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Abstract

Compositional Verification is a viable way to tackle the
state explosion problem. However, the decomposition of
a system into smaller parts is not a trivial problem, and
dividing the specification into modules can be regarded
as one of the main issues that concerns a compositional
approach. This paper concentrates on the application of
compositional verification to state-based models, in order
to reduce the number of nodes assigned to memory, thus
avoiding state explosion and speeding up the verification.
Furthermore, we investigate and propose an estimation
method that improves the compositional verification pro-
cess in modular designs, such that the amount of memory
required by the process is minimised. This method has
been applied to a real-life embedded system, producing
meaningful results without the need of data abstraction.

1 Introduction

In the design of large embedded systems, the designer of-
ten faces a trade-off as to which validation technique to
use in order guarantee that the final implementation will
meet the specification. On the one hand, formal veri-
fication techniques [4] aim to mathematically prove the
correctness of a specification, but suffer from state explo-
sion. On the other, simulation [5], testing [1], and refine-
ment [2] can cope with larger specifications, but they do
not cover the entire state space. The key aspect here is
that simulation and testing are feasible for large models
because they do not attempt to validate the entire specifi-
cationat once. In other words, breaking down the spec-
ification into smaller parts, calledmodules, would make
the entire system specification formally verifiable,i.e., the
model checker will give an answer as to whether or not the
specification satisfies a temporal logic property,in a finite
time. This type of verification, known as modular or com-
positional verification, is a divide-and-conquer approach

that uses natural divisions in the specification in order to
partition the structure and, therefore, reduce the number
of states involved in the process.

Compositional verification was introduced in [8], aim-
ing to reduce the complexity of large designs validation.
Since then, the problem has been studied in several for-
malisms [11, 15, 20], but not so often applied in computer-
aided verification of real-world applications. Only in re-
cent years there has been some increasing research effort
towards developing tools and techniques to validate real-
life embedded systems by compositional verification [22].
This includes,e.g., microprocessor architectures [16, 21],
hardware protocols [23], multimedia SoC [28] and multi-
agent systems [17].

The main contribution of this paper is an estimation of
the complexity involved in the verification process when
a modular approach is taken, which can be used to de-
cidea priori which way to partition a state-based model.
The estimator introduced in this paper is relevant for the
design in terms of memory resources needed for the for-
mal verification process. To the best of our knowledge,
such estimator has not been developed in previous work.
The concepts introduced in this paper are also applied
to a real-world embedded system specification through a
control/data-flow unbiased internal design representation,
the Dual Flow Net (DFN) model [29, 30].

This work is organised as follows. Section 2 reviews
the theory behind compositional verification. In Section 3
we present a motivational example which will show the
need for an estimation method. Section 4 introduces a new
method for estimating the complexity involved in the ver-
ification process, when compositional verification is ap-
plied. In Section 5 we illustrate the applicability of the
estimation method presented through an Ethernet copro-
cessor specification. Finally, Section 6 outlines some con-
clusions and future trends of investigation.



2 Compositional Verification

It is known that a small increment in the size of the model
structureM , will result in a several-order-of-magnitude
bigger state space to be explored [14]. Indeed, the ver-
ification complexity,i.e., cost of applying formal verifi-
cation to a system description in terms of memory re-
sources, has been proved to be PSPACE-complete [18,
19]. Therefore, by decomposingM into n modules
{M1,M2, . . . ,Mn}, in such a way that the parallel com-
position of all these modulesM1 ‖ M2 · · · ‖ Mn is equiv-
alent to the original structureM , it is possible to signifi-
cantly reduce the number of states searched by the model
checker, because the complexity is reduced. However,
a model checker often uses some heuristic in order to
avoid redundancy of larger state spaces and, by exploiting
BDD’s features, also reduces the amount of BDD nodes
allocated in memory. This means that a large number of
very small modulesMi does not necessarily lead to the
most efficient way to perform model checking, since they
would not share any path in the verification process. In
fact, there is a trade-off between having a vast number
of small modules, which can have quite a substantial re-
dundancy factor, and having only a few modules that are
larger in size, which takes more memory resources due to
the exponential rate of increase in the verification com-
plexity.

Mathematically, the compositional verification of a
structureM that has been constructed by the parallel com-
position (i.e., ‖) of modulesMi , is formulated as:

M1 � ϕ1

M2 � ϕ2

· · ·
Mn � ϕn

f (ϕ1, . . . ,ϕn) =⇒ ϕ
M1 ‖ M2 · · · ‖ Mn � ϕ

which means that proving that each moduleMi ,
∀1 6 i 6 n, satisfies the temporal logic formulaϕi , and
also proving that each formulaϕi is related to the prop-
erty ϕ (through a logical functionf ), the conclusion that
the entire systemM satisfies the propertyϕ can be drawn.

