
e establishes q or event f establishes r”, Figure 1c; and we write p � [S] � q for
“starting from p box S establishes q” where S is any term, Figure 1d. In Section 5

ep q

(a) Step

e

p

(b) Loop

e

f
p

q

r

(c) Choice

p q

(d) Box

Fig. 1: Graphical representation of the structure notation

we describe briefly a construct for concurrency that we are considering. For the
purpose of this article the notation outlined above is sufficient.

In order to define some operators on structure terms, we need to know about
their possible shapes. The syntax of the (sequential) structure notation (p, q are
predicates, and e is an event that may be decorated with a “!”, see below) is:

S ::= p � T
T ::= U � S | U � q | U − | e � | T1 8 T2

U ::= e | [S]

We define two operators I and F on the syntax of the structure notation
yielding the initial assertion and the final assertions of a term, respectively.
The initial assertion is defined by I(p � T) =̂ p. The final assertion of a term
is the disjunction of the “end points” of the term,

F(p � U � S) =̂ F(S) F(p � U −) =̂ false
F(p � U � q) =̂ q F(p � e �) =̂ false
F(p � (T1 8 T2)) =̂ F(p � T1) ∨ F(p � T2)

The definition of the final assertion is consistent with the axiomatic seman-
tics of non-deterministic choice [4]. This will become apparent in the descrip-
tion of assertions below. The intuition behind the definition of F(p � U −) and
F(p � e �) is that the event “returns to p”; and in absence of an exiting choice,
for example, p � (U1 −8 U2 � q), it does not have an “end point”.

2.2 Proof Obligations

Proof obligations are defined following the structure notation. In fact, the main
purpose of the structure notation is to drive the generation of proof obligations
in a more evident manner.
Assertions. To state the proof obligations for assertions we consider all suitable
sub-terms of a structure term. For instance, given the following structure term

3

p(v) � e(v) � q(v) � f(v) � r(v), we consider the sub-terms p(v) � e(v) � q(v)
and q(v) � f(v) � r(v).

Let e(v) be an event with guard g(v) and action v :| a(v, v′). For the sub-
term p(v) � e(v) � q(v) we prove

p(v) ∧ g(v) ∧ a(v, v′) ⇒ q(v′) assertion preservation

We also prove action feasibility, p(v) ∧ g(v) ⇒ ∃v′ · a(v, v′), if an event is
not refined further. Loops and choices are treated similarly to steps. Terms
p(v) � e(v) − and p(v) � e(v) � correspond to p(v) � e(v) � p(v) but make
explicit that p(v) is invariant. The term p(v) � (e1(v) � q1(v) 8 e2(v) � q2(v))
corresponds to two terms p(v) � e1(v) � q1(v) and p(v) � e2(v) � q2(v).

For a box p(v) � [S(v)] � q(v) we have to prove

p(v) ⇒ I(S(v)) box entry
F(S(v)) ⇒ q(v) box exit

Convergence. The term p(v) � e(v) � states that p is an invariant of e(v) and
that e(v) is convergent, that is, it decreases a variant. If a variant t(v) is specified
for e(v) or a refinement of e(v), denoted by e(v) � t(v), we prove convergence
of e(v) in terms of variant boundedness, p(v) ∧ g(v) ⇒ t(v) ≥ 0, and variant
progress, p(v) ∧ g(v) ∧ a(v, v′) ⇒ t(v′) < t(v). In unstructured Event-B events
can be declared to be anticipated in order to delay a convergence proof to some
refinement. In structured Event-B convergence is proved only when a variant is
stated which may happen in a refinement. So the distinction between convergent
and anticipated events disappears.
Refinement.We consider three forms of refinement, structure refinement, event
refinement, and box refinement. A structure refinement replaces an event in a
refined model by a structure. Event refinement relates two events, box refinement
two boxes. Structure refinement is defined in terms of event and box refinement.
An event e(v), occurring in a term p(v) � e(v) � q(v), is structure refined by a
term R(v, w), denoted by e(v) ∼ R(v, w), where the term R(v, w) must contain
at least one event decorated with an exclamation mark. The assertions p(v) and
q(v) are associated with gluing assertions p∗(v, w) and q∗(v, w). We prove

