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Abstract

Symmetry reduction holds great promise to counter the
state explosion problem. However, currently it is “conduct-
ing a life on the fringe”, and is not widely applied, mainly
due to the restricted applicability of many of the techniques.
In this paper we propose a symmetry reduction technique
applied to high-level formal specification languages (B and
Z). Not only does symmetry arise naturally in most models,
it can also be exploited without restriction by our method.
This method translates states of a formal model into di-
rected graphs, and then uses graph canonicalisation to de-
tect symmetries. We use the tool NAUTY to efficiently per-
form graph canonicalisation, which we have interfaced with
the model checker PROB.

In this paper we present the general technique, show how
states can be translated first into vertex-coloured graphs
suitable for NAUTY. We present empirical results, show-
ing the effectiveness of our method as well as analysing the
cost of graph canonicalisation.
Keywords: B-Method, Tool Support, Model Checking,
Symmetry Reduction.1

1. Introduction

The B-method [1] is a theory and methodology for for-
mal development of computer systems based on set theory
and predicate logic. It is used in industry in a range of crit-
ical domains and is supported by a variety of tools such as
Atelier-B, the B-toolkit and B4Free.

The PROB [6] animator and model checker is comple-
mentary to traditional B tools, as the ones mentioned above,
and is particularly useful to provide a quick validation and
debugging support prior to the generally time consuming
work of developing formal proofs.

1This research is partially supported by the EU funded FP7 project DE-
PLOY (Industrial deployment of advanced system engineering methods for
high productivity and dependability).

Model checking means that the invariant of a specifica-
tion, also called model, is tested if it is true in every reach-
able state. That is, every predicate of the invariant is eval-
uated for each state. It is well known that model check-
ing suffers from the exponential state explosion problem;
one way to combat this is via symmetry reduction [3, 12].
Indeed, often a system to be checked has a large number
of states with symmetric behaviour, meaning that there are
classes of states where each member of a class behaves like
every other member of that class. Symmetry is particularly
prominent in B because of the use of deferred sets. A de-
ferred set is in essence a user-defined data type, whose car-
dinality and individual elements are left open. This means
that two elements of the same deferred set can be exchanged
without affecting the truth-value of predicates.

In previous work we have introduced symmetry reduc-
tion for model checking of B machines:

– In [7] we have presented the theoretical underpinnings
of symmetry reduction for B, along with correctness
results. We also presented a new symmetry reduction
technique, called permutation flooding, which ensures
that only one representative per symmetry group is ex-
amined. The advantage of the method is its simplic-
ity and its ability to deal with complicated symbolic
datastructures. Its disadvantage is that it usually can-
not yield an exponential reduction in complexity, as the
number of stored states is not reduced.

– In [15] we have pursued another approach, using graph
isomorphism to detect symmetries. We developed
a canonicalisation function for B states viewed as
vertice- and edge-coloured graphs, i.e. a procedure
which maps each state to a unique member of its equiv-
alence class, called the canonical form.

The starting point of this paper is that the practical per-
formance of [15] is rather disappointing. While it is still
more efficient than model checking without symmetry, it is
often slower than [7], and usually fails to deliver the poten-
tial exponential reduction of complexity. A crucial question
is whether this is inherent because of the complexity of de-
tecting graph isomorphism, or whether it is simply due to



an inefficient graph canonicalisation implementation. It is
this question we aim to answer in this paper. We show how
the well known NAUTY package [10] can be used to check
symmetry for B machines, by translating vertice- and edge-
coloured state graphs into only vertice-coloured graphs suit-
able for NAUTY. We have then implemented this transla-
tion and written a C library that allows to integrate NAUTY
within PROB. We then provide a thorough empirical inves-
tigation, comparing this approach with our three existing
symmetry reduction approaches, see [7], [8] and [15].

2. Background: Viewing States as Graphs

A model checker (potentially) has to examine every
reachable state of a specification. The idea of symmetry
reduction is that among the reachable states there are many
distinct states which are symmetric wrt each other, i.e., they
are virtually indistinguishable as far as the behaviour of the
specification is concerned.

