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Abstract. Provably correct compilation is an important aspect in de-
velopment of high assurance software systems. In this paper we explore
approaches to provably correct code generation based on programming
language semantics, particularly Horn logical semantics, and partial eval-
uation. We show that the definite clause grammar (DCG) notation can
be used for specifying both the syntax and semantics of imperative lan-
guages. We next show that continuation semantics can also be expressed
in the Horn logical framework.

1 Introduction

Ensuring the correctness of the compilation process is an important considera-
tion in construction of reliable software. If the compiler generates code that is
not faithful to the original program code of a system, then all our efforts spent
in proving the correctness of the system could be futile. Proving that target
code is correct w.r.t. the program source is especially important for high assur-
ance systems, as unfaithful target code can lead to loss of life and/or property.
Considerable research has been done in this area, starting from the work of Mc-
Carthy [18]. Most efforts directed at proving compiler correctness fall into three
categories:

– Those that treat the compiler as just another program and use standard
verification techniques to manually or semi-automatically establish its cor-
rectness (e.g., [3]). However, even with semi-automation this is a very labour
intensive and expensive undertaking, which has to be repeated for every new
language, or if the compiler is changed.
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– Those that generate the compiler automatically from the mathematical se-
mantics of the language. Typically the semantics used is denotational (see
for example Chapter 10 of [23]). The automatically generated compilers,
however, have not been used in practice due to their slowness and/or ineffi-
ciency/poor quality of the code generated.

– Those that use program transformation systems to transform source code
into target code [16, 20]. The disadvantage in this approach is that speci-
fying the compiler operationally can be quite a lengthy process. Also, the
compilation time can be quite large.

In [6] we developed an approach for generating code for imperative languages
in a provably correct manner based on partial evaluation and a type of seman-
tics called Horn logical semantics. This approach is similar in spirit to semantics-
based approaches, however, its basis is Horn-logical semantics [6] which possesses
both an operational as well as a denotational (declarative) flavor. In the Horn
logical semantics approach, both the syntax and semantics of a language is spec-
ified using Horn logic statements (or pure Prolog).

Taking an operational view, one immediately obtains an interpreter of the
language L from the Horn-logical semantic description of the language L. The
semantics can be viewed dually as operational or denotational. Given a program
P written in language L, the interpreter obtained for L can be used to execute
the program. Moreover, given a partial evaluator for pure Prolog, the interpreter
can be partially evaluated w.r.t. the program P to obtain compiled code for P.
Since the compiled code is obtained automatically via partial evaluation of the
interpreter, it is faithful to the source of P, provided the partial evaluator is
correct. The correctness of the partial evaluator, however, has to be proven only
once. The correctness of the code generation process for any language can be
certified, provided the compiled code is obtained via partial evaluation. Given
that efficient execution engines have been developed for Horn Logic (pure Pro-
log), partial evaluation is relatively fast. Also, the declarative nature of the Horn
logical semantics allows for language semantics to be rapidly obtained.

In this paper, we further develop our approach and show that in Horn logical
semantics not only the syntax but also the semantics can be expressed using
the definite clause grammar notation. The semantics expressed in the DCG no-
tation allows for the store argument to be naturally (syntactically) hidden. We
show that continuation semantics can also be expressed in Horn logic. Continua-
tion semantics model the semantics of imperative constructs such as goto state-
ments, exception handling mechanisms, abort, and catch/throw constructs more
naturally. We also show that continuation semantics expressed as DCGs can be
partially evaluated w.r.t. a source program to obtain “good quality” target code.

In this work we use partial evaluation to generate target code. Partial evalu-
ation is especially useful when applied to interpreters; in this setting the static
input is typically the object program being interpreted, while the actual call to
the object program is dynamic. Partial evaluation can then produce a more ef-
ficient, specialized version of the interpreter, which can be viewed as a compiled
version of the object program [5].



