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Abstract. In this work, we develop a binding-time analysis for the
logic programming language Mercury. We introduce a precise domain
of binding-times, based on the type information available in Mercury
programs, that allows the analyser to reason with partially static data
structures. The analysis is polyvariant, and deals with the module struc-
ture and higher-order capabilities of Mercury programs.

1 Introduction

Program specialisation is a technique that transforms a program into another
program, by precomputing some of its operations. Assume we have a program
P of which the input can be divided in two parts, say s and d. If one of the
input parts, say s, is known at some point in the computation, we can specialise
P with respect to the available input s. This specialisation process comprises
performing those computations of P that depend only on s, and recording their
results in a new program, together with the code for those computations that
could not be performed (because they rely on the input part d — unknown at this
point in the computation). The result of the specialisation is a new program, P
that computes, when provided with the remaining input part d, the same result
as P does when provided with the complete input s + d. Comprising a mixture
of program evaluation and code generation, the program specialisation process
is also often referred to by the names partial evaluation, mized computation or
staged computation.

Staging the computations of a program can be useful (usually in terms of
efficiency) when different parts of a program’s input become known at different
times during the computation. The best benefit can be obtained when a single
program must be run a number of times while a part of its input remains constant
over the different runs. In this case, the program can first be specialised with
respect to the constant part of the input, while afterwards the resulting program
can be run a number of times, once for each of the remaining (different) input
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parts. In such a staged approach, the computations that depend only on the
constant input part are performed only once — during specialisation. In the non-
staged approach, all computations — including those depending on the constant
part — are performed in every run of the program.

When using program specialisation to stage the computations of a program,
the basic problem is deciding what computations can be safely performed during
the specialisation process. The driving force behind this decision is twofold.
Firstly, the specialisation process itself must terminate; that is, the specialiser
must not to get into a loop when evaluating a sequence of computations from the
program that is to be specialised. Secondly, the obtained degree of specialisation
should be “as good as possible”, meaning that a fair amount of computations
that can be performed during specialisation are effectively performed during
specialisation.

The key factor determining whether a computation can be performed during
specialisation is the fact whether enough input values are available to compute a
result. If that is the case, the specialiser can perform the computation; if not, it
should generate code to perform this computation at a later stage. Binding-time
analysis is a static analysis that, given the program and a description about the
available partial input with respect to which the program will be specialised,
computes for every statement in the program what input values will be known
when that statement is reached during specialisation. In addition, the analysis
computes — according to some control strategy — whether or not the statement
should be evaluated during specialisation.

Once the program P and its available partial input s has been analysed
by binding-time analysis, specialisation of P with respect to s boils down to
evaluating those statements in P that are annotated as such by the binding-
time analysis. This specialisation technique is called offline, the reason being that
most of the control decisions about what statements should be evaluated have
been taken by the binding-time analysis. This contrasts with the so-called online
specialisation technique in which the program to be specialised is not analysed
by any binding-time analysis, but is directly evaluated with respect to its partial
input under the supervision of a control system that decides — for every statement
under consideration — on the fly whether or not it can safely be evaluated. Both
approaches towards specialisation have their advantages and disadvantages. In
this work, we concentrate on offline specialisation and construct a binding-time
analysis for the logic programming language Mercury.

1.1 Binding-time Analysis and Logic Programming

Using binding-time analysis to control the behaviour of the specialisation has
been thoroughly investigated in a number of programming paradigms. Breaking
work on offline program specialisation of imperative languages include C-mix by
Andersen [1] and more recently Tempo [10,20] by Consel and his group. In the
context of functional language specialisation, most work focusing on binding-
time analysis and offline specialisation was originally motivated by the desire to



achieve better self-application [13,24]. Whereas initial analysis dealt with first-
order languages [24], more recently developed analyses deal with higher-order
aspects [15, 4], polymorphism [32,19] and partially static data structures [28].

In the field of logic programming, however, only little attention has been
paid to offline program specialisation. Known exceptions are LOGIMIX [33] and
LOGEN [25] that develop different approaches to offline program specialisation
for Prolog. Both cited works, however, lack an automatic binding-time analysis
and rely on the user to provide the specialiser with suitable annotations of the
program. To the best of our knowledge, the only attempt to construct an auto-
matic binding-time analysis for logic programming is [6] and our own work about
which we report in [30]. The approach of [6] is particular, in the sense that it
obtains the required annotations not by analysing the subject program directly
but rather by analysing the behaviour of an online program specialiser on the
subject program. Although conceptually interesting, the latter approach is overly
conservative and restricts the number of computations that can be performed
during specialisation. Indeed, [6] decides whether to unfold a call or not based on
the original program, not taking current annotations into account. This means
that a call can either be completely unfolded or not at all. The binding-time
analysis first described in [50] and employed in [30] is also particular in the sense
that it obtains its annotations by repeatedly applying an automatic termination
analysis. If the termination analysis identifies a call as possibly non-terminating,
that call is marked such that it will not be reduced by the specialiser. Then
the termination analysis is rerun to prove termination of the program under the
assumption that each call that is marked as non-reducible is not evaluated. The
process is repeated until termination of the (annotated) program can be proven.

Both the approach of [6] and [30] have been designed towards dealing with un-
typed and unmoded logic programming languages. The fact that most logic pro-
gramming languages are untyped makes it harder to represent the availability of
partial input in a sufficiently precise way during the analysis. More importantly,
the lack of control flow information in the program makes it very difficult to ap-
proximate the data flow in a sufficiently precise way and renders the derivation
of a binding-time analysis by ”classic” abstract interpretation techniques not
straightforward, hence the approaches of [6] and [30]. In this work, we construct
a completely automatic binding-time analysis for the recently introduced logic
programming language Mercury. Being a strongly typed and moded language,
Mercury lifts the obstacles encountered in more traditional logic programming
languages and allows to construct a “traditional” binding-time analysis along
the lines of [15,23] based on data flow analysis. However, the more involved
data- and control flow features — inherent to a logic programming language —
render the derivation of an automatic binding-time analysis a daunting and not
straightforward task.

1.2 Mercury

The design of Mercury was started in October 1993 by researchers at the Uni-
versity of Melbourne. While logic programming languages had been around for



quite some time, no one seemed to fully realise the theoretical advantages such
a language would have over more traditional, imperative languages. These ad-
vantages are widely known, and are summarised for example in [42]: a higher
level of expressivity (enabling the programmer to concentrate on what has to be
done rather than on how to do it), the availability of a useful formal semantics
(required for the — relatively — straightforward design of analysis and transfor-
mation tools), a semantics that is independent of any order of evaluation (useful
for parallelising the code), and a potential for declarative debugging [31]. While
a language like Prolog does offer some of these advantages, others are destroyed
by the impure features of the language.

The main objective of the Mercury designers was to create a logic program-
ming language that would be pure and useful for the implementation of a large
number of real-world applications. To achieve this goal, the main design objec-
tives of Mercury can be summarised as follows [42]: Support for the creation of
reliable programs. This involves a language that allows the compiler to detect
some classes of bugs. Support for programming in teams. Large software sys-
tems are usually build by a number of programmers. The language must provide
good support for creating a single application from multiple parts that are build
(sometimes in isolation) by different programmers. These two objectives form a
major departure from Prolog which, at the time, had basically no support for
programming in the large, and which does not allow a lot of type-, mode- and
determinism errors to be caught at compile-time. Another important objective
was support for the creation of efficient programs. The compiler had to pro-
duce code whose performance is competitive with that produced by compilers
of other languages. To meet these design objectives, Mercury was fitted with a
strong system of type-, mode- and determinism declarations. Besides providing
the programmer with some valuable documentation, these declarations enable
the compiler to check the internal consistency of the program and to spot a
substantial number of bugs that would go unnoticed in declaration free code
submitted to a Prolog compiler. Also, the availability of declarations allows to
adapt the evaluation order of the body atoms in a predicate and provides as
such the basis for an efficient execution mechanism of the language [11, 41, 43].
Mercury is equipped with a modern module system that enables to hide some
data definitions and to encapsulate both data and code, and provides as such
support for programming-in-the-large activities.

1.3 Structure of the paper

The remainder of this paper is organised as follows. In the following section, we
introduce a domain of binding-times that is based on the type information avail-
able in Mercury programs. Next, in Section 3, we introduce a 2-phase binding-
time analysis for a first-order subset of Mercury. The first part of the analysis
performs a symbolic data flow analysis that — being call-independent — can be
performed for each module in isolation, bottom-up over the module hierarchy.
The second phase of the analysis, which computes the actual annotations, is
call-dependent by nature and relies on the result of the symbolic analysis for all



modules involved. In Section 4, we lift the first-order restriction and enhance the
analysis such that it computes and propagates closure information throughout
the program that is being analysed. In Section 5, we work through an example
and discuss to what extent our method is also applicable to typed Prolog pro-
grams. We conclude this paper in Section 6 with a discussion of our binding-time
analysis and its relation with existing work in the literature.

2 A Domain of Binding-times

Binding-time analysis can be seen as an application of abstract interpretation
over a domain of binding-times. A binding-time abstracts a value by specifying
at what time during a 2-stage computation! the value becomes known. In their
most basic form, the binding-time of a value is either static or dynamic, denoting
a value that is known early, during specialisation, or late, during evaluation of
the residual program, respectively.

It is recognised [23] that for a logic programming language, approximating
values by either static or dynamic is too coarse grained in general. Indeed, most
logic programs use a lot of structured data, where data values are represented
by structured terms. Consequently, the input to the specialiser usually consists
of a partially instantiated term: a term that is less instantiated than it would
be at run-time. Approximating a partially instantiated term by dynamic usually
results in too much information loss, possibly resulting in missed specialisation
opportunities. Therefore, we use the structural information from the type system
of Mercury to represent more detailed binding-times, capable of distinguishing
between the computation stages in which parts of a value (according to that
value’s type) become known.

In what follows, we formally define the notions of type, type definition, type
trees and type graphs, which we wil use later on as the basis of our abstract
domain. Our formalisation is mainly based on [47,48] and [46], but similar no-
tions and definitions can be found in related work on program analysis involving
types, like e.g. [39,22,45,38,37]. Mercury’s type system is based on a polymor-
phic many-sorted logic, and corresponds to the Mycroft-O‘Keefe type system
[34]. Basically, the types are discriminated union types and support parametric
polymorphism: a type definition can be parametrised with some type variables,
as the following example in Mercury syntax shows.

Example 1. :- type list(T) ---> [1 ; [T | list(T)].

The above defines a polymorphic type 1ist (T): it defines values of this type to
be terms that are either [1 (the empty list) or of the form [A|B] where A is a
value of type T and B is a value of type 1ist(T).

Formally, if we denote with X7 the set of type constructors and with V-
the set of type variables of a language L, the set of types associated to L is

! Generalisations exist in which computations are staged over more than 2 stages
(see e.g. [14]). In this work, we focus on a traditional 2-stage process, dividing the
computations in a program over specialisation-time versus run-time.



represented by 7 (X7, Vr); that is the set of terms that can be constructed from
Y7 and V. A type containing variables is said to be polymorphic, otherwise it
is a monomorphic type. A type substitution is a substitution from type variables
to types. The application of a type substitution to a polymorphic type results
in a new type, which is an instance of the original type.

As usual, the set of program values is denoted by 7 (V, X); that is the set of
terms that can be constructed from a set X' of function symbols and a set V of
program variables.