The orbit of a state s is the set of all states which are
symmetric to s. The orbit problem is deciding whether
two states s, s′ are in the same orbit. This often amounts
to checking whether there exists a permutation of dataval-
ues (within some given symmetry group) which transforms
s into s′. The orbit problem is the cornerstone of model
checking with symmetry: every time a model checker
with symmetry encounters a new state s, it needs to check
whether there exists an already treated state s′ which is in
the orbit of s.

For the B-method, symmetries are induced by deferred
sets. Take for example the following excerpt from a B Ma-
chine:

MACHINE Sym
SETS Trains; Tracks
VARIABLES pos, stopped
INVARIANT pos: Trains +->Tracks

& stopped <: Trains

Here Trains and Tracks are two deferred sets: the car-
dinality of the sets is not specified and the elements of
the sets are not enumerated and given no name. Hence,
there is no way to directly refer to the elements of those
sets in B predicates or expressions. This allowed us to
prove in [7], that given a state s we could permute deferred
set elements for each other, yielding s′, without changing
the truth value of any B predicate. Also, the value of an
expression in s′ would simply be the permuted value of
the expression in s. For example, given the deferred sets
Trains = {thomas, gordon}, Tracks = {t1, t2, t3} (instanti-
ated for model checking purposes) and given the state s ≡
(pos = {thomas 7→ t2} ∧ stopped = {thomas}), the state
(pos = {gordon 7→ t1}∧ stopped = {gordon}) is in the or-

bit of s, but (pos = {gordon 7→ t1}∧ stopped = {thomas})
is not.

The crucial question now is: how do we solve the or-
bit problem as efficiently as possible. An essential point
of our approach is the translation of individual states of a
B machine into state graphs. Indeed, binary relations are
at the heart of the B method (and are used to represent
more complicated data structures such as functions and se-
quences). Binary relations can be translated into directed
coloured graphs in a natural way, thus translating the or-
bit problem of symmetry reduction into graph isomorphism
(see also [4, 12] or Section 14.4.1 of [3]). This will allow us
to reuse many years of research which have lead to efficient
algorithms for graph isomorphism.

Take for example a relation v ∈ S ↔ T . The state graph
for a state where v = {(s0, t0), . . . , (sn, tm)} is depicted in
Fig. 3. In this graph, the value of the relation, v is repre-
sented by edges that indicate specific ordered pairs, whose
edge labels denote the variable they encode. A special ‘root’
vertex is also present, whose use will be explained later in
this section. Note that the vertices of the graph are coloured
as well: each deferred set is assigned its own unique colour.
Furthermore, all elements of enumerated sets, as well as
all other non-symmetric elementary datavalues (integers,
booleans) get their own unique colour.

What about variables which are not of type relation? Let
us first discuss simpler data types. Such values in B are
either elements of basic sets (including Boolean values and
integers), or sets of values. For an element of a set, v ∈ S,
where v = s0, we have the graph in Fig. 1. The graph
of a set, v ∈ P(S), where v = {s0, . . . , sn} is shown in
Fig. 2. Note that both representations now use the special
‘root’ node. Also, although our graph representation does
not distinguish v = {s0} from v = so, the B type system
does and we only work with well-typed machines (typing is
decidable in B).

For more complicated, nested data types, we have to in-
troduce intermediary vertices into the graph; one for each
nested value. Full details about this translation have been
presented in [15], and further details can be found in [14].
By composing the individual graphs that represent each
value of a variable in a state, we obtain its state graph.
Let G denote the function translating a state to its state
graph. As an example, the graphical form of the state,
〈v1 = {({s0}, {s1})}, v2 = {{s2}}〉 is given in Fig. 4.

3. Using NAUTY to detect symmetry for B

In the previous section we described how B-states can
be transformed into graphs. Now we are going to concen-
trate on the graph isomorphism problem for B state graphs,
which are vertice- and edge-coloured graphs.