In our work we have used the logen system [14]. Much like Mixtus, lo-
gen can handle many non-declarative aspects of Prolog. logen also supports
partially static data by allowing the user to declare custom “binding types.”
More details on the logen system can be found elsewhere [14]. Unlike Mixtus,
logen is a so-called offline partial evaluator, i.e., specialization is divided into
two phases: (i) A binding-time analysis (BTA for short) phase which, given a
program and an approximation of the input available for specialization, approx-
imates all values within the program and generates annotations that steer (or
control) the specialization process. (ii) A (simplified) specialization phase, which
is guided by the result of the BTA.
Because of the preliminary BTA, the specialization process itself can be per-
formed very efficiently, with predictable results (which is important for our appli-
cation). Moreover, due to its simplicity it is much easier to establish correctness
of the specialization process.

Finally, while our work is motivated by provably correct code generation, we
believe our approach to be useful to develop “ordinary” compilers for domain
specific languages in general [8].

2 Horn Logical Semantics

The denotational semantics of a language L has three components: (i) syntax
specification: maps sentences of L to parse trees; it is commonly specified as a
grammar in the BNF format; (ii) semantic algebra: represents the mathemat-
ical objects whose elements are used for expressing the meaning of a program
written in the language L; these mathematical objects typically are sets or do-
mains (partially ordered sets, lattices, etc.) along with associated operations to
manipulate the elements of the sets; (iii) valuation functions: these are functions
mapping parse trees to elements of the semantic algebras.

Traditional denotational definitions express syntax as BNF grammars, and
the semantic algebras and valuation functions using λ-calculus. In Horn Logi-
cal semantics, Horn-clauses (or pure Prolog) and constraints1 are used instead
to specify all the components of the denotational semantics of programming
languages [6]. There are three major advantages of using Horn clauses and con-
straints for coding denotational semantics.

First, the syntax specification trivially and naturally yields an executable
parser. The BNF specification of a language L can be quite easily transformed
to a Definite Clause Grammar (DCG) [24]. The syntax specification2 written in
the DCG notation serves as a parser for L. This parser can be used to parse
1 Constraints may be used, for example, to specify semantics of languages for real-time

systems [7].
2 A grammar coded as a DCG is syntax specification in the sense that various op-

erational semantics of logic programming (standard Prolog order, tabled execution,
etc.) can be used for execution during actual parsing. Different operational semantics
will result in different parsing algorithms (e.g., Prolog in recursive descent parsing
with backtracking, tabled execution in chart parsing, etc.).



programs written in L and obtain their parse trees (or syntax trees). Thus, the
syntactic BNF specification of a language is easily turned into executable syntax
(i.e., a parser). Note that the syntax of even context sensitive languages can be
specified using DCGs [6].

Second, the semantic algebra and valuation functions of L can also be coded
in Horn-clause Logic. Since Horn-clause Logic or pure Prolog is a declarative
programming notation, just like the λ-calculus, the mathematical properties of
denotational semantics are preserved. Since both the syntax and semantic part
of the denotational specification are expressed as logic programs, they are both
executable. These syntax and semantic specifications can be loaded in a logic
programming system and executed, given a program written in L. This provides
us with an interpreter for the language L. In other words, the denotation3 of a
program written in L is executable. This executable denotation can also be used
for many applications, including automated generation of compiled code.

Third, non-deterministic4 semantics can be given to a language w.r.t. re-
sources (e.g., time, space, battery power) consumed during execution. For ex-
ample, some operations in the semantic algebra may be specified in multiple
ways (say in software or in hardware) with each type of specification resulting in
different resource consumption. Given a program and bounds on the resources
that can be consumed, only some of the many possible semantics may be viable
for that program. Resource bounded partial evaluation [2] can be used to for-
malize resource conscious compilation (e.g., energy aware compilation) [26] via
Horn Logical semantics.

Horn-logical semantics can also be used for automatic verification and consis-
tency checking [6, 7]. We do not elaborate any further since we are not concerned
with verification in this paper.