p(v) ∧ p∗(v, w) ⇒ I(R(v, w)) box entry
F(R(v, w)) ⇒ q∗(v, w) box exit

Note that p∗(v, w) needs to be established by the event that refines the event
preceding e(v) in the abstract term. We do not allow strengthening of assertions
in any other case.

Two kinds of events occur in R(v, w), decorated events f(w)! that refine
event e(v) and, undecorated, new events f(w) that refine skip. Let h(w) be the
guard of f(w) and w :| b(w,w′) its action. The predicate m(v, w, v′, w′) denotes
witnesses for the abstract variables v′ linking abstract variables to concrete vari-
ables. Witnesses describe for each event separately how the refinement is achieved

4

[9]. For decorated events f(w)! occurring in a term r(v, w) � f(w)! � s(v, w),
let φ(v, w,w′) = r(v, w) ∧ h(w) ∧ b(w,w′); we prove

φ(v, w,w′) ⇒ ∃v′ ·m(v, w, v′, w′) witness feasibility
φ(v, w,w′) ⇒ g(v) guard strengthening
φ(v, w,w′) ∧ m(v, w, v′, w′) ⇒ a(v, v′) action simulation
φ(v, w,w′) ∧ m(v, w, v′, w′) ⇒ s(v′, w′) assertion preservation

For undecorated events f(w) occurring in a term r(v, w) � f(w) � s(v, w) we
prove that they refine skip; we prove assertion preservation φ(v, w,w′)⇒ s(v, w′).

Box refinement maintains the box-entry property once proved. A box [S(v)],
occurring in a term p(v) � [S(v)] � q(v), is refined by a box [R(v, w)] where
S(v) and R(v, w) are identical terms except for assertions contained in R(v, w)
that may be strengthened. Box refinement is established by box entry and box
exit proof obligations with respect to the gluing assertions p∗(v, w) and q∗(v, w).
Enabledness. Enabledness proof obligations in Event-B can be used to ver-
ify deadlock-freeness or precondition weakening [10], for instance. In structured
Event-B the large disjunctions that would appear in Event-B enabledness proof
obligations can be smaller depending on the structure term R(v, w) of a struc-
ture refinement e(v) ∼ R(v, w). For terms r(v, w) � f(w) � s(v, w), r(v, w) �
f(w) −, and r(v, w) � f(w) � contained in R(v, w) we prove r(v, w) ⇒ h(w).
For a choice term r(v, w) � (f1(w) � s1(v, w) 8 f2(w) � s2(v, w)) we prove
r(v, w) ⇒ h1(w) ∨ h2(w). If r(v, w) is the initial assertion of R(v, w), the
abstract guard g(v) is added to the premise.

3 Event-B with and without Structure

The Event-B method as described in [3] has a certain structure that is not made
formally explicit. However, it is mentioned in the informal description in [3]. Not
taking into account convergence, this would correspond to

true � initialisation � inv � (event1 −8 . . . 8 eventn −)

where inv is the invariant. The correspondence described in this section is not
intended to suggest such a definition. It is serves merely to explain the structured
notation in terms of the unstructured notation.

3.1 Without Structure

We give a very simple example of a structured model and a corresponding un-
structured model. Being very simple, too, proofs are omitted. We model an
abstract program that sets y to 2. In order to represent structure in unstruc-
tured Event-B we have to introduce an abstract program counter apc, say, with
values aini, aend, yielding a model with invariant

apc = aini ⇒ y = 0
apc = aend ⇒ y = 2

5

and events

initialisation
apc := aini
y := 0

convergent inc2
when apc = aini then
apc := aend
y := y + 2

We would show convergence of inc2 to show that the abstract program counter
is modelled correctly (using the variant {apc } ∩ {aini }, for instance).