A key issue in compositional verification is theassume-
guaranteeparadigm [24, 27], which bases its reasoning
in separating a system in two parts: the moduleM ′ and
the environmentM ′′. GuaranteesGi are properties ofM ′

which are verified assuming thatM ′′ satisfies some as-
sumptionsA j . By appropriately combining a set of as-
sumptionsA and a set of guaranteesG , it is possible to
infer the correctness of the entire systemM without actu-
ally building the global state-transition graph.

Let M ′ be any module of the system, andM ′′ its envi-
ronment. This is,M = M ′ ‖ M ′′. The assume-guarantee

paradigm states that:

M ′′ � A
A ‖ M ′ � G
M ′′ ‖ TG � ϕ
M � ϕ

WhereTG is the “tableau of the propertyG”, as in [20].

3 Motivational Example

Assume that a ten-stage pipeline system needs to be for-
mally verified. The property to be verified is simply that
some data put at the beginning of the pipeline will prop-
agate and eventually reach the end. The minimum unit
of functionality of the system is each stage itself, but we
will suppose that the system can only be partitioned into
three separate modules, which will be assigned to three
different hardware resources.

Partition BDD nodes
〈1,2,7〉 2706
〈1,3,6〉 2135
〈2,3,5〉 1912
〈2,4,4〉 1851
〈3,3,4〉 1830

Table 1: Sizes of BDD trees for a ten-stage pipeline

Table 1 shows that different ways of partitioning this
pipeline,i.e., grouping these pipeline stages, leads to dif-
ferent complexities in terms of BDD nodes allocated to
memory. The notation〈x,y,z〉 indicates the size of each
partition, wherex+ y+ z is the total size of of the sys-
tem. This variety of partitioning schema raises the vexed
question of how to identify which partitions would lead to
better results in compositional verification.

4 The Estimation Method

Intuitively, a four-module system which has a partition
P =〈4,4,4,4〉 is more balanced than the same system us-
ing other partitionP′ =〈1,9,4,2〉, where the elements in
the tuple indicates the number of elementary units (tran-
sitions t ∈ T) in each module. More formally, Defini-
tion 1 defines themodular unbalanceof a Kripke struc-
ture which has been partitioned under a partition scheme
P.

Definition 1 The modular unbalance of a Kripke struc-
ture M = M1 ‖ M2 · · · ‖ Mn is given by:

σ =

√
1

n−1

n

∑
i=1

(mi −m)2 (1)



wherem̄ is the statistical mean (average) of the sizes of
the modules, i.e.,m= m/n.

It is clear from (1) that the unbalance is defined as the
standard deviationof the size of each module w.r.t. the
average sizem= m/n. This can be seen as making bal-
ance analogue to volatility, since standard deviation is one
of the most common ways to assess the volatility of a dis-
crete variable. Thus,σ → 0 corresponds to a very bal-
anced system whileσ → ∞ is in accordance to an ex-
tremely unbalanced system. A system withσ = 0 will be
calledperfectly balanced, and a system with the greatest
σ possible will be calledperfectly unbalanced.

We make then the following proposition.

Conjecture 1 Among all possible partitions of a system
M , the one which minimisesσ will also minimise the ver-
ification complexity.

The intuition, again, would serve to describe the fea-
ture described in Proposition 1. Suppose a systemM ,
which has a partition schemeP, which is perfectly bal-
anced. Then, changingP into P′ implies that at least one
transitiont ∈ T has to be removed from a moduleMi and
added into other moduleM j . This will lead to a decre-
ment in the complexity verifyingMi and an increment in
the complexity verifyingM j . Since the exponential nature
of BDD’s state space, it is more likely that the improve-
ment due to the reduction ofMi is less than the worsening
caused by the expansion ofM j . Therefore, the overall in-
creasing of the verification complexity is accompanied by
an increase ofσ, and vice versa.

Partition σ BDD nodes
〈1,2,7〉 2.6247 2706
〈1,3,6〉 2.0548 2135
〈2,3,5〉 1.2472 1912
〈2,4,4〉 0.9428 1851
〈3,3,4〉 0.4714 1830

Table 2: Estimating the pipeline complexity

Coming back to the example presented in Section 3,
Table 2 show that the more balance,i.e. σ → 0, the less
number of BDD nodes allocated in memory. This leads
to an improvement of, in this case, 32% in the resources
allocated to the BDD tree, although in all cases the veri-
fication is performed over the same system with the same
properties. Therefore, this has provided an answer to the
question raised earlier and we believe that it is important
to includeσ as an estimation method to guide the parti-
tion of a system which will be further verified by compo-
sitional methods.