The disadvantage of Horn logical semantics is that it is not denotational in
the strict sense of the word because the semantics given for looping constructs
is not compositional. The fix operator used to give compositional semantics of
looping constructs in λ-calculus cannot be naturally coded in Horn logic due to
lack of higher order functions. This, for example, precludes the use of structural
induction to prove properties of programs. However, note that even though the
semantics is not truly compositional, it is declarative, and thus the fix-point of
the logic program representing the semantics can be computed via the standard
TP operator [17]. Structural/fix-point induction can then be performed over this
TP operator to prove properties of programs. Note that even in the traditional
λ-calculus approach, the declarative meaning of the fix operator (defined as
computing the limit of a series of functions) is given outside the operational
framework of the λ-calculus, just as the computation of the fix(TP ) in logic
programming is outside the operational framework of Horn Clause logic. For
partial evaluation, the operational definition of fix, i.e., fix(F) = F(fix F), is
used.

3 We refer to the denotation of a program under the Horn-logical semantics as its Horn
logical denotation.

4 Non-deterministic in the logic programming sense.



In [6] we show how both the syntax and semantics of a simple impera-
tive language (a simple subset of Pascal whose grammar is shown in Figure
1) can be given in Horn Logic. The Horn logical semantics, viewed opera-
Program ::= C.

C ::= C1;C2 |

loop while B C end while |

if B then C1 else C2 endif |

I := E

E ::= N | Identifier | E1 + E2 |

E1 - E2 | E1 * E2 | (E)

B ::= E1 = E2 | E1 > E2 | E1 < E2

N ::= 0 | 1 | 2 | ... | 9

Identifier ::= w | x | y | z

Fig. 1: BNF grammar

tionally, automatically yields an in-
terpreter. Given a program P , the
interpreter can be partially evalu-
ated w.r.t. P to obtain P ’s compiled
code.
A program and its corresponding code
generated via partial evaluation us-
ing the logen system [14] is shown
below. The specialization time is in-
significant (i.e., less than 10 ms).
Note that the semantics is written

under the assumption that the program takes exactly two inputs (found in vari-
ables x and y) and produces exactly one output (placed in variable z). The defi-
nitions of the semantic algebra operations are removed, so that unfolding during
partial evaluation will stop when a semantic algebra operation is encountered.
The semantic algebra operations are also shown below.

z = 1; main(A, B, C) :- while_eval__1(A, B) :-

w = x; initialize_store(D), access(w, A, C),

loop while w > 0 update(x, A, D, E), ( C>0 ->

z = z * y ; update(y, B, E, F), access(z, A, D),

w = w - 1 update(z, 1, F, G), access(y, A, E),

end while. access(x, G, H), F is D*E,

update(w, H, G, I), update(z, F, A, G),

while_eval__1(I, J), access(w, G, H),

K=J, I is H-1,

access(z, K, C). update(w, I, G, J),

while_eval__1(J, B),

; B=A ).

SEMANTIC ALGEBRA:

initialize_store([(x,0),(y,0),(z,0),(w,0)]).

access(Id,[(Id,Val)|_ ],Val). update(Id,NV,[(Id,_)|R],[(Id,NV)|R]).

access(Id,[_|R],Val) :- update(Id,NewV,[P|R],[P|R1]) :-

access(Id,R,Val). update(Id,NewV,R,R1).

Notice that in the program that results from partial evaluation, only a series
of memory access, memory update, arithmetic and comparison operations are
left, that correspond to load, store, arithmetic, and comparison operations of a
machine language. The while-loop, whose meaning was expressed using recursion,
will partially evaluate to a tail-recursive program. These tail-recursive calls are
easily converted to iterative structures using jumps in the target code.

Though the compiled code generated is in Prolog syntax, it looks a lot like ma-
chine code. A few simple transformation steps will produce actual machine code.
These transformations include replacing variable names by register/memory lo-
cations, replacing a Prolog function call by a jump (using a goto) to the code



for that function, etc. The code generation process is provably correct, since
target code is obtained automatically via partial evaluation. Of course, we need
to ensure that the partial evaluator works correctly. However, this needs to be
done only once. Note that once we prove the correctness of the partial evaluator,
compiled code for programs written in any language can be generated as long as
the Horn-logical semantics of the language is given.