The relation between a type and the values (terms) that constitute the type
is made explicit by a type definition that consists of a number of type rules,
one for every type constructor. Example 1 shows the type rule associated to the
list/1 type constructor. Formally, a type rule is defined as follows:

Definition 1 (type rule). The type rule associated to a type constructor h/n €
X1 is a definition of the form

WMT) = f1(T1); -5 fe(Th)-

where T is a sequence of n type variables from Vr and for 1 <i <k, fi/m € X
with T; a sequence of m types from T (X7,Vr) and all of the type variables
occurring in the right hand side occur in the left hand side as well. The function
symbols {f1,..., fx} are said to be associated with the type constructor h. A
finite set of type rules is called a type definition.

Given a type substitution, we define the notion of an instance of a type rule
in a straightforward way. In theory, every type (constructor) can be defined by a
type rule as above. In practice, however, it is useful to have some types builtin in
the system. For Mercury, the types int, float, char, string are builtin types
whose denotation is predefined and is the set of integers, floating point numbers,
characters and strings respectively. A type is called atomic if it is defined by a
set of zero-arity function symbols {f1,..., fr}.

Mercury is a statically typed language, in which the (possibly polymorphic)
type of every term occurring in the program text is known at compile-time. In
what follows, we use the type definition to construct, for every type occurring
in the program, a finite description of the structure that values belonging to the
denotation of a particular type can take. The relevance of such a description is
in the fact that it can be used to abstract the values belonging to the denotation
of the type according to their structure. This allows the construction of a precise
abstract domain for program analysis, in particular binding-time analysis.

To extract a structural description of a type from a type definition, we intro-
duce the notion of a type-path being a sequence of functor/argument position
pairs that is meant to denote a path through the type definition from a type
to an occurrence of one of its subtypes. In fact, a type itself can be represented
as a (possibly infinite) set of such paths, one for every path from the type that
is being defined to some subtype occurring at a particular position within some
term belonging to the denotation of that type. More formally, we denote the
set of all such sequences over X' x N by TPath. The empty sequence is denoted



by (), and given 6,y € TPath, we denote with .y the sequence obtained by
concatenating v to §. A type tree for a particular type can then be defined as
follows:

Definition 2 (type tree). Given a type 7 € T(X7,Vr), the type tree of T,
denoted by L., is a set of sequences from TPath and is recursively defined as:

-(eLl; B

—if T =h(T)0 and h(T) — f1(T1);...; [x(Tk) is a type rule then {(fi,j)).0 €
L where (i) i€ {1...k}, (i) fi has arity m in X, (i) j € {1...m}, (iv)
i, denotes the j-th type in T, and (v) § € ,C(.,-L,J_)g.

Note that the type tree of an atomic type is {({)} as a term belonging to an
atomic type does not have any subterms. Likewise, also the type tree of a type
variable T is defined as L7 = {()}.

Ezample 2. Reconsider the type list(T) from Example 1. As L7 = {()}, the type
tree of list(T') is the infinite set of type paths

()
([, 1))
(([0,2))
([0, 2), (11, 1))
Luseery = § ((l]:2), ([1],2))
(([1:2), (11],2), ({11, 1))
(CI17,2), ([, 2), ([11,2))
((111,2), (1,2), (111, 2), (11}, 1))

The general idea now is to define, for any type 7, a finite approximation of L,
that provides a good characterisation of the structure of terms of type 7. First
we introduce the following notation that formally defines the (sub)type that is
identified by a type-path within another type.

Definition 3 (type selected by type-path). Let 7 = h(T)0 be a type and &
a path in L. If § = () then 70 = 7. Otherwise, § has the form ((f,1))., the type
rule for h(T') has in the right-hand side an alternative of the form f(7i,,..., 7))
v

and 70 =717 .
Ji

Note that a type path § € £, can also be used to identify a particular subterm
in a term ¢ : 7, if it exists. Indeed, if 6 € TPath is of the form § = ((f,)).y and
t= f(t1,...,t,) we define t° = t].

Ezample 3. If 7 = list(T) we have for example that
0 = list(T),T<(m’1)> = T and 7120 — A(11:2),([1,2)) — list(T).
Similarily for a term ¢t = [1, 2] we have for example that

£ = [1,2], £ {00D) = 1 and 2L — o



In what follows, we will use the notion of a type-graph as a finite approx-
imation of a possibly infinite type-tree. Therefore, we introduce the following
equivalence relation on the paths in a type tree £,. We define = (in £,) as the
least transitive relation such that for any §,a € L,: if § = a.y and 7° = 7
then o = §. Informally, two type paths in a type tree are equivalent if either
one of the paths is an extension of the other while both identify the same type,
or the paths share a common initial subpath of the same type as both paths in
L. In what follows, we restrict our attention to (possibly polymorphic) types
that are not defined in terms of a strict instance of itself. That is, we assume for
any type 7 and € L, that there doesn’t exist a type substitution 6 such that
7% = 76. This is a natural condition and is related to the polymorphism disci-
pline of definitional genericity [27]. For any such type 7, the equivalence relation
= partitions the (possibly infinite set) £, into a finite number of equivalence
classes. For any § € L,, the equivalence class of ¢ is defined as

0] = {7 € Lr | 5=~}

The least element of an equivalence class [d] exists and is defined as follows.

[0] = « € [0] such that V3 € [0] : § = a.y for some v € TPath

Next, we define, for a type 7, its type graph as the finite set of minimal elements
of the equivalence classes of L :

Definition 4 (type-graph). For a type 7 € T(X71,Vr), we denote 7’s type
graph by LZ which is defined as

£z = (]| s e L.},

A type graph LT provides a finite approximation of the structure of terms of
type 7: every path in £ abstracts a number of subterms of the term according
to their type and position in the term. For the list(T) type from above, L3, T =
{0, (([|],1)}}. The path () represents all subterms of type list(T") in a term of
type list(T), whereas {(([|],1)) represents all subterms of type T occurring in
the first argument position of a functor [|]. In other words, () can be seen as
identifying the skeleton of the list, whereas (([|], 1)) as identifying the elements
of the list. Note that as our notions of type-tree and type-graph describe the
possible positions of subterms in terms of a particular type, they do not contain
the zero-arity functors that possibly belong to the definition of the type. As such,
our notions differ from more classic definions of type-trees and type-graphs like
e.g. [22] or [39]. Also note that due to the particular definition of =, two subterms
of a same type are not necessarily abstracted by the same node in £=. This is
the case when £, contains two type paths identifying the same type without
them being equivalent, as in the next example.

Ezample 4. Consider the type pair(T) defined as

pair(T) — (T —1T).



A term of the type pair(T) is a term (A — B) where A and B are terms of type
T. For 7 = pair(T),

typetree, = L =< ((—

-

Although ((—),1) and ((—),2) identify subterms of the same type T, they are
not equivalent according to the definition of equivalence.

The ability to distinguish between two occurrences of the same type in LT
allows a characterisation of terms of type 7 with a finer granularity than with
type based analyses [51,7,26]. This is illustrated with Example 4. A type based
analysis places the two components of a pair in the same equivalence class as
((=),1) and ((—),2) select nodes of the same type. We do not and can calculate
different binding times for them.

Now, one can obtain an abstract characterisation of terms of type 7, based
on the structure of the term (or at least the type it belongs to), by associating
an abstract value to each of the paths in £Z. For binding-time analysis, we are
interested in the time a (part of a) value becomes known in the computation
process. We use the abstract values B = {static, dynamic}. static denotes that
the binding certainly occurs at specialisation time; dynamic that it is not known
when (and in case of logic programs “if”) the binding occurs. A binding-time
associates a value from B to each of the paths in a type graph.

Definition 5 (binding-time). A binding-time for a type t € T (X7, Vr) is a
function
B:LF — B

such that Y6 € dom(B) holds that 5(8) = dynamic implies that 5(8') = dynamic
for all &' € dom(B) with &' = 6.y for some v € TPath. The set of all binding-
times (independent of the type) is denoted by BT .

The relation between terms and the binding-times that approximate them is
given by the following abstraction function.

Definition 6 (binding-time abstraction). The binding-time abstraction is
a function o : T(X,V) — BT and is defined as follows:

0 € LZ and v = dynamic if 30 and a subterm 5 in t0
alt:7) =< (8,v)] such that 9" is a variable and § = &'
v = static otherwise

If a term ¢ : T contains a subterm ¢° that is a variable, then the binding-time
abstraction associates the value dynamic to the path in £Z that identifies this
subterm and to all its extensions in £Z.



Ezample 5. Given the following terms of type list(T') as defined in Example 1,
their binding-time abstraction is:

a([]) = {((), static), ((([[], 1)), static)}
a([X1, Xo] = {((), static), ({([|], 1)), dynamic)}
a(X) = {(Q), dynamic), ({([], 1)), dynamic)}
a([X[Y]) = {((), dynamic), ({([[],1)), dynamic)}

Since the term [] does not contain any variable, it is abstracted by a binding-
time specifying that the list’s skeleton as well as its elements are static. A term
[X1, X5] is approximated by a binding-time specifying that the list’s skeleton is
static, but its elements are dynamic. A variable is abstracted by a binding-time
specifying that the list’s skeleton as well as its elements are dynamic. Also a term
[X|Y] is approximated by a binding-time stating that its list skeleton as well as
its elements are dynamic due to the presence of the variable subterm Y : list(T).

The following example shows why, if the value dynamic is associated to a path
¢ in a binding-time for a type 7, dynamic is also associated to all extensions of
0in LZ.

Ezxample 6. Consider a type definition for a tree of integers:
inttree ---> nil ; t(int, inttree, inttree).

The type graph of 7 = inttree, L= contains only two paths: () denoting the tree’s
skeleton, and (t,1) denoting the integer elements in the tree. We have

a(t(0, X, t(1, nil, nil))) = {({), dynamic), ({t, 1), dynamic)}.

Although all subterms of type int in the term ¢(0, X, t(1, nil, nil)) are non-variable
terms, we cannot abstract them to static. Indeed, the variable X in the term,
being of type inttree, possibly represents some unknown integer elements.

To make our approximations suitable for a binding-time analysis, we define a
partial order relation on B7:

Definition 7 (covers). Let 3 and 3 € BT such that dom(3) C dom(3') or
dom(B') C dom(B). We say that 8 covers 3, denoted by B = 5 if and only if
B'(0) = dynamic — [(§) = dynamic holds for all § € dom(B) Ndom(F’).

If a binding-time (§ covers another binding-time ', then § is “at least as
dynamic” as 3’. Note that the relationship between dom(3) and dom(3’) im-
plies that the covers relation is only defined between two binding-times that are
derived from types 7 and 7’ such that either 7 is an instance of 7/ or 7/ is an
instance of 7.

Example 7. Recall the binding-times obtained by abstracting the terms in Ex-
ample 5. We have that

a(X) = o([X1, Xa]) = a([])



In what follows, we extend the notion of the > relation to include the elements
{T, L} such that T = 8 and 8 = L for all 3 € BT. If we denote with BT ™
the set BTt = BT U{T, L}, (BT*,>) forms a complete lattice. Wherever
appropriate, we use 1. and T to denote, for a particular type, a binding-time in
which all paths are mapped to static, respectively a binding-time in which all
paths are mapped to dynamic. Occasionally we will also call such binding-times
completely static and completely dynamic, respectively.