However, the size of each module is not the only issue
that concerns the verification complexity. The coupling
among modules is equally important for verification pur-
poses, and being able to find the properTG determines the
satisfaction of the results. Due to the internal behaviour
of the model checker, which unfolds cycles to perform
the verification, all results hitherto presented assume that
modules are set to be free of cycles. Otherwise, well bal-
anced partitions may have bigger unfolded structure than
others less balanced and, thus, more complex BDD trees.
This is illustrated in Figure 1, where the solid line indi-
cates the results shown in Table 2 while the dashed line
represents the same pipeline constructed with a cycle in
the specifications. It can be observed that, between two
partitionsP andP′, with σ < σ′, the complexity ofP will
be less than the one fromP′, only in theacycliccase.
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Figure 1: Cyclic and acyclic complexity

An automatic approach to the compositional verifica-
tion problem would search through a space of possible
modular partitions of the DFN model, in order to obtain
a the one with minimumσ. Although this approach goes
beyond the scope of this paper, we will give an insight of
the theoretical limits of our methodology.

It has been proven in [13] that the number of distinct
partitions for a modular design is:

#P(m)≈
exp

[
π
√

2m
3

]
4m
√

3
(2)

wherem= |T| is the number of transitions in the model.
However, we argue that not allPi , 16 i 6 #P(m), are
practically possible. There might be cases where the
strong dependency among some transitions and the weak
dependency among others, may bias the modularisation
towards some results. This will restrict the vast exponen-
tial approximation given in (2) to a handful of real possi-
bilities.



5 A Real-life Example

This section applies the estimation method proposed to
a real-life embedded system,i.e., the Ethernet network’s
coprocessor, in order to show that the compositional veri-
fication of such systems also benefits from the improve-
ments introduced by the method. The Ethernet copro-
cessor is a chip advocated to transmitting and receiving
data frames over a communication channel by means of
the CSMA/CD protocol, which is defined in the IEEE
802.3 standard [3]. In order to model the coprocessor,
a control/data-flow unbiased internal design representa-
tion has been used, and the formal verification process has
been carried out with the use of theCadence SMVtool [6].
The platform used was a Sparc Sun-Ultra 10 / 440 MHz
with 512 Mb RAM running Solaris 8.

5.1 The Model: Dual Flow Nets

The Dual Flow Net (DFN) model [29, 30] is an exten-
sion to the Petri net (PN) model which introduces a com-
bined control/data-flow analysis of systems. This model
utilises a set of vertices (P) to represent the state/storage
elements in the system, another set of vertices (T) to cap-
ture the control flow, and an additional set (Q), not present
in PNs, for capturing the transformational elements in
the system. A set of arcsF ⊆ (P×T)∪ (T ×P)∪ (P×
Q)∪ (Q×P)∪ (T ×Q)∪ (Q×T) and a weight function
W : F 7→ Z\∅ define the model structure, as well as a
marking function defined in the domain of the complex
numbers (µ : P 7→C/ ) characterise its behaviour. In addi-
tion, there also exist a guard functionG : T 7→ ]∪{>},
where] is a finite set of symbols used for comparison,
and an offset functionH : Q 7→Z, which complements the
functionality of the model by allowing some arithmetical
and logical functions to take place.

Since the DFN model has an enhanced structure,i.e.,
it contains an additional set (Q) which explicitly captures
data activity, this model can be used to verify embedded
systems [31]. If a model such as PN was used instead,
only the control part would have been verified. Thus,
the underlying PN that is visualised when all transforma-
tional elements are removed from a DFN model, behaves
with the same enabling and firing rule of a classical PN.
However, on each transition firing a number of operations
take place in the data domain. Further discussion on this
model, as well as a formal definition of its principles, the
motivation and some introductory examples, can be found
in [29].

5.2 An Ethernet network coprocessor

The Ethernet network coprocessor, as studied in [12]
and [26], is a highly structured protocol. This makes
it very suitable for a benchmark of real-life complexity,
mainly if compositional methods are going to be applied.

There have been a few attempts to perform formal ver-
ification of this coprocessor. For example, one of the
earliest work on the verification of the Ethernet protocol
was presented in [25]. This approach has used the SMV
tool1 to verify both the asynchronous and the synchronous
model [32] of the Ethernet. Later, another approach di-
rectly implemented in C has presented the formal verifi-
cation of some liveness properties using approximations
to cope with the state explosion [10].