It is easy to see that valuation predicate for an iterative structure will always
be tail-recursive. This is because the operational meaning of a looping construct
can be given by first iterating through the body of the loop once, and then
recursively re-processing the loop after the state has been appropriately changed
to reflect the new values of the loop control parameters. The valuation predicate
for expressing this operational meaning will be inherently tail recursive.

Note also that if a predicate definition is tail recursive, a folding/unfolding
based partial evaluation of the predicate will preserve its tail-recursiveness. This
allows us to replace a tail recursive call with a simple jump while producing
the final assembly code. The fact that tail-recursiveness is preserved follows
from the fact that folding/unfolding based partial evaluation can be viewed as
algebraic simplification, given the definitions of various predicates. Thus, given
a tail recursive definition, the calls in its body will be expanded in-place during
partial evaluation. Expanding a tail-recursive call will result in either the tail-
recursion being eliminated or being replaced again by its definition. Since the
original definition is tail-recursive, the unfolded definition will stay tail recursive.
(A formal proof via structural induction can be given [25] but is omitted due to
lack of space.)

3 Definite Clause Semantics

Note that in the code generated, the update and access operations are pa-
rameterized on the memory store (i.e., they take an input store and produce
an output store). Of course, real machine instructions are not parameterized on
store. This store parameter can be (syntactically) eliminated by using the DCG
notation for expressing the valuation predicates as well.

All valuation predicates take a store argument as input, modify it per the
semantics of the command under consideration and produce the modified store
as output [6]. Because the semantic rules are stated declaratively, the store ar-
gument “weaves” through the semantic sub-predicates called in the rule. This
suggests that we can express the semantic rules in the DCG notation. Thus,
we can view the semantic rules as computing the difference between the output
and the input stores. This difference reflects the effect of the command whose
semantics is being given. Expressed in the DCG notation, the store argument
is (syntactically) hidden away. For example, in the DCG notation the valuation
predicate

command(comb(C1, C2), Store, Outstore) :-
command(C1, Store, Nstore),
command(C2, Nstore, Outstore).



is written as:
command(comb(C1, C2)) --> command(C1), command(C2).

In terms of difference structures, this rules states that the difference of stores
produced by C1; C2 is the “sum” of differences of stores produced by the com-
mand C1 and C2. The rest of the semantic predicates can be rewritten in this
DCG notation in a similar way.

main(U,V,A) -->

update(x,U),

update(y,V),

update(z,1),

access(x,F),

update(w,F),

while eval 1,

access(z,A).

while eval 1 -->

(access(w,C),

{0<C} ->

access(z,D),

access(y,E),

{F is D*E},
update(z,F),

access(w,H),

{I is H-1},
update(w,I),

while eval 1

; []).

main: while:

store x U load w C

store y V skipgtz C

store z 1 jump else

load x F load z D

store w F load y E

jump while mul D E F

end: store z F

load z W load w H

sub1 H I

store w I

jump while

else:

noop

jump end

Fig. 2. Partially evaluated semantics and its assembly code

Expressed in the DCG notation, the semantic rules become more intuitively
obvious. In fact, these rules have more natural reading; they can be read as sim-
ple rewrite rules. Additionally, now we can partially evaluate this DCG w.r.t. an
input program, and obtain compiled code that has the store argument syntacti-
cally hidden. The result of partially evaluating this DCG-formatted semantics is
shown to the left in Figure 2. Notice that the store argument weaving through
the generated code shown in the original partially evaluated code is hidden away.
Notice also that the basic operations (such as comparisons, arithmetic, etc.) that
appear in the target code are placed in braces in definite clause semantics, so
that the two store arguments are not added during expansion to Prolog. The
constructs appearing within braces can be regarded as the “terminal” symbols in
this semantic evaluation, similar to terminal symbols appearing in square brack-
ets in the syntax specification. In fact, the operations enclosed within braces
are the primitive operations left in the residual target code after partial evalu-
ation. Note, however, that these braces can be eliminated by putting wrappers
around the primitive operations; these wrappers will have two redundant store



arguments that are identical, per the requirements of the DCG notation. Note
also that since the logen partial evaluator is oblivious of the DCG notation,
the final generated code was cast into the DCG notation manually.