We conclude this section by introducing some more notation. First, if §
denotes a binding-time for a type 7 and § € dom(f3), then 3° denotes the binding-
time for a type 70 that is obtained as follows:

B ={(v. BB e L5}

In other words, if 3 = a(t) then $° = a(t°). Finally, let 7,71,...,7, be types
and f € X such that f(¢1 : 71,...,tn : 7») is a term in the denotation of 7. If
b1, ..., Bn are binding-times for the types 71, . .., 7, we denote with (81, ..., 0n)

the least dynamic binding-time for type 7 such that g5 = 5, for all i.

3 A Modular Binding-time Analysis for Mercury

In what follows, we develop a polyvariant binding-time analysis. The final output
of the analysis is an annotated program in which each of the original procedures
may occur in several annotated versions, depending on the binding-times of the
(input) arguments with respect to which the procedure was called. Each such
version contains the binding-times of the local variables and output arguments
as well as instructions stating for each subgoal of the procedure’s body whether
or not it should be evaluated during specialisation. Correctness of the analysis
ensures that if a particular call p(ti,...,t,) occurs during specialisation, the
analysis has created a version of the called procedure that is annotated with re-
spect to the particular call’s binding-time abstraction p(a(t1),. .., a(t,)). Before
we define the actual analysis, we introduce Mercury’s module system and define
some necessary machinery to base the analysis upon.

3.1 Mercury’s module system

A Mercury program is defined as a set of Mercury modules. The basic mod-
ule system of Mercury is simple. A module consists of an interface part and
an implementation part. The interface part contains those type definitions and
procedure declarations that the module provides (or ezports) towards other mod-
ules. In other words, the types and procedures declared in the interface part of
a module are visible and can be used (or imported) by other modules. Apart
from the implementation of the procedures that are declared in the module’s
interface, its implementation part possibly contains additional type definitions
and the declaration and implementation of additional procedures. These types
and procedures are only visible in the implementation part of this module, and
can not be used by other modules.



Note that the way in which the modules import each other impose a hier-
archy on the modules that constitute a program.? Following the terminology of
[36], we use the notation imports(M, M') to indicate that the module M imports
the interface of M’ and imported(M) to denote the set of modules that are im-
ported by M, that is: imported(M) = {M’ | imports(M,M’)}. Figure 1 shows
an example of a module hierarchy in Mercury in which we graphically represent
a module by a box, and denote imports(M, M’) by an arrow from M towards
M'. In the example, we have that imported(M,) = {Ms, M3, M5}. Note that in

M3

N

M, M3

DNV

My Mg

Fig. 1. A sample module hierarchy.

Mercury, the imports relation is not transitive; when a module M imports the
interface of a module M’, it becomes dependent on the interfaces imported by
M’ (and those imported therein) but it does not import these itself. The mod-
ule system described above is to some extent a simplification of Mercury’s real
module system, in which modules can be constructed from submodules. While
submodules do provide extra means to the programmer to control encapsulation
and visibility of declarations, they do not pose additional conceptual difficulties
and we do not consider them in the remainder of this work.

In this work, we aim at developing a binding-time analysis that is as modular
as possible. Ultimately, a modular analysis deals with each module of a program
in isolation. We will discuss throughout the text to what extent our binding-time
analysis is modular in this respect.

3.2 Mercury programs for analysis

Mercury is an expressive language, in which programs can be composed of pred-
icates and functions, one can use DCG notation, etc. However, if we consider
only programs that are type correct and well-moded — which is natural, since the

2 While in Mercury modules may depend on each other in a circular way, we restrict our
attention to programs in which no circular dependencies exist between the modules.
We discuss how one could deal with circular dependencies in Section 6.



compiler should reject programs that are not [43] — such a program can be trans-
lated into superhomogeneous form [43]. Translation to superhomogeneous form
involves a number of analysis and transformation steps. These include trans-
lating an n-ary function definition into an n + 1 ary predicate definition [44],
making the implicit arguments in DCG-predicate definitions and calls explicit,
and copying and renaming predicate definitions and calls such that every re-
maining predicate definition has a single mode declaration associated with it
[43] that specifies for each argument whether it is an input or output argument.
As such, every predicate definition is transformed to a set of so-called procedure
definitions, with one procedure for every mode in which the original predicate is
used.

For our analysis purposes, we assume that a Mercury program is given in
superhomogeneous form. This does not involve any loss of generality, as the
transformation from a plain Mercury program into superhomogeneous form is
completely defined and automated [43]. Formally, the syntax of Mercury pro-
grams in superhomogeneous form can be defined as follows. We use the symbol
II to refer to the set of procedure symbols underlying the language associated
to the program. As such, we consider two procedures that are derived from the
same predicate as having different procedure symbols.

Definition 8 (superhomogeneous form).

Proc :=p(X): —-G.
Goal = Atom |not(GQ) | (G1, Ga)| (G1; G2) | if Gy then Go else G
Atom =X =Y | X ==Y | X = f(Y) | X <« fY) | p(X)

where p/n € II, X and Y are distinct variables and X is a sequence of n
distinct variables of V, f/m € X, Y a sequence of m distinct variables of V, and

G, G1, G27 G3 € Goal.

The definition of a procedure p in superhomogeneous form consists of a single
clause. The sequence of arguments in the head of the clause, denoted by Args(p),
are distinct variables, explicit unifications are created for these variables in the
body goal — denoted by Body(p) — and complex unifications are broken down
in several simpler ones. The arguments of a procedure p are divided in a set of
input arguments, denoted by in(p) and a set of output arguments denoted by
out(p). A goal is either an atom or a number of goals connected by conjunction,
disjunction, if then else or not. An atom is either a unification or a procedure
call. Note that, as an effect of mode analysis [43], unifications are categorised as
follows:

— An assignment of the form X := Y. For such a unification, Y is input,
whereas X is output.

— A test of the form X ==Y . Both X and Y are input to the unification and
of atomic type.

— A deconstruction of the form X = f(Y). In this case, X is input to the
unification whereas Y is a sequence of output variables.



— A construction of the form X <« F(Y). In this case X is output from the
unification whereas Y is a sequence of input variables.

During the translation into superhomogeneous form, unifications between values
of a complex data type may be transformed into a call to a newly generated
procedure that (possibly recursively) performs the unification. For any goal G, we
denote with in(G) and out(G) the set of its input, respectively output variables®

Ezxample 8. Consider the classical definition of the append/3 predicate, both in
normal syntax and in superhomogeneous form for the mode append (in,in,out)
as depicted in Fig. 2.

append/3 ‘ append/3 in superhomogeneous form
append ([1,Y,Y). append (X,Y,Z) : -
append([E|Es],Y, [EIR]) :- =0, z.=y ;
append (Xs,Y,R). X=[E|Es], append(Es, Y, R), Z<[EIR]).

Fig. 2. The append/3 predicate and append(in,in,out) in superhomogeneous form.

According to Definition 8, conjunctions and disjunctions are considered binary
constructs. This differs from their representation inside the Melbourne compiler
[40], where conjunctions and disjunctions are represented in flattened form. Our
syntactic definition however facilitates the conceptual handling of these con-
structs during analysis.

For analysis purposes, we assume that every subgoal of a procedure body
is identified by a unique program point, the set of all such program points is
denoted by Pp. If we are dealing with a particular procedure, we denote with 7
the program point associated with the procedure’s head atom, and with 7, the
program point associated to its body goal. The set of program points identifying
the subgoals of a goal G is denoted by Pps(G), this set includes the program
point identifying G itself. If the particular program point identifying a goal G in
a procedure’s body is important, we subscribe the goal with its program point, as
in G, or explicitly state that Pp(G) = n. An important use of program points is
to identify those atoms in the body of a procedure in which a particular variable
becomes initialised or, said otherwise, those atoms of which the variable is an
output variable. This information is computed by mode analysis, and we assume
the availability of a function

init : V — o(Pp)

3 Although Mercury has some support for more involved modes — other than input
versus output — that are necessary to support partially instantiated data structures
at run-time, release 0.9 of the Mercury implementation [40] does not fully support
these.



with the intended meaning that, for a variable V' used in some procedure, if
init(V) = {m1,...,nn}, the variable V is an output variable of the atoms iden-
tified by 71,...,m,. Note that the function init is implicitly associated with
a particular procedure, which we do not mention explicitly. When we use the
function init, it will be clear from the context to what particular procedure it
is associated.

Ezxample 9. Let us recall the definition of append/3 in superhomogeneous form
for the mode append(in,in,out), with the atoms and structured goals occur-
ring in the procedure’s definition explicitly identified by subscribing them with
their respective program point as in Figure 3. We denote the program points

append(X,Y,Z)o: -
(X=01, Z:=Y2)¢, ;
(X=[E|Es]3, (append(Es, Y, R)4, Z<I[EIR]5)cy)eq)d, -

Fig. 3. append/3 with explicit program points.

associated to a structured goal by subscripting the goal with the characters ‘c’
for conjunction and ‘d’ for disjunction, accompanied by a natural number. From
mode analysis, it follows that

init(X) = {0} init(E)= {3} init(R)= {4}
init(Y) = {0} init(Es) = {3} init(Z) = {2,5}

Or, put otherwise, X and Y (being input arguments) are initialised in the proce-
dure’s head, F and E's are initialised in the deconstruction identified by program
point 3, R is initialised in the recursive call whereas Z is initialised either by
the assignment Z := Y (program point 2) or by the construction Z < [E|R)]
(program point 5).

3.3 A modular analysis

In order to make the binding-time analysis as modular as possible, we devise
an analysis that works in two phases. In a first phase, we represent binding-
times and the relations that exist between them according the data flow in the
program in a symbolic way. Doing so enables us to perform a large part of the
data-flow analysis independent of a particular call pattern. It is only in the second
phase that call patterns in the form of the binding-times of a procedure’s input
arguments are used — in combination with the symbolic information derived
from the first phase— for computing the annotations and the actual binding-
times of the procedure’s other variables. The first phase of the analysis hence
is call independent whereas the second phase is call dependent. Obviously, the
call independent phase of the analysis does not need to be repeated in case a



procedure is called with a different binding-time characterisation of its arguments
and consequently, the result of a module’s call independent analysis can be used
regardless of the context the module is used in, and must not be repeated when
the module is used in different programs. Since the domain of binding-times is
condensing [21], the call-independent analysis preserves the precision that would
be obtained by a call-dependent analysis.

To symbolically represent the binding-time of a variable at a particular pro-
gram point, we introduce the concept of a binding-time variable, the set of which
is denoted by V7. We will denote elements of this set as variables subscribed
by a program point. If V' is a variable occurring in a goal G, and 7 is a pro-
gram point identifying an atom in G, then the binding-time variable V;, € V1
symbolically represents the binding-time of V' at program point 7. Given a type
path & € TPath, we use the notation Vn‘s to denote the subvalue identified by §
in the binding-time of V at program point n*.

Ezxample 10. Given the definition of append/3 from Example 9, the binding-time
variables Xq, Z3, Z5 and Zj denote, respectively the binding-time of X at the
program point 0 and the binding-times of Z at the program points 2,5 and 0.

Apart from the binding-time variables that correspond with program vari-
ables, we introduce a number of extra binding-time variables that we use to sym-
bolically represent some control information that will be collected (and needed)
during the binding-time analysis. For each program point 7, we introduce two
such variables, R, and C,;, that range over the set of binding-times {_L, T }. Their
intended meaning is as follows:

— R, = L: Either the goal identified by 7 reduces to true or fail during spe-
cialisation, or its residual code is guaranteed not to fail at run-time.