We refine the abstract model by one that increments a variable x in two
steps. We use two events incx1 and incx2,

initialisation
cpc := aini
x := 0

convergent incx1
when cpc = aini then
cpc := amid
x := x+ 1

convergent incx2
when cpc = amid then
cpc := aend
x := x+ 1

and a gluing invariant

cpc ∈ {aini, aend } ⇒ x = y
cpc ∈ {aini, amid } ⇒ apc = aini
cpc = amid ⇒ x = y + 1

that relates concrete variables x to abstract variables y depending on the value of
the program counter. It is also necessary to relate the program counters apc and
cpc by cpc ∈ {aini, amid } ⇒ apc = aini. Control flow is modelled explicitly.

3.2 With Structure

Using the structure notation, there is no need to model program counters. As-
sertions aini and aend

@aini y = 0
@aend y = 2

(read: at aini “y = 0”) are stated at those locations where they hold

true � iniy � aini � inc2 � aend

The control flow is modelled by the structure term. It is not represented in the
formal text otherwise. The model contains events iniy and inc2

iniy
y := 0

inc2
y := y + 2

Similarly to the unstructured model, we refine the abstract model by incre-
menting twice. Event inc2 is structure refined by the incx1 and incx2,1

inc2 ∼ aini � incx1 � amid � incx2 ! � aend
1 We could also have used the same event twice. But in this article we want to keep
the convention that each event appears only once. The structure refinement notation
e ∼ R used in this article does not consider the position of e in the abstract term.

6

and the abstract event iniy by the concrete event inix which is stated formally
iniy ∼ true � inix ! � aini.

inix
x := 0

incx1
x := x+ 1

incx2
x := x+ 1

With the gluing assertions

@aini x = y
@amid x = y + 1
@aend x = y

we have to prove, for instance, that incx1 event refines skip and incx2 event
refines abstract event inc2

x = 0 ∧ x = y ⇒ x+ 1 = y + 1
x = y + 1 ⇒ x+ 1 = y + 2

These proof obligations correspond closely to the proof rule of the refinement
calculus [15] for sequential composition.

3.3 Remarks

With the structure made explicit we can immediately see the sequencing in the
model whereas in the unstructured model we have to look closely to see it.
This becomes more convincing in larger examples like the one of Section 4, for
example. In addition, the assertions of the structured model are simpler than
the invariants of the unstructured model. In particular, it is not necessary to
specify sequencing information relating only abstract program counters. The
refinement proofs are not more difficult in the structured model although the
formal definition is more complex mostly due to the box proof obligations. Note,
however, that usually we do not have to prove anything at all for boxes. This is
because we reuse assertions already declared, trivially satisfying the implications
of box entry and box exit, for instance, aini and aend in the model above. We
have removed one source of complexity: the choices to code the assertions in the
invariant are no longer available. We believe this makes the method easier to use.
The main drawback of the structured approach is that the refinement notion is
more restrictive, being defined per event and no longer per model.

4 Development of a Sequential Program

We demonstrate the use of structured Event-B by means of a sequential program
development, the extended Euclidian algorithm (Figure 2). The refinement steps
are illustrated using the graphical notation of Figure 1. We believe it to be
very useful for understanding the model more easily. For instance, the collapsed
representation in Figure 3 of the final model of the sequential program shows
nicely the control flow of the program. The example is large enough to illustrate

7

when b != 0 then
upini : f, s, t, q, r := 0, {0 "→ a}, {0 "→ b}, {0 "→ a÷ b}, {0 "→ a mod b};

while r(f) != 0 do
up : f, s(f+1), t(f+1), q(f+1), r(f+1) := f+1, t(f), r(f), t(f)÷ r(f), t(f) mod r(h)

end;
dnini : D,U, V := t(f), 1, 1− q(f);

while f > 0 do
dn : f, U, V := f−1, V, U − q(f−1) ∗ V

end;
gcd : d, u, v := D,U, V

end

Fig. 2: The extended Euclidian algorithm

up

upini

dn

dnini gcd

Fig. 3: Collapsed graphical representation of the final gcd model

the use of structured Event-B and small enough to fit fully into this article.
In Section 4.1 we model the program to be developed in models g0 and g1.