Now that the store argument that was threading through the code has been
eliminated, the access/update instructions can be replaced by load/store instruc-
tions, tail recursive call can be replaced by a jump, etc., to yield proper assembly
code. The assembly code that results in shown to the right in figure 2. We assume
that inputs will be found in registers U and V, and the output will be placed in
register W. Note that x, y, z, w refer to the memory locations allocated for the
respective variables. Uppercase letters denote registers. The instruction load x
Y moves the value of memory location x into register Y, likewise store x Y moves
the value of register Y in memory location x (on a modern microprocessor, both
load and store will be replaced by the mov instruction); the instruction jump
label performs an unconditional jump, mul D E F multiplies the operands D
and E and puts the result in register F, sub1 A B subtracts 1 from register A
and puts the result in register B, while skipgtz C instruction realizes a condi-
tional expression (it checks if register C is greater than zero, and if so, skips the
immediately following instruction).

Note that we have claimed the semantics (e.g., the one given in section 3) to
be denotational. However, there are two problems: (i) First, we use the (p->q;r)
construct of logic programming which has a hidden cut, which means that the
semantics predicates are not even declarative. (ii) second, the semantics is not
truly compositional, because the semantics of the while command is given in
terms of the while command itself. This non-compositionality means that struc-
tural induction cannot be applied.

W.r.t. (i) note that the condition in the -> always involves a relational opera-
tor with ground arguments (e.g., Bval = true). The negation of such relational
expressions can always be computed and the clause expanded to eliminate the
cut. Thus, a clause of the form

p(..) :- (Bval = true -> q(...); r(...))

can be re-written as

p(..) :- Bval = true, q(...).

p(..) :- Bval = false, r(...).

Note that this does not adversely affect the quality of code produced via partial
evaluation.

W.r.t. (ii), as noted earlier, program properties can still be proved via struc-
tural induction on the TP operator, where P represents the Horn logical semantic
definition.

Another issue that needs to be addressed is the ease of proving a partial
evaluator correct given that a partial evaluator such as logen [14] or Mixtus [22]
are complex pieces of software. However, as already mentioned, because of the
offline approach the actual specialization phase of logen is quite straightforward
and should be much easier to prove correct. Also, because of the predictability



of the offline approach, it should also be possible to formally establish that the
output of logen corresponds to proper target code.5

Note that because partial evaluation is done until only the calls to the se-
mantic algebra operation remain, the person defining the semantics can control
the type of code generated by suitably defining the semantic algebra. Thus, for
example, one can first define the semantics of a language in terms of semantic
algebra operations that correspond to operations in an abstract machine. Ab-
stract machine code for a program can be generated by partial evaluation w.r.t.
this semantics. This code can be further refined by giving a lower level seman-
tics for abstract machine code programs. Partial evaluation w.r.t. this lower level
semantics will yield the lower level (native) code.

4 Continuation Semantics

So far we have modeled only direct semantics [23] using Horn logic. It is well
known that direct semantics cannot naturally model exception mechanisms and
goto statements of imperative programming languages. To express such con-
structs naturally, one has to resort to continuation semantics. We next show
how continuation semantics can be naturally expressed in Horn Clause logics us-
ing the DCG notation. In the definite clause continuation semantics, semantics
of constructs is given in terms of the differences of parse trees (i.e., difference
of the input parse tree and the continuation’s parse tree) [25]. Each semantic
predicate thus relates an individual construct (difference of two parse trees) to a
fragment of the store (difference of two stores). Thus, semantic rules are of the
form:

command(C1, C2, Program, S1, S2) :- ...
where the difference of C1 and C2 (say ∆C) represents the command whose
semantics is being given, and the difference of S1 and S2 represents the store
which reflects the incremental change (∆S) brought about to the store by the
command ∆C. Note that the Program parameter is needed to carry the mapping
between labels and the corresponding command. Each semantic rule thus is a
stand alone rule relating the difference of command lists, ∆C, to difference of
stores, ∆S. If we view a program as a sequence of difference of command lists
then its semantics can simply be obtained by “summing” the difference of stores
for each command. That is, if we view a program P as consisting of sequence of
commands:

P = ∆C1 + ∆C2 + . . . + ∆Cn

then its semantics S is viewed as a “sum” of the corresponding differences of
stores:

S = ∆S1 ⊕∆S2 ⊕ . . .⊕∆Sn

and the continuation semantics simply maps each ∆Ci to the corresponding ∆Si.
Note that ⊕ is a non-commutative operator, and its exact definition depends on
how the store is modeled. Additionally, continuation semantics allow for cleaner,
5 E.g., for looping constructs, the unfolding of the (tail) recursive call has to be done

only once through the recursive call to obtain proper target code.



more intuitive declarative semantics for imperative constructs such as exceptions,
catch/throw, goto, etc. [23].

Finally, note that the above continuation semantics rules can also be written
in the DCG notation causing the arguments S1 and S2 to become syntactically
hidden:

command(C1, C2, Program) --> ...

Below, we give the continuation semantics of the subset of Pascal considered
earlier after extending it with statement labels and a goto statement. Note that
the syntax trees are now represented as a list of commands. Each command is
represented in the syntax tree as a pair, whose first element is a label (possibly
null) and the second element is the command itself. Only the valuation functions
for commands are shown (those for expressions, etc., are similar to the one shown
earlier).

prog_eval([], _, _, 0) --> []

prog_eval(CommList, Val_x, Val_y, Output) -->

update(x, Val_x), update(y, Val_y),

command_eval(CommList,cont([],[]), CommList), access(z, Output).

command_eval([],[],_Program) --> [].

command_eval([],cont(CommList,Cont),Program)-->

command_eval(CommList,Cont,Program).

command_eval([Comm|CommList],Cont,Program)-->

comm_eval(Comm,CommList,Cont,NCommList,NCont,Program),

command_eval(NCommList,NCont,Program).

comm_eval([(_,abort)|_],_Comm,_Cont,[],[],_Program) --> [].

comm_eval((Label,while(B,LoopBody)),OldRest,OldCont,[],[],Program)

--> bool_while_eval(B,LoopBody,

cont([(Label,while(B,LoopBody))|OldRest],

OldCont), OldRest,OldCont,Program).

comm_eval((_,ce(B,C1,C2)),OldRest,OldCont,[],[],Program) -->

bool_eval(B,C1,cont(OldRest,OldCont),C2,cont(OldRest,OldCont),Program).

comm_eval((_,ce(B,C1)),OldRest,OldCont,[],[],Program) -->

bool_eval(B,C1,cont(OldRest,OldCont),OldRest,OldCont,Program).

comm_eval((_,jmp(ID)),_OldRest,_OldCont,JumpList,cont([],[]),Program)-->

{find_label(ID,Program,JumpList)}.

comm_eval((_,assign(id(I), E)),OldRest,OldCont,OldRest,OldCont,_Program)

--> expr(E, Val), update(I, Val).

bool_while_eval(Cond,C1,C1Cont,C2,C2Cont,Program) -->

bool_eval(Cond,C1,C1Cont,C2,C2Cont,Program).

bool_eval(greater(E1, E2),C1,C1Cont,C2,C2Cont,Program)

--> expr(E1, Eval1), expr(E2, Eval2),

({Eval1 > Eval2} -> command_eval(C1,C1Cont,Program) ;

command_eval(C2,C2Cont,Program)).