— Ry, = T: No claims are made about the outcome of the reduction at special-
isation time.

— C,, = T: The goal identified by 7 is under dynamic control in the procedure’s
body. We say that an atom is under dynamic control if the fact whether it
will be evaluated depends on the success or failure of another goal, say G,
while success or failure of that goal is undecided at specialisation-time (that
is RU' = T)

— €, = L: The goal identified by 7 is not under dynamic control in the proce-
dure’s body.

Note that these binding-time variables — which we will refer to as control
variables — are boolean in the sense that they will only assume a value that is
either 1 or T. During the binding-time analysis, these control variables collect
the necessary information to implement the control strategy of the specialiser.
Our analysis models a rather conservative specialisation strategy, in the sense
that during specialisation, no atoms are reduced that are under dynamic control.

4 Hence Vn<> and V,, denote the same binding-time value and we will use the latter in
examples.



The idea behind this strategy is that in this way only atoms are reduced that
would also be evaluated if the program is executed with a complete input that
extends the static input for which the program is specialised.

Indeed, their being evaluated depends only on goals that are — during speciali-
sation— sufficiently reduced in order to decide success or failure. Hence, no atoms
are “speculatively” reduced, guaranteeing termination of the reduction process
(constituting local termination) under the assumption that the equivalent single
stage computation terminates.

Ezxample 11. Consider the following code fragment
if X = []1 then p(X) else q(X)

Both atoms p(X) and ¢(X) are under dynamic control if X’s binding-time
does not allow the specialiser to decide whether or not the test X = [| will
succeed during specialisation. Indeed, the specialiser has no means of knowing
which of the branches will be taken during the second stage of the computation.®

In general, the binding-time of a program variable can depend on the binding-
times of other program variables (according to the data flow) and on the value
of the appropriate control variables (according to the control strategy). The
values of the control variables that are associated to a goal in turn depend on
the binding-times of that goal’s input variables. Symbolically, we can represent
these dependencies by a number of constraints between the involved binding-
time variables. In general:

Definition 9 (binding-time constraint). A binding-time constraint is a con-
straint of the following form:

() Y 1
Vi= X VI=T

5w x Vv 0 wx
VP st X VR T

where V,), X,y € Va7 and 6,y € TPath. The set of all binding-time constraints
is denoted by BTC.

A constraint of the form Vn‘s > X;’, denotes that the binding-time represented

by Vj must be at least as dynamic as (or cover) the binding-time represented
by X g,. Note that such a constraint requires the types of V" and X, denoted by

Ty and Tx to be such that T{S, and 7y are instances of one another, in order

® Note that it can happen that the analysis cannot predict the outcome of the test while
execution of the program with full input always selects the same branch, e.g. ¢(X).
Although the call to p(X) is residualised, the code of the procedure p/1 is specialised.
All reductions performed while specialising p/1 are then in fact speculative (and
the specialisation could in extreme cases be non-terminating while execution of the
program to be specialised with full input is always terminating).



for their binding-times to be comparable. The intended meaning of a constraint
of the form V,;; * X;;/ is that the binding-time represented by V,;; is at least
as dynamic as the binding-time value associated to the path identified by -~y
in the binding-time represented by Xg,. Note that such a constraint does not
require T{S, and 7y to be of comparable types; it simply expresses that if the node
identified by « in the binding-time represented by X, is dynamic, so must be
the node identified by ¢ in V;, and by definition of a binding-time, so must be all
its descendant nodes. Remark that we also allow constraints in which the right-
hand side is the constant T. Although we occasionally also consider constraints
of which the right-hand side is the constant 1, we do not explicitly mention
these in the definition, as these constraints are superfluous: for any X, € Vg
and 6 € TPath, it holds by definition that Xg - 1.

Ezample 12. Reconsider the definition of append/3 in Fig. 3. Some examples
of binding-time constraints between binding-time variables from append/3 and
their intended meaning are:

The binding-time associated to Z at program point 2

Zs = Yy is at least as dynamic as the binding-time associated

to Y at program point 0.

The binding-time associated to E at program point 3

Es = Xé[H’D is at least as dynamic as the subvalue denoted by (][], 1)

of the binding-time associated to X at program point 0.

The subvalue denoted by ([|], 1) in the binding-time of

Zém’n > F3 | Z at program point 5 is at least as dynamic as the
binding-time associated to E at program point 3.

If Xo represents a binding-time in which the

root node () is bound to dynamic then

one cannot assume that the atom at program point 3 reduces to
true, fail or code that is guaranteed to succeed.

The atom at program point 4 must be under dynamic control
Cy = Rs3 if the specialisation of the atom at program point 3 possibly
results in residual code that might fail at run-time.

A set of binding-time constraints is called a binding-time constraint system
(or simply a constraint system). Given a constraint system C, we define vars(C)
as the set of all binding-time variables X, that occur in some constraint C' € C.
The link between a binding-time constraint system and the actual binding-times
it represents is formalised as a (minimal) solution to the constraint system.

Definition 10 (solution). A solution to a binding-time constraint system C is
a substitution o : Vr — BT mapping binding-time variables to binding-times
with dom(o) = vars(C) such that

— for every constraint Vﬁs =T el and Vn‘s =* T € C it holds that U(Vn)‘s =T

— for every constraint V;{ = X7, € C it holds that o(V;))° = o(X,)?

— for every constraint V;; =* X, € C it holds that o(X,)(y) = dynamic =
o(V)P =T



Given two solutions o and o' to C, we define that o J o’ if for all V;, € dom(c’)
it holds that V,, € dom(o) and o(V,) = o'(V})). A solution o is a least solution
for C if for every solution o’ for C it holds that o’/ J 0.

Remember, a solution must also satisfy the condition of Definition 5, i.e. if
0(X,)Y = dynamic then also o(X,;)"* = dynamic for any extension o. We will

sometimes use a constraint of the form V; = X;’,, L Yn'Z:/ (analogously for =*)
as shorthand notation for the set of constraints {V,? = X 77,,, Vo= Yn'ijl}. Indeed,
from Definition 10 it can be seen that in any solution o satisfying the latter two
constraints, it holds that o(V},)° = O'(X;]Y,l) U U(Yn'ﬁ,”), where L denotes the least
upper bound on (BT, >).

Ezxample 13. Consider the following binding-time constraint system and its least
solution. For sake of simplicity, we assume that all binding-time variables are
boolean and range over the set {dynamic, static}.

Binding-time constraint system‘ Least solution
Xy =T
R,, = X,, { (X, , dynamic) (X, , static) }
Y, = X, (Ry,, static) (Y, dynamic)
YTI4 = RTI.}

In what follows, we formulate our analysis as a call-independent abstract
semantics. We define the abstract “meaning” of a goal, be it an atom or a
structured goal, as a set of binding-time constraints (description domain o(B7C))
that reflect the data flow between the input- and output arguments of the goal.
An essential operator for the symbolic data flow analysis is a projection operator
that basically rewrites a set of constraints such that every constraint expresses
(or constrains) the binding-time of a local variable within a procedure in function
of the binding-time(s) of that procedure’s input arguments. Such a constraint is
said to be in normal form:

Definition 11 (normal form). A binding-time constraint is in normal form
with respect to a procedure p € Proc if it is either of the form

- Vi=T
- V775 = Xy, with X € in(p) and ny the program point associated to p’s head
atom.

and analogously for constraints of this form using =*.

Ezample 14. Reconsider the binding-time constraints from Example 12. The
constraints
Zo=Yy Ey= XM Ry X

are in normal form with respect to append/3, whereas the constraints
A S N

are not.



Projection of a constraint involves unfolding the (subvalue of the) binding-
time variable in its right-hand side with respect to a single constraint on (a
subvalue of) this variable. If we consider two subvalues of a binding-time variable,
say Xg and X7, one of them is a subvalue of the other if either 4 is an extension
of v or vice versa. This is captured by the following definition:

Definition 12 (extension). We define ext: TPath x TPath — TPath x TPath
as follows:
((,)  ify=da
ext(y,0) =< (a,())  ifya=94

undefined otherwise

Note that if ext(v,d) = (a,a’) then 7.a = d.a’. Unfolding a constraint X = Y776/
with respect to another constraint result in a new constraint on (a subvalue of)
X, with as right hand side the appropriate subvalue of the right hand side of
the constraint that was used for unfolding. To denote a subvalue of a constraint’s
right hand side ¢ (which is either a binding-time variable or one of the constants
T or L), we use the notation ¢-. If ¢ denotes a variable X, then ¢'® equals

Xy[,v'a]. Otherwise, if ¢ denotes one of the constants L or T, ¢'® simply equals
¢. Note the use of the least element of the equivalence class, [y.n], to denote an
element of the appropriate type graph £= (rather than the type tree £;). The
projection operation is defined in Definition 13 and basically consists of a fixed
point iteration over an unfolding operator followed by a selection operation that
retrieves the constraints of interest from the fixed point. Recall that 7 identifies
the head atom of the procedure of interest.

Definition 13 (projection). The projection of a set S C p(B7TC) on a set of
binding-time variables V. C Vg1 is denoted by proj,, S and defined as

projy (8) = {X=¢ € ifp(unfs) | X € V}
where unfy is defined in Figure 4.

The symbolic analysis is defined in Definition 14. The result of analysing a
program is a mapping (from the semantic domain Den) that maps a procedure
symbol p to a set of binding-time constraints on the variables that occur in the
definition of the procedure p. The constraints are in normal form. Polyvariance is
immediate, since all constraints are expressed in terms of the procedure’s input
arguments, which are represented symbolically and hence can be instantiated
by any call pattern. The analysis is defined by a number of semantic functions
defining the abstract semantics of a program P : Prog — Den in terms of the
semantics of the individual procedures, goals and atoms.

Definition 14 (call independent abstract semantics). The call indepen-
dent abstract semantics for description domain p(B7C) has semantic domain

Den : IT — o(B10)



unfs : p(B7C) — p(BIC)

unfs(l):{C’ CeSuUSi US> USs andtheformofCls}

either X, =Y, or X, =T

where
S1= (XD = | X7 =YD €8,V = ¢ el, and ext(5,6') = (a, ')}
Sy ={X] =" ¢|X] =Y, eSand Y, =" ¢}

Sz ={Xy =" ¢ | X, =* Y €5,V = ¢ e and ext(5,6) = ((),a)}

Fig. 4. The projection projy,

and semantic functions
P : Prog — Den

C : Proc+— Den — Den
G : Goal — Den — p(BTC)
A : Atom — Den — p(B7C)
and is defined in Figures 5 and 6.