We refine model g0 into model g1 applying Bézout’s identity. We introduce the
first loop creating a stack of divisions in the second refinement g2 in Section 4.2,
and the second loop in g3 in Section 4.3. Finally, we data-refine two separate
stack pointers used in the two loops into one in g4 in Section 4.4.

We use the following definitions of divides, denoted by |, of GCD, and of abs:

x|y ⇔ x 6= 0 ∧ (∃m · y = x ∗m)
z ∈ GCD[{x 7→ y}] ⇔ z|x ∧ z|y ∧ (∀d · d|x ∧ d|y ⇒ d|z)
y = abs(x) ⇔ (x ≥ 0 ⇒ y = x) ∧ (x < 0 ⇒ y = −x)

4.1 GCD by way of a Linear Equation

The initial model consists of a single event gcd.

g0.gcd
when b 6= 0 then
d :∈ GCD[{a 7→ b}]

We assume that the variables a, b, and d cannot be data-refined. Similarly to
Event-B, we require that variables that are kept in a refinement are implicitly
linked by an equality (in all assertions). The initial structure term only states
that gcd establishes true starting from true in one step,

true � g0.gcd � true

There is nothing to prove. Figure 4a shows a graphical representation of the
initial model.

8

gcd

(a) Initial gcd model

gcd

(b) Refined gcd model

Fig. 4: The first two models of the development of the algorithm

The first refinement replaces the GCD relation by a linear diophantine equa-
tion with coefficients u and v:

g1.gcd
when b 6= 0 then
d, u, v :| d′ = a ∗ u′ + b ∗ v′ ∧ d′|a ∧ d′|b

The structure of the refinement is the same as that of the abstraction

g0.gcd ∼ true � g1.gcd ! � true

In the graphical representation we expand the square for event g0.gcd into a
box containing the graphical representation of true � g1.gcd ! � true, see
Figure 4b. The action simulation proof obligation of the two events g0.gcd and
g1.gcd, d′ = a ∗ u′ + b ∗ v′ ∧ d′|a ∧ d′|b ⇒ d′ ∈ GCD[{a 7→ b}] (Bézout’s
identity), for assertion preservation is easily discharged.

4.2 Creation of a Stack of Divisions

In the second refinement we build up a stack of divisions. Variable h points to
the top of the stack that is described by assertion upinv :

@upinv s ∈ 0 .. h → Z ∧ t ∈ 0 .. h → Z
@upinv q ∈ 0 .. h → Z ∧ r ∈ 0 .. h → Z
@upinv h ≥ 0 ∧ s(0) = a ∧ t(0) = b
@upinv ∀i · i ∈ 0 .. h ⇒ t(i) 6= 0 ∧ s(i) = t(i) ∗ q(i) + r(i)
@upinv ∀i · i ∈ 1 .. h ⇒ t(i−1) = s(i) ∧ r(i−1) = t(i)

Two new events are introduced. Event g2.upini initialises the loop that com-
putes the stack and event g2.up models the loop body.

g2.upini
when b 6= 0 then
h := 0
s := {0 7→ a}
t := {0 7→ b}
q := {0 7→ a÷ b}
r := {0 7→ a mod b}

g2.up
when r(h) 6= 0 then
h := h+1
s(h+1) := t(h)
t(h+1) := r(h)
q(h+1) := t(h)÷ r(h)
r(h+1) := t(h) mod r(h)