/*the code for lesser(E1,E2) and equal(E1,E2) is very similar*/



The code above is self-explanatory. Semantic predicates pass command continua-
tions as arguments. The code for find label/3 predicate is not shown. It looks
for the program segment that is a target of a goto and changes the current
continuation to that part of the code.

Consider the program shown below to the left in Figure 3. In this program
segment, control jumps from outside the loop to inside via the goto statement.
The result of partially evaluating the interpreter (after removing the definitions
of semantic algebra operations) obtained from the semantics w.r.t. this program
(containing a goto) is shown in the figure 3 to the right. Figures 4 shows another
instance of a program involving goto’s and the code generated by the logen
partial evaluator by specialization of the definite clause continuation semantics
shown above.

//source code
z = 1;
w = x;
goto label;
loop while w > 0

z = z * y ;
label: w = w - 1

endloop while;
z = 8;
z = 7.

//generated code
interpreter(A, B, C) -->

update(x, A),
update(y, B),
update(z, 1),
access(x, D),
update(w, D),
access(w, E),
{F is E-1},
update(w, F),
fix1,
access(z, C).

fix1 -->

( access(w, A),
{0<A} ->

access(z, B),
access(y, C),
{D is B*C},
update(z, D),
access(w, E),
{F is E-1},
update(w, F),
fix1

; update(z, 8),
update(z, 7)

).

Fig. 3. Example with a jump from outside to inside a while loop

Note that a Horn logical continuation semantics can be given for any imper-
ative language in such a way that its partial evaluation w.r.t. a program will
yield target code in terms of access/update operation. This follows from the fact
that programs written in imperative languages consist of a series of commands
executed under a control that is explicitly supplied by the programmer. Control
is required to be specified to a degree that the continuation of each command
can be uniquely determined. Each command (possibly) modifies the store. Con-
tinuation semantics of a command is based on modeling the change brought
about to the store by the continuation of this command. Looking at the struc-
ture of the continuation semantics shown above, one notes that programs are
represented as lists of commands. The continuation of each command may be
the (syntactically) next command or it might be some other command explicitly
specified by a control construct (such as a goto or a loop). The continuation is
modeled in the semantics explicitly, and can be explicitly set depending on the
control construct. The semantics rule for each individual command computes



//source code
z = 1;
w = x;
loop while w > 0

z = z * y ;
w = w - 1;
goto label

endloop while;
label: z = 8
z = 7.

//generated code
interpreter(A, B, C) -->

update(x, A), update(y, B),
update(z, 1),
access(x, D), update(w, D),
( access(w, E),

{0<E} ->

access(z, F), access(y, G),
{H is F*G},
update(z, H),
access(w, I),
{J is I-1},
update(w, J),
update(z, 8), update(z, 7)

; update(z, 8), update(z, 7)
),
access(z, C).

Fig. 4. Example with a jump from inside to outside a while loop

the changes made to the store as well as the new continuation. Thus, as long
as the control of an imperative language is such that the continuation of each
command can be explicitly determined, its Horn logical continuation semantics
can be written in the DCG syntax. Further, since the semantics is executable,
given a program written in the imperative language, it can be executed under
this semantics. The execution can be viewed as unfolding the top-level call, until
all goals are solved. If the definitions of the semantic algebra operations are re-
moved, then the top-level call can be simplified via unfolding (partial evaluation)
to a resolvent which only contains calls to the semantic algebra operations; this
resolvent will correspond to the target code of the program.

It should also be noted that the logen system allows users to control the
partial evaluation process via annotations. Annotations are generated by the
BTA and then can be modified manually. This feature of the logen system
gives considerable control of the partial evaluation process—and hence of the
code generation process—to the user. The interpreter has to be annotated only
once by the user, to ensure that good quality code will be generated.

5 A Case Study in SCR

We have applied our approach to a number of practical applications. These
include generating code for parallelizing compilers in a provably correct manner
[6], generating code for controllers specified in Ada [13] and for domain specific
languages [8] in a provably correct manner, and most recently generating code in
a provably correct manner for the Software Cost Reduction (SCR) framework.