The result of analysing a program is a denotation, P[P], in the domain Den,
which is a mapping from a predicate symbol to a set of binding-time constraints.
This mapping is defined as the least fixed point of applying the analysis function
C to each individual procedure. The analysis function C constructs a partial de-
notation for a particular procedure, given a (possibly incomplete) denotation
that represents the result of analysis of the whole program so far. The analysis
functions G and A map respectively a structured goal and an atomic goal to
a set of binding-time constraints, given a denotation — again representing the
result of analysing the whole program so far. In general, the result of analysing a
complex goal is the union of the constraints obtained by analysing each subgoal
in isolation, together with a number of additional constraints on the control vari-
ables associated with the goal and its subgoals. These constraints are simple, as
they merely reflect the propagation of the control variable’s value, either from
the goal to its subgoals (in case of the control variable C) or from the goal’s
subgoals to the goal itself (in case of R). The binding-time variables denoting
dynamic control denote that a goal is under dynamic control with respect to
the procedure’s body. The negated goal (G) in a negation is under dynamic con-
trol only if the negation (—=G) itself is. Observe that if A reduces to true or is
guaranteed to succeed, then not(A) fails. And if A fails then not(A) succeeds.
So we can say that the negation reduces to true, fail, or residual code which is
guaranteed to succeed if the negated goal does. The propagation in the other



P[Pl=1p( |J Clpl)

pEProc(P)
Clp(X) « Gyld = {(p, G[Gy]d)}
G[[(G,’,]/, G;']/”)"?]]d = GlIG,ln/]]d U G[[G:;//]]d @] CCCOIlj (77, 7],, 77”)
Glnoty(G,)]d = G[G,y]dUCCht(n,m")

G[[an G;/ then G;]/// else G;,I//l//]] = GlIG,ln/]]d @] cl‘}[[clf;;//J]Hd U Gl[ ,l,;;//]]d
! " U C?if(n’ 77 . n ;/77 ) / "
GII(GW/; G’V]”)"]]d = GﬂGn/]]d @] G[[Gn//]]d @] CCdlS_] (77, n,n )
G[A,]d — A[A,]d
U{X, = X,y | X € in(A),n’ € reach(X,n)}

A[X ==, Y]d ={Ry =" X, UY,}

A[[X =y Y]]d = {X17 =Y, UCy, Ry = J_}

A[X =, fD]d  =Uy, Vi, = X 0e U R, =7 X))
AX <, fN]d = Uy, oAXX = v, ue}U{R, = L}

Aflp(X1,..., Xn)yld = p(proj_AT'gS(p),Rnbdp) U{Xs, = Cy | Xi € out(p)}
where Args(p) denotes the sequence of formal arguments in the definition of p/n, 1 is
associated to the body goal in the definition of p/n and p is a renaming mapping the
sequence of formal arguments Args(p) to the sequence of actual arguments (X1, ..., X,)
and R, to R,.

Fig. 5. The call independent abstract semantics

Cpr = Cy Corr = Cy Cr = Ry
CCconj (n,m'sn") =
R’? t Rn/ R"I t RTI”
CU’ t C"] C'q” t C”?
CCyigj(mn',n") =
Ry =Ry Ry =Ry
CChot(mn') ={Cp =Cp Ry = Ry }
C"I/ t C’U C”I” t C”7 C"/” t C77
Oij(nv 77/7 77//7 n//l) — C,,]u >~ 'R,,,]/ C’I'” - 'R,n/

Ry = Ry Ry = Ry Ry = Ry

Fig. 6. The call independent abstract semantics (ctd.)



constructs is similar: the subgoals of an if-then-else are under dynamic control if
the if-then-else is under dynamic control. Moreover, both the then and else goals
are under dynamic control if the test goal possibly reduces to residual code which
could fail at run time. If each of the if-then-else’s subgoals reduces to true, fail
or code that is guaranteed to succeed, so does the if-then-else. The subgoals of a
conjunction are under dynamic control if the conjunction itself is. Moreover, the
second conjunct is under dynamic control if the first conjunct possibly reduces
to residual code that could fail. If both conjuncts reduce to true, fail or code that
is guaranteed to succeed, so does the conjunction. To conclude, if a disjunction
is under dynamic control, so are both disjuncts. If both disjuncts reduce to true,
fail or code that is guaranteed to succeed, so does the disjunction.

Ezample 15. Reconsider the definition of append/3 in Figure 3. The body goal
contains the following structured subgoals: a conjunction identified by program
point ¢; with the atomic conjuncts identified by program points 1 and 2, a second
conjunction identified by c¢o with the atomic conjuncts identified by program
points 4 and 5, a third conjunction identified by c3 with the conjuncts identified
by program points 3 and c; and a disjunction identified by program point dy
with the disjuncts identified by ¢; and c3. The binding-time constraints that are
associated to each of these structured goals are as follows:

Cl i Ccl Rcl t Rl

(Cl) CZ t Ccl Rcl t RZ

Co =Ry

C4 t CCQ RCQ i R4

(€2)|C5 = Cey Rey = Rs

Cs = Ry

CS t CC3 Rc;g t R3

(63) CC2 i C¢23 RC3 t RC2

CCz t R3

(d ) Cc1 = Cd1 Rdl = Rc1
VlCey = Cay Ray = Rey

The binding-time constraints that are associated to an atomic goal are some-
what more involved. Apart from binding-time constraints on the atom’s output
variables, analysing an atom A, also possibly results in a binding-time constraint
on the control variable R,,, indicating under what conditions the atom can be
reduced to true, fail, or code that is guaranteed to succeed. Moreover, when cre-
ating the binding-time constraints on the atom’s output variables, the control
variable C,, must be taken into account, in order to guarantee that the particular
binding-time is made T in case the atom is under dynamic control.

Note that in the definition of A the binding-time variables that refer to the
input variables of an atom at program point 7 are indexed by the program point
1. Consequently, a number of additional constraints must be created for each
atom, relating the binding-time of such an input argument at program point
n with its binding-time at the program point(s) where the binding-time was
created, being output of some other atom.



A test does not have any output variables, so it only creates constraints
on control variables. The atom reduces to true, fail or code that is guaranteed
to succeed when both input variables are bound to an outermost functor. An
assignment X := Y introduces the constraints specifying that the binding-time
of X at program point n must be at least as dynamic as the binding-time of Y
at program point 7. Recall that the latter’s value is constrained to be at least
as dynamic as the least upper bound of the binding-times of Y at the reachable
program points where Y is assigned a value. Moreover, if the assignment is under
dynamic control, X, must be assigned the value T. This is guaranteed by adding
U C, to the right-hand side of the constraint on X,,. Even if an assignment is
not reduced, it can never fail at run time. Hence the (superfluous) constraint
Ry = L. A deconstruction introduces some binding-time constraints indicating
that the binding-time of the newly introduced variables must be at least as
dynamic as the corresponding subvalue in the binding-time of the variable that is
deconstructed. Also in this case, the least upper bound with C,, guarantees that,
if the deconstruction is under dynamic control, the newly introduced binding-
time variables will be forced to have the value T. If the deconstructed variable
is bound to at least an outermost functor, the deconstruction reduces to true
or fail at specialisation time. Otherwise, a residualised deconstruction can either
succeed or fail at run time which is reflected by the fact that in that case R,
will have the value T. When handling a construction on the other hand, the
binding-time of the constructed variable is constrained by the binding-times
of the variables used in the construction. Again, if the construction is under
dynamic control, the constructed binding-time is guaranteed to be T by the use
of the least upper bound with C,. Even when residualised, a construction can
never fail, so again the (superfluous) constraint R, = L is introduced.

Ezxample 16. Reconsider the definition of append/3 in Figure 3. The constraints
that are associated to the unifications in append/3’s body goal are as follows.
The numbers in the left hand side column denote the particular unification’s
program point.
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Finally, handling a procedure p(Xi,...,X,) call involves retrieving the con-

straints for the called procedure p from the denotation and projecting these
onto the set of variables Args(p) U {R,,}. This projection operation makes sure
that the constraints on these variables are in normal form, i.e. that they are
expressed in terms of in(p). The resulting set of constraints is then renamed
to the context of the call. The formal arguments of p, Args(p) are renamed to
their corresponding actual argument in (Xi,...,X,). The constraints on R,,
are renamed to constraint on R, expressing that the call reduces to true, fail or



code that is guaranteed to succeed if the body of the called procedure reduces
to true, fail or code that is guaranteed to succeed.

Ezxample 17. Let P denote the program consisting only of the definition of
append/3 depicted in Figure 3 and let (1) and (2) denote, respectively, the
sets of constraints depicted in Examples 15 and 16. The fixed point computation
for P[P] starts with an empty denotation and hence, in the first round of the
computation, the recursive call does not introduce any constraints; the result
of Clappend/3]{} is a denotation that maps append/3 to the constraint set
(1)U (2). It is only in the second round, when the constraints are projected and
renamed, that the recursive call adds the constraints
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One can verify that in a next round no new constraints are introduced by the
recursive call, and hence P[P] results in a denotation that associates append/3
to the union of the constraints derived above with the sets (1) and (2).

3.4 From constraints to annotations

Once we have computed P[P], it suffices to have a set of binding-times for the
input variables of a procedure p in order to compute the binding-times of the
remaining variables in the definition of p, as well as the annotations that are
associated with a particular atom in the definition of p. Let us first introduce
the semantic domain Call, that we use to represent a call in the domain of
binding-times:

Call = {p(B1,...,Bn) |p/n € Il and Vi : 5; € BT "}

To ease notation, we assume that such a call contains a binding-time for each
argument (input as well as output). However, since these calls are used to rep-
resent the binding-times of the input arguments of the call only, we asume the
binding-times of the output arguments to be 1. We will denote elements of Call
by a single greek letter 7 if the particular procedure/argument combination is
irrelevant. We can now define the annotation of a procedure with respect to a
particular call as follows:

Definition 15 (procedure annotation). Given a denotation d € Den for
a program P and a call p(B1,...,0B,) € Call, the procedure annotation (of a
procedure p € Proc(P)) induced by a call p(81,...,0,) is defined as the least
solution o of (dp) in which o(X;) = B; for every X; € in(p).

Being a solution of the set of binding-time constraints associated to a proce-
dure p, a procedure annotation not only provides binding-times for all program
variables in p, but also maps every binding-time variable of the form C,, to either
1 or T, denoting respectively that the goal at program point 7 in the proce-
dure’s body should be evaluated during specialisation, or be residualised. Being a



least solution, a procedure annotation contains the least dynamic binding-times
while still satisfying the congruence relation. As such, a procedure annotation
of a procedure p with respect to a call m represents control information for a
specialiser as to how to treat each subgoal of the body of p, when a call to p is
approximated by .

A polyvariant analysis for a program P and an initial call p(8y,...,08,) can
then be performed by first computing the procedure annotation o of p induced
by p(B1, ..., [n) and consecutively computing, for every call ¢(X1,. .., X,,) that
occurs at some program point 1 in the definition of p, the procedure annotation
of ¢ induced by ¢(c(X1,),...,0(Xu,)). This process is repeated recursively until
no more abstract calls are encountered for which no procedure annotation has
been constructed yet. In other words, a polyvariant annotation process for a
program P with initial call m boils down to computing the abstract callset of
(P, m): The set of abstractions of all calls that can possibly be encountered during
evaluation of P with respect to a call that is abstracted by 7. Formally, we define
also this annotation process by a number of semantic functions that define the
meaning of a program P with respect to an initial call 7 as a set of calls in the
domain of binding-times.

Definition 16 (annotation semantics). The first-order annotation seman-
tics has semantic domain Den, : p(Call) and semantic functions

P, : Prog — Call — Den,

C. : Proc— Call — Den, +— Den,

G : Goal — Call — Den,
defined in Figure 7.