The operation of the coprocessor is ruled by the exe-
cution unit,exec unit, which sends the starting memory
address to the transmit unit (composed of a frame pack-
ager xmit frame, a direct memory access (DMA) unit
dma xmit), and a serial transmitterxmitbit) and then en-
ables the DMA unit to operate straight into memory.

The dma xmit unit directly reads from the successive
memory locations in order to obtain destination address,
data length, and the actual data, which are then sent to the
xmit frame unit. There are two modes of operation in the
dma xmit unit: dmaxmit normal anddmaxmit cancel,
so that this unit normally stays in the first mode but, if a
failure occurs in the transmission toxmit frame, the DMA
unit switches to an alternative mode that sets up the envi-
ronment to restart the transmission process.

The specification presented above has been captured by
the DFN model introduced in Section 5.1. Figure 2 shows
the complete model consisting of 49 places, 36 transitions
and 12 hulls. As commented in Section 2, a model with
36 transitions would imply that there are 19,370 ways to
group these transitions into different modules. However,
by identifying threads of executions with no cycles in it
(e.g.{t7, t34, t8}), the number of practically implementable
modules is reduced from 36 to just 8, which means that
#P(m) is also dramatically reduced (to 26). This mod-
ules have been denoted by:M1,M2, . . . ,M8. As a matter
of notational convenience, the one place that precedes a
moduleMi has been labelledpi ,∀1 < i < 8, and high-
lighted in Figure 2. The importance of identifying these
places lies on the fact that any token coming into the area
of Mi , has to go throughpi . That is the basis for applying
modularisation of such DFN models.

Different alternatives for the modularisation are shown
in Table 3. The∞ symbol indicates that state explosion
has occurred and the model checker was unable to find a
solution in a reasonable amount of time. Further results

1Note the difference between the SMV tool from CMU [9] and the
Cadence SMV verification suite [6].



σ BDD nodes
5.290 ∞
5.123 ∞
4.847 ∞
4.583 ∞
3.564 2850325
3.000 1128184
2.964 852804
2.742 533619

Table 3: Balance vs. complexity

presented in this section, are based on the row which has
the lessσ.

In order to prove the correctness of the Ethernet copro-
cessor by compositional verification, 22 temporal formu-
las have been used. Table 4 shows the verification results
for each property, where the first 9 areguaranteesGi , and
the remaining 13 areassumptionsA j . It can be observed,
from the fourth column, the complexity of the verifica-
tion measured by the amount of BDD nodes allocated into
memory.

The behaviour of the model is captured through the
guarantee set of properties. For example, when atxstart
signal is sent to the DMA unit, this will request access
to the CPU (c.f.Gacc). Then, the system reads from suc-
cessive memory locations (c.f.Gs1, Gs2 andGs3), starting
from txaddress[16] (c.f.Gfrom). At this point, the Ethernet
coprocessor is ready to transmitBdata[16] to xmit frame,
but this is a 8 bit unit. So, we formulateGhigh andGlow

in order to prove that bothBdata[15..8] andBdata[7..0] are
transfered to such unit.

However, it is not sufficient to prove these nineGi . In
order to complete the proof, we need to assureliveness
and declare the order and dependences of the modules
mentioned above. By means ofA j we prove that each
module will eventually call another module (i.e., the DFN
model is live) and we guide the control flow according
to some intermediate data values placed inp44 and p45.
Therefore, the correctness of this DFN model has been
proven within 190.45 seconds –as opposed to the state
explosion suffered if we were to apply the methodology
without any modularity.

6 Conclusions

We have examined the way to break down a complex
specification in compositional verification, such that the
amount of memory resources used is reduced. For this,
we have proposed an estimation method that tackles the
modular unbalance of a structure and aims to reduce the

complexity by careful selection of the way the system is
partitioned. It should be noted that the method and con-
clusions showed in this paper are not limited to any model
in particular and can be applied to many internal design
representations that allows modular decomposition. How-
ever, the method is slightly restricted by the fact that sys-
tems with uneven communication needs (as opposed to
the the pipeline example) or systems which include cycles
in their behaviour may respond in a different way and,
therefore, be optimised by a different partitioning scheme.
Thus, although the proposed method might not be opti-
mal, it provides a good indication to efficiently partition
a structure in terms of verification time. In order to val-
idate the estimation method, it has been tested by means
of a real-life example, showing that it can be successfully
applied to models of relatively large complexity.
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