The SCR (Software Cost Reduction) requirements method is a software de-
velopment methodology introduced in the 80s [9] for engineering reliable soft-
ware systems. The target domain for SCR is real-time embedded systems. SCR
has been applied to a number of practical systems, including avionics system
(the A-7 Operational flight Program), a submarine communication system, and
safety-critical components of a nuclear power plant [10].

We have developed the Horn logical continuation semantics for the complete
SCR language. This Horn logical semantics immediately provides us with an
interpreter on which the program above can be executed. Further, the interpreter
was partially evaluated and compiled code was obtained. The time taken to
obtain compile code using definite clause continuation semantics of SCR was
an order of magnitude faster than a program transformation based strategy
described in [16] that uses the APTS system [20], and more than 40 times faster
than a strategy that associates C code as attributes of parse tree nodes and
synthesizes the overall code from it [16].

6 Related Work

Considerable work has been done on manually or semi-mechanically proving
compilers correct. Most of these efforts are based on taking a specific compiler
and showing its implementation to be correct. A number of tools (e.g., a theo-
rem prover) may be used to semi-mechanize the proof. Example of such efforts
range from McCarthy’s work in 1967 [18] to more recent ones [3]. As mentioned
earlier, these approaches are either manual or semi-mechanical, requiring hu-
man intervention, and therefore not completely reliable enough for engineering
high-assurance systems. “Verifying Compilers” have also been considered as one
of the grand challenge for computing research [11], although the emphasis in
[11] is more on developing a compiler that can verify the assertions inserted in
programs (of course, such a compiler has to be proven correct first).

Considerable work has also been done on generating compilers automatically
from language semantics [23]. However, because the syntax is specified as a
(non-executable) BNF and semantics is specified using λ-calculus, the automatic
generation process is very cumbersome. The approach outlined in this paper falls
in this class, except that it uses Horn logical semantics which, we believe and
experience suggests, can be manipulated more efficiently. Also, because Horn
logical semantics has more of an operational flavor, code generation via partial
evaluation can be done quite efficiently.

Considerable work has also been done in using term rewriting systems for
transforming source code to target code. In fact, this approach has been applied
by researchers at NRL to automatically generate C code from SCR specification
using the APTS [20] program transformation system. As noted earlier, the time
taken is considerably more than in our approach. Other approaches that fall in
this category include the HATS system [27] that use tree rewriting to accomplish
transformations. Other transformation based approaches are mentioned in [16].



Recently, Pnueli et al have taken the approach of verifying a given run of the
compiler rather than a compiler itself [21]. This removes the burden of main-
taining the compiler’s correctness proof; instead each run is proved correct by
establishing a refinement relationship. However, this approach is limited to very
simple languages. As the authors themselves mention, their approach “seems to
work in all cases that the source and target programs each consist of a repeated
execution of a single loop body ..,” and as such is limited. For such simple lan-
guages, we believe that a Horn logical semantics based solution will perform
much better and will be far easier to develop. Development of the refinement
relation is also not a trivial task. For general programs and general languages,
it is unlikely that the approach will work.

Note that considerable work has been done in partially evaluating meta-
interpreters for declarative languages, in order to eliminate the interpretation
overhead (see, for example, [19, 1]). However, in this paper our goal is to generate
assembly-like target code for imperative languages.

7 Conclusions

In this paper we presented an approach based on formal semantics, Horn logic,
and partial evaluation for obtaining provably correct compiled code. We showed
that not only the syntax specification, but also the semantic specification can
be coded in the DCG notation. We also showed that continuation semantics of
an imperative language can also be coded in Horn clause logic. We applied our
approach to a real world language—the SCR language for specifying real-time
embedded system. The complete syntax and semantic specification for SCR was
developed and used for automatically generating code for SCR specifications.
Our method produces executable code considerably faster than other transfor-
mation based methods for automatically generating code for SCR specifications.
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