Pe[Plr=lip( (]  Celplm)

pEProc(P)
Celp(X1,...,Xn) < B]nS = U Ge[Blp(Bi, .-, Bn)
P(B1;---,0n)ESU{m}
Ge[not(G)]x — G.[G]r
Gc[[Gh Gz]]ﬂ' = GcﬂGﬂ]ﬂ U Gc[[GQ]]ﬂ'
GC[[G1; GQ]]ﬂ' = Gc[[Gﬂ]T{' U Ge |IG2]]7T
Ge[if G1 then Ga else G| = Ge[[Gi]m U Ge[G2]m U Ge[Gs]m
Gelg(Yr,...,Yo)]m ={q(ox(V1),...,0x(Yn))}

and Ge[A]r = 0 for any other atomic goal A and where o denotes the procedure
annotation induced by 7w € Call.

Fig. 7. The annotation semantics



The definition of the semantic functions P, C. and G is straightforward.
The semantic domain Den. = p(Call) represents the set of all abstract callsets.
The semantics of a program P with respect to an initial call 7 is defined as
the least fixed point of repeatedly computing the semantics of each procedure
(by C.) in P within the context of this initial call and a (possibly incomplete)
denotation containing the result of analysis so far. The analysis function C.
constructs a partial denotation for a particular procedure as the union of the
denotations obtained by analysing the procedure’s body goal with respect to
every call to the procedure encountered so far. The semantics of an individual
goal G in the body of a procedure p is defined with respect to a call 7 to p. The
definition of G is straightforward, as it only collects the abstract calls encoun-
tered in the annotation of p induced by 7. Note that the analysis is guaranteed
to create a finite number of procedure annotations since every procedure has a
finite number of arguments, every such argument can only be approximated by
a finite number of binding-times, and hence only a finite number of call patterns
can be constructed for a particular procedure.

3.5 On the modularity of the approach

In summary, the binding-time analysis we have developed so far is to be per-
formed in two phases. The first phase of the process performs the data flow
analysis in a symbolic way. A procedure is analysed independent of a particular
call pattern, and the analysis handles procedure calls by projecting and renam-
ing the constraints that are associated to the called procedure. For a program
that is divided into several modules, this means that the constraint generating
phase of the analysis can be performed one module at a time, bottom-up in the
module hierarchy if we consider hierarchies without circularities. Reconsider the
module hierarchy from Fig. 1. The result of bottom-up analysis of this hierarchy
is depicted in Fig. 8. First, the modules at the bottom level, My and M5 are
analysed. Since these modules do not import any other modules, they can be
treated as regular programs, and we can simply compute P[M,] and P[M5]. The
rounded boxes in the figure denote the result of computing P[M] for a particular
module M. The shaded part of the box represent this denotation, restricted to
the procedures from the module’s interface. Subsequently, the modules M, and
M3 can be analysed, since their analysis only requires the constraints from the
interface procedures of My, respectively My and Ms. Computation of P[M;] and
P[M;3] can proceed as before, with the exception that the fixed point computa-
tion should not be started from the empty denotation, but rather from P[My]
and P[My] UP[Ms] respectively. Finally, once the results of analysing My, M;
and Msj are available, the module M; can be analysed. Note that in this pro-
cess, each module is analysed only once. If a module, like M5 in the example, is
imported in more than one module, analysing the latter modules only requires
the result of analysing the former.

The second phase of the analysis, computing the procedure annotations, is
naturally a call-dependent process. Consequently, annotating a multi-module
program for an initial call to a procedure p in the top-level module requires the



Fig. 8. Bottom-up analysis of the module hierarchy.

constraints for all the procedures (spread out over all modules) that are in the call
graph for p. One could argue that this corresponds to analysing a multi-module
program as if it was a single-module monolithic program. However, it should be
noted that computing a procedure annotation induced by a particular call is a
rather cheap process. Since the involved constraints are in normal form, it merely
consists of performing a substitution on the right-hand side of the constraints
and computing their least upper bounds. The hard part of the analysis — tracing
the data flow between the input- and output arguments of a procedure — which
possibly involves procedure calls over module boundaries, is done at the symbolic
level, in a modular fashion.

4 Higher-order Binding-time Analysis

Mercury is a higher-order language in which closures can be created, passed
as arguments of predicate calls, and in turn be called themselves. To describe
the higher-order features of the language, it suffices to extend the definition of
superhomogeneous form (see Definition 8) with two new kinds of atoms:

— A higher-order unification which is of the form X < p(Vi,...,Vs) where
X, V1,..., Vi €V and p/n € IT with k <n.

— A higher-order call which is of the form X(Viy1,...,V,) where X and
Vit1se ooy Vi €V with 0 < k < n.

A higher-order unification X < p(V4,...,Vy) constructs a closure from an n-
arity procedure p by currying the first k£ arguments (with & < n). The result
of the construction is assigned to the variable X and denotes a procedure of
arity n — k. Such a closure can be called by a higher-order call of the form
X(Vit1,---, V) where Viy1,...,V, are the n — k remaining arguments. The



effect of evaluating the conjunction X < p(Vi,..., V&), X(Vit1,...,Vy) equals
the effect of evaluating p(Vi,...,V;,).6

In order to represent higher-order types it suffices to add a special type con-
structor, pred, to X7. This constructor is special in the sense that it can be
used with any arity and it has no type rule associated with it. Consequently, a
higher-order type corresponds with a leaf node in a type tree. In what follows we
represent higher-order types as pred(t1,...,tx) with tq1,..., ¢ first-order types.
We furthermore assume that higher-order types are not used in the definition of
other types; that is, values of higher-order type are only constructed, called, or
passed around as arguments of a procedure call.”

The basic problem when analysing a procedure involving higher-order calls,
is that the control flow in the procedure is determined by the values of the
higher-order variables. To retrieve a set of suitable binding-time constraints be-
tween the in- and output arguments of a higher-order call X (Yyy1,...,Ys,), it is
necessary to know to some extent to what closures X can be bound to during
specialisation. Consequently, to achieve an acceptable level of precision, the sym-
bolic data flow analysis needs to be enhanced by some form of closure analysis
[23,35] which basically computes for every higher-order call an approximation
of the closures that may be bound to the higher-order variable involved. In what
follows, we first define a suitable representation for such closure information;
next we reformulate the first phase of our binding-time analysis in such a way
that it integrates the derivation of closure information with the derivation of
binding-time constraint systems. Doing so basically transforms the process of
building constraint systems into a call dependent process, since closures can be
passed around by procedure calls and hence the analysis needs to take the clo-
sure information from a particular call pattern into account. We conclude this
section with a discussion on the modularity of the higher-order approach.

4.1 Representing closures

In order to use closures during binding-time analysis, where concrete values of
the closure’s curried arguments are approximated by binding-times, we introduce
the notion of a binding-time closure as follows.

Definition 17 (binding-time closure). A binding-time closure is a term of
the form p(B1,...,0k) where p/n € II, k <n and B1,...,0Bk € BT . The set of
all such binding-time closures is denoted by Clos.

5 When writing Mercury code, the programmer can also use lambda expressions to
construct closures. These can, however, be converted into a regular procedure def-
inition which is then again used to construct the closure as above. The Melbourne
Mercury compiler does this conversion as part of the translation into superhomoge-
neous form. Note that closures cannot be constructed from other closures: once a
closure is created, one can only call it or pass it as an argument to another procedure.

" In fact, this is also a limitation of release 0.9 of the Mercury implementation [40].



If p/n € I, p(B,...,0B) approximates a set of procedures of arity n — k, each
being an instance of p in which the first k£ arguments are fixed and whose values
are approximated by the binding-times 31, ..., Gk.

Ezample 18. Given the traditional append/3 procedure and (; being a binding-
time approximating terms of type 1ist (T) that are instantiated at least up to a
list skeleton, append, append(;) and append(L, §;) are examples of binding-time
closures of arity 3, 2 and 1 respectively.

In order to obtain a precise binding-time analysis, we approximate the value
of a higher-order variable with a set of binding-time closures. A singleton set
{c} describes that the higher-order variable under consideration is, during spe-
cialisation, definitely bound to a closure that is approximated by c. In general,
a set {c1,...,c,} describes that the higher-order variable under consideration
is bound during specialisation to a closure that is approximated either by ¢y,
C9,..., or ¢,. To make this representation explicit, we alter the definition of the
domain B. Instead of containing only the values static and dynamic, we now
include a value static(S) with S being a set of binding-time closures. Note that,
if we define dynamic > static as before and static(S1) > static(Ss) if and only
if S1 D Sy, B is still partially ordered. Since the binding-times now include
higher-order binding-times, we alter the definition of the partial order relation

on BT:

Definition 18 (covers). Let 8,3 € BT such that dom(B8) C dom(f3') or
dom(B') C dom(B). We say that 8 covers (', denoted by B = B if and only
if it holds for all § € dom(B) Ndom(B') that:

— 3(8) = dynamic implies 3(8) = dynamic, and
— 3(0) = static(S") implies 5(6) = static(S) and S 2 5’.

Note that, with this new definition, the covers relation remains only defined
between two binding-times that are derived from types that are instances of
each other. In case of higher-order binding-times this means that both sets of
binding-time closures contain closures of identical arity and argument types.
Like before, we denote with B7+ the set BT U {T, L}, and (BT, =) forms a
complete lattice.

4.2 Higher-order binding-time analysis

We now reformulate the analysis from Section 3 such that it takes the higher-
order constructs of Mercury into account. As a first observation, note that
the binding-time constraints that are associated to first-order unifications and
structured goals (see Figures 5 and 6) remain unchanged in the context of a
higher-order analysis. To deal with higher-order constructions, we add an ex-
tra form of binding-time constraint to BZC; namely a constraint of the form
X, = p(X1,...,Xk). The intended meaning is that the (higher-order) binding-
time associated to X at program point 7 should at least contain a closure con-
structed from p and the binding-times of its arguments at program point 7.



Formally, we extend the definition of a solution (Definition 10) such that for
every constraint of the form X, = p(Xy,,..., X}, ) it holds that

o(Xy) = static({p(B1, ..., Bk)}) where 8; = o(X;,) for 1 <i < k.

The main difference with the symbolic data flow analysis of Section 3 in a
higher-order setting is that a set of constraints can no longer be associated to
a procedure symbol (as in the semantic domain Den) because a typical higher
order predicate is passed a procedure as one of its input arguments (e.g., a call
to map has as one of its inputs the predicate to be applied on the elements of the
list it has to process) and the resulting set of binding time constraints depends
on the input predicate. Instead, in the higher-order analysis, we associate a set of
binding-time constraints with a particular abstract call. Therefore, we define the
analysis as an abstract semantics as before, but over the new semantic domain

Deng. : Call — o(B1C).

The notion of a procedure annotation of a procedure p induced by a call
p(B1,...,0n) is straightforwardly adapted for use with a denotation in Denc,
rather than in Den. Moreover, given two such mappings f,g € Den,., we define
f Ug as a mapping in Den,. with dom(f U g) = dom(f) U dom(g) and

flz)Ug(z) if z € dom(f) N dom(g)
Vo € dom(fUg): (fUg)(z) =< f(x) if x € dom(f) and = & dom(g)
g(x) if x € dom(g) and = & dom(f)

The resulting analysis is a call-dependent analysis that is basically a combination
of the call-independent and call-dependent analyses of Section 3.