9

In the refined event g2.gcd only the guard is strengthened. The action is un-
changed. In fact, the result of the computation is ignored except for the termi-
nation condition r(h) = 0.

g2.gcd
when r(h) = 0 then
d, u, v :| d′ = a ∗ u′ + b ∗ v′ ∧ d′|a ∧ d′|b

The introduction of the loop is expressed by the term

g1.gcd ∼ true � g2.upini � upinv � (g2.up �8 g2.gcd ! � true)

Figure 5 shows the graphical representation of the model; the square for event

up

upini gcd

Fig. 5: Second refinement of the gcd model

g1.gcd is replaced by a box representing the refined term. We believe that al-
ready this simple case demonstrates the value of the graphical representation.
The picture is quite easy to comprehend.

Aside. We are not using the graphical representation to specify structure
though: the textual representation is richer and feeding all information into the
graphical representation would complicate it. The purpose of the graphical rep-
resentation is to visualise an important aspect of the model. The syntax of
structure terms is designed to resemble the graphical representation.

Assertion preservation is easily proved, for example, for preservation of as-
sertion ∀i · i ∈ 0 .. h ⇒ t(i) 6= 0 by events g2.upini and g2.up,

b 6= 0 ⇒ ∀i · i ∈ 0 .. 0 ⇒ {0 7→ b}(i) 6= 0
upinv ∧ r(h) 6= 0 ⇒ ∀i · i ∈ 0 .. h+1 ⇒ tC− {h+1 7→ r(h)}(i) 6= 0

Convergence and Enabledness. In the term refining event g1.gcd we have
indicated that event g2.up terminates. The ring of Z is a Euclidian domain with
abs as a Euclidian function: ∀x, y · y 6= 0 ⇒ (∃q, r · x = y ∗ q + r ∧ abs(r) <
abs(y)). Hence, the expression abs(r(h)) is a variant for event g2.up, that is,
g2.up � abs(r(h)).

The proof obligations for enabledness (showing weakening of the precondi-
tion) are b 6= 0 ⇒ b 6= 0 and upinv ⇒ r(h) 6= 0 ∨ r(h) = 0. Both are easily
discharged.

10

4.3 Calculation of the Coefficients

In the third refinement we calculate the Bézout coefficients u and v and the gcd
d by means of the variables D, U , and V . This refinement step is structurally
very similar to the second one, except that the stack pointer is decreased during
the calculation.

@dninv upinv
@dninv k ∈ 0 .. h ∧ r(h) = 0 ∧ D|s(k) ∧ D|t(k)
@dninv D = s(k) ∗ U + t(k) ∗ V

The proof of the structure refinement

g2.gcd ∼ upinv � g3.dnini � dninv � (g3.dn �8 g3.gcd ! � true)

makes use of the properties of the stack described by upinv and requires some
arithmetic.

g3.dnini
when r(h) = 0 then
k, D := h, t(h)
U := 1
V := 1− q(h)

g3.dn
when k > 0 then
k := k−1
U := V
V := U − q(k−1) ∗ V

g3.gcd
when k = 0 then
d := D
u := U
v := V

In this step we also refine the gcd event to use the result of the preceding compu-
tation of the coefficients and the gcd. Figure 6 shows the graphical representation
illustrating the control flow of the algorithm consisting of two consecutive loops
preceded by an initialisation each.

up

upini

dn

dnini gcd

Fig. 6: Third refinement of the gcd model

Convergence and Enabledness. Convergence can be verified by means of the
decreasing stack pointer k: g3.dn � k. The enabledness proof obligations are
upinv ∧ r(h) = 0 ⇒ r(h) = 0 and dninv ⇒ k > 0 ∨ k = 0, both proved easily.