Definition 19 (higher-order semantics).
The higher-order semantics has semantic domain

Deng. : Call — p(BTC)
and semantic functions
Pec : Prog — Call — Deng,

Cec : Proc— Call — Deng. — Deng,
Gec : Goal — Call — Deng. — Deng,
A : Atom — Call — Dene. — Dene.
defined in Figure 9.
Again, the meaning of a program is defined as a fixed point computation over
the meaning of the individual procedures in the program given a binding-time

abstraction of the call with respect to which the program must be specialised.
Each procedure is analysed (by Cec) within the context of this initial call and a



Pec[Plr=1fp( | Ceelplm)
pEProc(P)

Cee[p(X1,...,Xn) — B]rd = U Gee[Blp(B1, - - -, Bn)d

P(B1,---,0n)Edom(d)U{r}

GCC[[(G%U G;;u);z]]ﬂ'd = . .

GeelGmd U Gec[Gr ]md U {(, CCeonj (m,n',n" N}
Gec[not, (G )]nd =

Geel Gyl U {(m, CCrot (1,1}
Gee [[if77 G;', then G;’,, else 'UGZ/I//HTFd =

Gee G ]md U Gec[Gr]md U Gee[Grn]md U {(m, CCye(n, 1", n",n™")) }
GCCH(G;’/; G,l,;//)n]]ﬂ'd =

Gee [[G;/}]Wd U Gee IIGZ//]]TFCZ U {(m, Ccdisj (m,n',n" )N}
Geo[Ay]rd =

Acel A, U {(m, 5))

where S = {X,, = X,/ | X € in(A),n’ € reach(X,n)})}

Acc[U]nd = {(w, A[U]d)} for a first-order unification U
Acc[X <p(Xy, ..., Xi)y]mrd = {(m, {Xy, = p(X1,..., Xn), Ry = L})}
Acclg(Yn,...,Yy),]nd = S1 US> where
St ={(a(Br,---,Bn), {1}
Sz =A{(m, /’(PTOJArgs(q),Rnb (dq(Br,...,Bn))) U{Ys, = Cy | Vi € out(q)})}
with ﬁz =0r (}/in)
Ace[X(Yis1, .., Yn)n]rd = S1 U Sy where
Si=ifor(Xy) =T
then {(¢(T,..., T), {}) | ¢/m € Proc(P) and m > n — k}
else {(q(/Bh .. aﬁ“)? {}) | q(ﬁla ce 7ﬂk) S S}
where o (X,,) = static(S) and f; = 0, (Y;) for k+1<i<n
Sz = {(m, Uq(ﬁl ,,,,, Br)Edom(S1) p(projy (d(gBt, - - -, Brn)))U
{Yi, = Cy | Yi € out(q)})} where V = Args(q) U{Ry,}

Fig. 9. The higher-order semantics



denotation (in Den,.) representing the (possibly incomplete) results of analysis
so far. The definition of Gec, defining the abstract meaning of a goal, is basically
identical to the definition of G from Section 3, apart from the facts that (1) it
threads a denotation as well as the abstract call to the procedure that is cur-
rently being analysed and (2) it associates this abstract call to the constraints for
a particular goal. The same observations hold for the definition of A¢.. The con-
straints derived for a first-order unification are identical to those derived by A.
A higher-order construction results in a constraint stating that the binding-time
of the higher-order variable must contain at least the abstract closure created at
this program point. Note that we propagate the binding even when the construc-
tion is under dynamic control, as this binding allows to substantially simplify the
analysis of higher-order calls. Being a construction, reduction can never result
in code that might fail during exeuction, hence the (superfluous) constraint on
Ry.

Handling procedure calls is somewhat more involved than in the first-order
case. Retrieving the constraints associated to a first-order call from the denota-
tion now requires to compute the binding-times of the arguments in of the call.
As before, o, represents the procedure annotation induced by the call 7. The
binding-time variables in the resulting (projected) constraints are again renamed
to the actual arguments of the call Xi,...,X,, and the control variable R,, is
renamed to R,, as before. As for the other goals, the resulting constraints are
associated to the abstract call m for which the surrounding procedure is being
analysed. The resulting mapping, in Figure 9 denoted by S5, is updated with the
mapping {(¢(01,...,06n),{})} in order to make sure that the call ¢(01,...,5,) is
in the domain of the newly constructed denotation, and hence will be analysed
during a next round of the analysis. Note that the use of U guarantees that if the
call was already in the domain of the donation, the set of constraints associated
to it remains unchanged. A higher-order call is basically handled as a set of first-
order calls. First, the binding-time of the higher-order variable is retrieved from
the procedure annotation o, for the currently analysed procedure/call combi-
nation. If this binding-time equals static(S), each closure ¢(f1,...,0k) € S is
transformed to a first-order call by adding o, (Xk41),.-.,0:(X,) to its argu-
ments. From then on, the call is handled as a first-order call. The constraints
associated to this call are retrieved from the denotation and added to the de-
notation under construction, and the call itself is added to the domain of the
denotation under construction.

4.3 On the modularity of the approach

In a higher-order setting, the constraint generation phase of our binding-time
analysis is a call dependent process. Indeed, the data flow dependencies in a pro-
cedure are determined by the closures contained in the procedure’s call pattern.
This suggests that the advantage of modularity, associated to the constraint
based technique in a first-order setting, might no longer hold in a higher-order
setting. However, to some extent the analysis can still be performed in a bottom-
up, modular way. For a module M that exports the predicates pi,...,p, we



initiate the analysis with:

U PeelPIp(T,....T).
PE{P1,....Pn}

At first sight, it might seem strange to perform a call-dependent analysis with
respect to an inital call in which all arguments are approximated by T. However,
recall that only the higher-order parts of the call patterns influence the resulting
constraint systems. Hence, for those procedures that have no higher-order argu-
ments, the constraint system derived by the call dependent analysis for a call
p(T,..., T) equals the one derived by the call independent analysis of Section 3,
and it can readily be used by other modules importing these procedures. Note
that the call dependent nature of the process ensures that closure information
that is constructed in a module M, is propagated inside M itself. It is only if
closure information is “lost” over a module boundary that the resulting analysis
is less precise than a full call dependent analysis over the complete multi-module
program. This is the case when, in some module, closure information is available
in some arguments of a call to an imported procedure p whereas, being imported,
the constraints that are used for p are those obtained by analysing p(T,..., T).

5 Example

In this section, we present an example, and use it to discuss to what extent the
proposed analysis is also applicable in the context of Prolog.

5.1 A simple interpreter

Consider the simple interpreter for arithmetic expressions depicted in Figure 10,
adapted from a Prolog version discussed and specialized in a companion chapter
[29]. The program consists of a number of type definitions and two predicates.
The type env defines an environment as a list of elements, each element being
a pair (type elem) consisting of an identifier (type ident) and an integer (type
int). We assume that the types ident and int are atomic and builtin. The type
exp defines an expression as either a constant integer, a variable denoted by an
identifier, or the sum of two expressions.

The predicate lookup/3 takes an identifier and an environment as input,
searches the value associated to the identifier in the environment and returns this
value or fails. Note that the predicate is defined as being non-deterministic in
order to mimick a purely declarative implementation in Prolog. The interpreter
itself is represented by the predicate int which takes an expression and an
environment as input and returns the value of the expression or fails. Both
predicates are given in superhomogeneous form.



:— type env --> nil ; cons(elem, env).
:- type elem --> pair(ident,int).

type exp —--> cst(int) ; var(ident) ; +(exp,exp).

:— pred lookup(ident, env, int).
:- mode lookup(in,in,out) is multi.

lookup(V,E,Val):- E=; cons(A,As), A= pair(I,VI), (
V==3 I, Val:=4 VI

lookup(V,As,T)s, Val:=¢ T).

:- pred int(exp,env,int).
:— mode int(in,in,out) is multi.

int (E,Env,R) : —(
E=1 cst(C), Ri=5 C

E=-3 var(V), lookup(V,Env,Val)y, R:=5 Val

E=¢ +(A,B), int(A,Env,R1)7, int(B,Env,R2)s, plus(R1,R2,R)9).
Fig. 10. A simple interpreter

After call-independent analysis, the binding-time constraints associated with
the lookup/3 predicate are as follows.

A t E((cons,l)}

As = E

I E{(cons,l),(pair,l))

I>=*F

VI = E((cons,l),(pair,Q))

VI=*E

Val4 - E((cons,l),(pair,?))

VCLZ4 t* E L E((cons,l)) L E{(cons,l),(pair,l)) uv
T = E((cons,l),(pair,2))

T =* EU E((cons,l)) L E((cons,l),(pair,l)) UV
V(Zlﬁ - E((cons,l),(pair,Q))

Val6 =* F U E((cons,l)) L E((cons,l),(pair,l)) uv

All constraints are in normalised form. Where relevant, a binding-time variable
is indexed by a subscript indicating the program point at which the constraint
holds. Recall that the >=-constraints express the regular data flow, whereas the
>*-constraints reflect the specialisation-strategy: a constraint X >=* Y denotes
that the binding-time of X cannot be static if the node ¢ in the binding-time
of Y is marked dynamic. Such a constraint is due to the presence, earlier in the



predicate, of a deconstruction (or test) on Y that may be residualised and subse-
quently fail at run-time. The interpretation of these constraints is as follows. The
data-flow (or ») constraints are obtained in a straightforward way, by projecting
the constraints obtained from the unifications. The strategy (or >=*) constraints
are somewhat more involved. The constraints I =* E and VI =* E denote that
I and VI must be T in case E is not bound to an outermost functor. Indeed, if
FE is not bound to an outermost functor, the deconstruction at program point 1
cannot be reduced at specialisation-time and the atom at program point 2 (in
which I and VI are assigned their value) is under dynamic control and hence
cannot be reduced at specialisation time. Subsequently, the construction at pro-
gram point 4 is under dynamic control if one of the preceeding atoms cannot be
reduced or results in code that may fail at runtime, which is the case if either
the environment E, the elements of the environment (E{(¢”s:1)))  the identifiers
within each such element (E{(cons:1):(pair.1)) or the variable V is not bound to an
outermost function. Similar considerations explain the =* constraints on 7" and
Val at program point 6 in the other branch of the disjunction. The constraints on
T are equal to the least upper bound of those (in the least fixed point) on Valy
and Valg. Recall that the constraints on 7', which originate from the recursive
call, are obtained from T > Valy U Valg.

The binding-time constraints derived for the int/3 predicate are as follows.

C = E((cst,l))

Ry = E((cst,l))

Ry =" E

V > E((var,l))

VCL?E Enu{(cons;1),(pair,2))

Val =* EnvU Env((cons,l)) L Env((cons,l),(pair,l)) L E((var,l))

Rs >+ Env((cons,l),(pair,Z))

R5 i* ELU EnvL Env((cons,l)) U Env((cons,l),(pair,l)) L E((var,l))

A > plHD)

B = E((+2)

R1 » E((-i-,l),(cst,l)} L Env((cons,l),(pair,Q))

Rl s+ B L ECD) 1 B2 [ BCHD.@ar D) || plH2),ar D)
Env L Env((cons,l)) L Env((cons,l),(pair,l))

R2 ~ E((+,2),(cst71)> Ll EnU((cons,l),(painQ)}

R2 5% E LU ECHD) ) B{H2) | B, ar ) || B2, (ar, )
Env U Env((cons,l)) L Env((cons,l),(pair,l))

Ry >~ E<(+,1),(cst,1)> L E((+,2),(cst,1)) L Env((cons,l),(pair,Q))

Ry =* E U E((+HD) |y p((+:2)) | p((+H1),(var, 1)) | p{(+.2),(var,1))
Env L E’I’LU<(CO”S71)> L Env((cons,l),(painl)}

These constraints are obtained in a similar way as those for the lookup predicate.
Assume we want to specialise this program for the query

int (+(cst(2) ,+(var(x),cst(3))), [pair(y,Yval), (x,Xval)],Res) (1)



i.e., the expression to compute is fully instantiated and the domain of the en-
vironment mapping is fully defined but the concrete values associated to the
identifiers are as yet unknown. These degrees of instantiation are expressed by
the binding-times (., defined for the type exp and By, defined for the type
env.

B = { (), static), ({(cst, 1)), static), (((var,1)), static) }
“p (((+, 1)), static), (((+,2)), static)

(), static)

Benv = ({(cons, 1), (pair, 1)), static)
({(cons, 1), (pair,2)), dynamic)

Note that the abstract call int (8ezp , Benw »-) Will give rise to an abstract call
lookup (static,Beny,-). In the least solution of the constraints for lookup with
respect to this call, we obtain that the output argument Val = Valy U Valg =
dynamic. However, the input to each test or deconstruction in lookup is at
least bound to an outermost functor and hence is a candidate for reduction. In
addition, if we look at the strategy constraints

Co=*FE

Cs =* FU E((cons,l))

Ci=*EU E((cons,l)) UV u E((cons,l),(pair,l))
C5 t* E L E((cons,l))

Cs =*E L E((cons, 1)) | | VU E{(cons,1),(pair,1))

we derive that none of the atoms is under dynamic control and consequently,
each atom can be annotated as reducible.

Consequently, for the int predicate we obtain R = dynamic but similarily
to the case of the lookup predicate, none of the atoms is under dynamic control
and the input to each unification is bound to at least an outermost constructor.
Hence all unifications can be reduced. Only the predicate plus, which we assume
builtin, has both input arguments dynamic and need to be residualised. The
result of specialisation using the obtained annotations is the residual program
int (Xval,Yval,Res) :- plus(Xval,3,T), plus(2,T,Res).

5.2 The Prolog case

The basic characteristic of Mercury that make this work feasible is the presence
of type- and mode information. Hence, one may ask to what extent the technique
can be carried over to the analysis of (pure) Prolog programs. Let us assume
that the same type information as above is available. Given that the normal use
of the int/3 predicate is with mode (i,i,0), a mode analysis is able to show
that lookup/3 is also called with mode (i,i,0) and that both predicates return
a ground answer. Taking care that variables in output positions of predicates are
first occurrences (hence free variables) one can obtain a normalisation that is
almost a replica of the Mercury code.



lookup(V,E,Val) :-E=cons(A,As), A=pair(I,VI), V=I, Val=VI.
lookup(V,E,Val) :-E=cons(A,As), A=pair(I,VI), lookup(V,As,T),
Val=T.

int(E,Env,R):-E = cts(C), R=C.

int (E,Env,R) :-E = var(V), lookup(E,Env,Val), R=Val .

int(E,Env,R):-E = +(A,B), int(A,Env,R1), int(B,Env,R2),
is+(R1,R2,R).

Using the mode information about the variables participating in unifications,
one could classify them into tests, assignments, constructions and deconstruc-
tions as in the Mercury code. There is one difference. In the case of Mercury,
assignments and constructions are guaranteed to succeed. In the case of our
mode analysis, a variable not having mode input can still be partially intanti-
ated, hence the unfication could fail at run-time. This will not happen in the
example at hand. Indeed a simple local analysis shows that the variables being
assigned are effectively free. E.g. in Val=VI, Val is the first occurrence of the
output variable. Whether a unification 7 can fail has to be properly encoded in
the special binding-time analysis variable R,,. Apart from this, given the type
information and the specification of the query to be specialised, the binding time
analysis as done for Mercury can be performed, leading to the same annotations
and hence, a specialiser as LOGEN [30] could derive the same specialised code.

Finally, it is feasible to handle more complex modes than simply input and
output. In [7], a more refined mode analysis, called rigidity analysis is developed.
Given a term t of type 7, it considers all subtypes 7' of 7. The term is 7/-rigid
if it cannot have a well-typed instance that has a variable as a subterm of type
7’. Such a type based rigidity analysis can provide more detailed mode informa-
tion that has the potential to contribute to a better binding-time analysis. For
example, such an analysis could show that a term of type elem (cnfr. the simple
interpreter) that is not ground, is ident-rigid.

To conclude the discussion of this example, we note that — within the con-
text of Prolog — the results obtained by the binding-time analysis could be di-
rectly fed to the LOGEN offline partial deduction system [25,30]. This system
uses the notion of a binding-type to characterise specialisation-time values. Basic
binding-types are static — characterising a value as ground — and dynamic —
characterising a value as possibly non-ground — but more involved binding-types
can be declared by the user using binding-type rules, much in the same way as
types are declared by type rules.

In the interpreter example, the binding-times Be.p and Ben, could be trans-
lated to the following binding-type definitions:

:- type exp ---> cst(static) ; var(static) ; +(static,static).

:- type elem --> pair(static,dynamic).



:- type env ---> nil ; cons(elem,env).

Input to the LOGEN system would then consist of the program in which every call
is annotated as reducible (by means of the unfold annotation [25, 30]) together
with the binding-type classification of the query int (exp,env,dynamic). In the
companion chapter [29] we present in more detail how this example program can
be specialized using the LOGEN system and the so-derived annotations. Further
work is needed to investigate whether our binding-time analysis can be adapted
for the Prolog setting with LOGEN’s binding-types.

6 Discussion

Constraint based (binding-time) analysis has been considered before. In [17],
Henglein develops such a constraint-based (higher-order) binding-time analysis
for A-calculus by viewing the problem as a type inference problem for annotated
A-terms in a two-level A-calculus. A set of constraints capturing local binding-
time requirements is created and transformed into a normal form. A solver is
used to find a consistent minimal binding-time classification. The analysis is re-
developed, concentrating on the aspect of polyvariance, for a PCF-like language
in [19]. Henglein’s analysis is scaled up by Bondorf and Jgrgensen in [5], where
they construct three (monovariant) analyses to be used in the partial evalua-
tor Similix [4]. An important conceptual advantage, mentioned among others in
[5], of doing binding-time analysis by constraint normalisation is the fact that
the constraint based approach is viewed as a more elegant description of the
analysis, compared with a direct abstract interpretation approach in which the
source code is abstractly interpreted over the domain of binding-times. Indeed,
in the constraint-based approach, problem and solution are separated: the con-
straint system expresses the binding-time requirements on the involved variables,
whereas actual binding-times are contained in a solution to the constraint sys-
tem. A practical consequence of this separation is that the data flow analysis,
being performed at the symbolic level, needs to be performed only once for each
predicate (in a first-order setting) rather than performing a separate analysis
for every (abstract) call to the predicate. This result extends — at least to some
extent — to a higher-order setting in the sense that the data flow analysis needs
to be performed only once for each combination of a predicate with the closure
information from its arguments.

In this work, we have shown that a constraint-based approach is also feasible
for the logic programming language Mercury. The available type information al-
lows to construct a precise domain of binding-times, whereas the available mode
information allows to express the data flow constraints in a sufficiently precise
way. Apart from being modular, the resulting analysis is polyvariant, and able
to deal with partially instantiated data structures. A prototype implementation
of the analysis was made and in [49] we describe some experiments that show
the practical feasibility of the analysis. An interesting topic for further research
is to couple the binding-time analysis with an offline specialiser and to perform
experiments to determine the obtainable speedups.



Strongly related to our domain of binding-times is the domain proposed and
used by Launchbury [28] who defines a system of types and derives a finite
domain of projections over each type. Such a projection maps a value to a part
of the value that is definitely static, as such “blanking” out the dynamic part. In
recent work [3,2], a binding-time analysis is presented for the lambda calculus
that allows an expression to be both static and dynamic at the same time;
the general idea is to be able to access statically the (static) components of a
residualised data structure. The exact relation and/or integration with a fine-
grained domain of binding-times as employed by our technique is an interesting
topic for further research.

Upgrading binding-time analysis to deal with Mercury’s higher-order con-
structs requires closure information. In the literature, also closure analysis has
been formulated by means of abstract interpretation [4,9] as well as by con-
straint solving [16, 35, 18]. Bondorf and Jgrgensen [5] develop a constraint-based
flow analysis that traces higher-order flow as well as flow of constructed (first-
order) values. In this work, we have combined closure analysis with binding-time
analysis and used constraints to express the first-order as well as the higher-order
data flow. We have enhanced the domain of binding-times to include a set of clo-
sures that represents the binding-time of a higher-order value, and formulated
the constraint-generation phase as a call dependent process in which however
only the higher-order parts of the call pattern determine the result of the anal-
ysis. During constraint generation, the constraints involving higher-order values
are evaluated, and the resulting closure information is used to decide what con-
straints to incorporate, possibly propagating closure information down into the
called procedures.

We have discussed in detail how the analysis can be applied to multi-module
programs according to a one module at a time scenario in Sections 3.5 and 4.3.
If we do not wish to propagate closure information over module boundaries, the
constraint generation phase can be performed one module at a time, bottom-
up in the module hierarchy. Remaining issues are precisely such inter-module
closure propagation and the handling of circularities in the module hierarchy.
Recent work [8] presents a framework for the (call-dependent) analysis of multi-
module programs that solves both problems. The key invariant in the approach
of [8] is that at each stage of the process, the analysis results are correct, but
reanalysis may — when more information is available — produce more accurate
results. The analysis performs some extra bookkeeping such that, when a mod-
ule is analysed, it records both the call patterns occurring in the calls to the
imported procedures, and the analysis results of the module’s exported proce-
dures. When the recorded information contains new calls (or calls with a more
accurate call pattern) to the imported modules, the analysis may decide to re-
analyse the relevant imported modules with respect to the more accurate call
patterns. Likewise, the recording of more accurate analysis results for a mod-
ule’s exported procedures can trigger the reanalysis of those modules that would
possibly profit from these more accurate results. Note that our binding-time
analysis neatly fits such an approach: initially, a module’s exported procedures



are analysed with respect to T (no closure information is available). The result-
ing binding-time constraint systems are correct, but could possibly be rendered
more precise, when the procedures are (re)analysed with respect to a more ac-
curate call pattern (one that does contain some closure information). To the
best of our knowledge, the binding-time analysis of modular programs has been
considered only occasionally before. Henglein and Mossin [19] note that a sym-
bolic representation of binding-times allows a modular approach. Based on such
a symbolic analysis, [12] present a method to specialise a multi-module program
— written in a simple yet higher-order functional language — by constructing,
for each of the modules, a generating extension, while using only the result of a
call-independent binding-time analysis. The analysis assumes that annotations
indicating whether a function must be unfolded are given by hand and is re-
stricted to module hierarchies without circular dependencies.

To summarise, we can state that few binding-time analyses have been de-
veloped that are polyvariant, deal with partially instantiated data, modules
and higher-order constructs for a realistic language. Our binding-time analy-
sis achieves this for the Mercury language by combining a number of known
techniques: partially instantiated structures are dealt with by incorporating a
structured and precise domain of binding-times, polyvariance and modularity
are achieved by computing the binding-times symbolically and higher-order in-
formation is incorporated by propagating closure information during the sym-
bolic phase of the analysis. Two important limitations of our technique are in
the modularity of the approach, in particular the lack of propagation of closure
information over module boundaries and the handling of circularities in the mod-
ule dependency graph. Fortunately, both issues can be addressed by imposing a
system like [8] on top of our technique.
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