4.4 Implementation of the Stack Pointer

We sketch the fourth refinement in order to demonstrate the use of data refine-
ment. In all events of model g3 we textually replace h and k by f . (In refined

11

event g4.dnini we can remove the resulting assignment f := f .)

g2.upini ∼ true � g4.upini ! � upinv
g2.up ∼ upinv � g4.up ! � upinv
g3.dnini ∼ upinv � g4.dnini ! � dnini
g3.dn ∼ dninv � g4.dn ! � upinv
g3.gcd ∼ dninv � g4.gcd ! � true

The assertions upinv and dninv are extended by gluing assertions relating model
g3 to model g4

@upinv f = h
@dninv f = k

Aside. In the algorithm shown in Figure 2 all variables are global. We could
as well have inferred from the structure of the model (Figure 6) local variables
f , s, t, q, r for the two loops and D, U , V for the second loop.

5 Related and Future Work

The two verification approaches presented in [16] and [14] are lacking a notion
of refinement. In [8] a restricted form of refinement for temporal verification di-
agrams is presented that permits splitting vertices and removing edges. This is
generalised in [7] by considering the transitive closure of edges and matching no-
tion of data-refinement. In our approach, we have incorporated refinement based
on the corresponding notion of Event-B that appears simpler to handle. We also
preserve structure information during refinement which is particularly important
for obtaining the intended algorithmic structure by the end of a development.

Alternative ways of expressing structure of Event-B models that have been
proposed are the CSP-based approach of [13], JSD-based approach of [6] and
UML-B [17]. In [13] events are annotated with events that are to be enabled
next. Corresponding enabledness proof obligations are shown but refinement is
not considered. In [6] JSD-like diagrams are used to illustrate concurrent Event-
B models. The notation can also be used to illustrate refinement of Event-B
models. However, the notation is not exploited for proof obligation generation;
the suggested (still) informal mapping to Event-B introduces abstract program
counters. UML-B [17] focuses more on states as its central concept. UML-B
models are translated into Event-B by introducing abstract program counters to
represent those states. The notion of refinement is centred around state decom-
position and gluing invariants are generated from the emerging nesting structure
of state machines. State machines of UML-B are not exploited for proof obliga-
tion generation.

Abstract State Machines (ASM) [5] also provide to ways to introduce struc-
ture into a model. Control State ASMs use abstract program counters to model
control structures. We could also identify such a class of models in Event-B. But
this would not solve our problem. One of the reasons for introducing a structure

12

notation in Event-B is that proof obligations involving program counters can get
quite involved. Apart from that invariants of Event-B get cluttered with prop-
erties involving abstract program counters. A second way to structure Abstract
State Machines is to use Turbo ASMs [5]. Turbo ASMs provide programming
constructs to compose ASMs to model computations. Such a reconstruction of
programming constructs would not solve our problem either. We would again
have to deal with sequential composition, if-statements, and so on, when gener-
ating proof obligations.

We are investigating modelling concurrency (p1 � e1 � q1 ‖ p2 � e2 � q2)
using structured Event-B. In fact, the proof outlines in [16] were first developed
for proving properties of concurrent programs. We are more interested to look
into possibilities for support by a tool such as the Rodin tool [2]. The proof
obligations for enabledness are difficult to handle. However, this difficulty is also
present in unstructured Event-B models: in structured Event-B it will surface
during proof obligation generation, whereas in unstructured Event-B it will show
up during proof.

We also think about changes concerning the way proof obligations are gen-
erated. In the new scheme of proof obligation generation we would no longer get
a list of all proof obligations that must be discharged. Instead, we would get a
todo-list that tells us what still needs to be proved. We have realised that this
is the way we should proceed with action feasibility and convergence proof obli-
gations. Action feasibility can be proved showing the existence of a post-state
directly or by implementing the action in a refinement. Convergence proofs can
be delayed by using anticipation. This approach would make the Event-B method
more flexible without sacrificing its strong tool support.

We are also investigating verification of temporal properties. The temporal
verification diagrams in [14] are used to prove temporal logic properties of re-
active systems. A similar approach should also work for structured Event-B.
Refinement should provide a way to master more complex temporal properties.
The structured Event-B approach shares with temporal verification diagrams
the strength of only generating first-order proof obligations.

6 Conclusion

We have introduced a structure notation for Event-B together with the neces-
sary proof obligations. We have demonstrated how it can be used practically
in a sequential program development. The structure notation is not a program-
ming notation but a notation that describes a theory about a formal model. For
instance, the formula p � e � q � f � r does not mean: first e is executed
then f ; it describes theorems about e and f . Effectively, we have moved some
concepts of proof into modelling. We think this is very attractive, in particular,
for implementation in a software tool such as Rodin. There would be no need
to configure the proof obligation generator for different applications. Everything
about the proof obligations would be said in the model; fully transparent for the
user of the tool. An additional benefit would be that only proof obligations need

13

to be generated that are specified in structure terms. Hence, usually, fewer proof
obligations would be generated.

In our opinion, the notation also improves legibility of more complex struc-
tured models. The associated graphical notation helps to grasp quickly the struc-
ture of a model.
Acknowledgement. The original (unstructured) Event-B model of the extended
Euclidian algorithm was developed by Christophe Métayer. Jens Bendisposto
provided useful comments on earlier versions of this article.

References
1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge

University Press, 2009. To appear.
2. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool

environment for Event-B. In Z. Liu and J. He, editors, ICFEM 2006, volume 4260,
pages 588–605. Springer, 2006.

3. J.-R. Abrial and S. Hallerstede. Refinement, Decomposition and Instantiation of
Discrete Models: Application to Event-B. Fundam. Inform, 77(1-2):1–28, 2007.

4. K. R. Apt, , F. S. de Boer, and E.-R. Olderog. Verification of Sequential and
Concurrent Programs. Springer-Verlag, 2009.

5. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

6. M. Butler. Decomposition Structures for Event-B. In M. Leuschel and
H. Wehrheim, editors, IFM, volume 5423 of LNCS, pages 20–38. Springer, 2009.

7. D. Cansell, D. Méry, and S. Merz. Diagram refinements for the design of reactive
systems. J. UCS, 7(2):159–174, 2001.

8. L. de Alfaro, Z. Manna, H. B. Sipma, and T. E. Uribe. Visual verification of
reactive systems. In E. Brinksma, editor, TACAS, volume 1217 of LNCS, pages
334–350. Springer, 1997.

9. S. Hallerstede. Justifications for the Event-B Modelling Notation. In J. Jul-
liand and O. Kouchnarenko, editors, B 2007, volume 4355 of LNCS, pages 49–63.
Springer, 2007.

10. S. Hallerstede. On the Purpose of Event-B Proof Obligations. In E. Börger, M. J.
Butler, J. P. Bowen, and P. Boca, editors, ABZ, volume 5238 of LNCS, pages
125–138. Springer, 2008.

11. S. Hallerstede. Proving Quicksort Correct in Event-B. Refine 2009. 2009. 16 pages.
12. C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12:576–580, 583, 1969.
13. W. Ifill, S. A. Schneider, and H. Treharne. Augmenting B with control annotations.

In J. Julliand and O. Kouchnarenko, editors, B 2007, volume 4355 of LNCS, pages
34–48. Springer, 2007.

14. Z. Manna and A. Pnueli. Temporal verification diagrams. In M. Hagiya and J. C.
Mitchell, editors, Theoretical Aspects of Computer Software, volume 789 of LNCS,
pages 726–765. Springer, 1994.

15. C. Morgan. Programming from Specifications: Second Edition. Prentice Hall, 1994.
16. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta

Informatica, 6(4):319–340, 1976.
17. M. Y. Said, M. J. Butler, and C. F. Snook. Language and tool support for class

and state machine refinement in UML-B. In A. Cavalcanti and D. Dams, editors,
FM 2009, volume 5850 of LNCS, pages 579–595. Springer, 2009.

14

	Structured Event-B Models and ProofsCorrected Version