To decide whether two graphs are isomorphic we have
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Figure 4. The state graph
G (〈v1 = {({s0}, {s1})}, v2 = {{s2}}〉).

implemented in [15] a procedure to compute a canonical la-
bel for both. Canonical labelling functions find a uniquely
determined label for a graph, which is the same for all sym-
metric graphs. These algorithms rely on the permutation
of graph vertices. Now, consider a graph, g with vertices
V = {v1, v2, . . . , vn}. These vertices can be permuted
in many different ways, each particular ordering inducing
an adjacency matrix which encodes the graph. The set Π
of these adjacency matrices itself can be ordered (e.g., by
viewing the matrices as a binary number). Our canonical
labelling algorithm works by computing a subset of Π and
choosing its least element as the canonical label. This im-
plementation was done in Prolog, and was an extension of
the core algorithm of [11], extended for vertice- and edge-
coloured graphs.

Now we use the implementation of the canonical la-
belling algorithm from the NAUTY package [10] directly.
Since NAUTY can handle only vertice-coloured graphs we
need to transform our vertice- and edge-coloured graphs
into graphs with only labels on the vertices. We show
here briefly how we do this. Consider a machine with
a deferred set NAME, a given set MARITAL STATUS =
{single,married}, a set variable member, and a relation
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Figure 6.

status. A valid state of this machine is

member = {name2, name3},
status = {(name1 7→ single), (name2 7→ married),

(name3 7→ single)}

We have already seen in Section 2 how such a state is trans-
formed into a graph with labels on both vertices and edges,
yielding the graph in Fig. 5.

Considering that the set NAME is deferred, we get the
vertice- and edge-coloured graph in Fig. 6. Note, we gave
the vertices a different shade for different colours and solid
and dashed arrows to distinguish the set variable member
from the relation status.

Now we need to transform the vertice- and edge-
coloured graph into an only vertice-coloured graph, before
it can be handed over to NAUTY. The NAUTY User’s Guide
[10] suggests in Chapter 12 a method how an edge-coloured
graph can be transformed into a vertice-coloured graph. We
implemented a simpler version, introducing one level per
edge-colour, because it is easier to prove its correctness. We
describe our adapted method here briefly.

For each colour (different label) on the edges, there is
a level with all vertices of the vertice- and edge-coloured
graph constructed. The levels are connected with undirected
edges2. We give a description of the first step of the trans-
formation process. Let g = 〈V,CV ,CE,L,E〉 the origi-
nal vertice- and edge-coloured graph, with CV and CE the
colours of the vertices and edges respectively, L : V → CV

a vertice labelling function, and E ⊆ CE × V × V . Then
ĝ = 〈V̂, ĈV , L̂, Ê〉 is the leveled graph, with respective sets

2Equivalent to two directed edges in both directions.
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Figure 7.

of vertices V̂ , colours on the vertices ĈV , labelling func-
tion L̂ and edges Ê. Intuitively, every level i ∈ 1, · · · , nE

of the graph ĝ contains a copy ui ∈ V̂ for every u ∈ V .
Every such ui gets a colour depending on the colour of
u ∈ V in the original graph and i, the number of the
level in ĝ. The different levels of ĝ are connected as fol-
lows: {(ui, ui−1) | u ∈ V ∧ i = 2, · · · , nE} ⊆ Ê and
{(ui−1, ui) | u ∈ V ∧ i = 2, · · · , nE} ⊆ Ê holds.

In Figure 7 we visualised the vertices in each level with
a different shape, since the vertices have already differ-
ent shades for different colours inherited from the original
graph g, to differ the colours of the vertices in the different
levels.

There is now one level for each colour on the edges of g.
The edges with colour one are inserted in level one, edges
with colour two in level two and so on, connecting the re-
spective vertices of the original graph g. For example, let
e = (u, v) ∈ E have colour 2, then the corresponding edge
is inserted in ĝ in level 2, from vertice u2 to vertice v2. So
we have (u2, v2) ∈ Ê.

In general, for every e = (u, v) ∈ E with colour i, i ∈
1, · · · , nE there is an edge (ui, vi) ∈ Ê, where ui is the cor-
responding vertice to u and vi is the corresponding vertice
to v in level i. The edges in ĝ are not coloured anymore as
the corresponding ones in g. Finally we get a vertice but
no longer edge coloured graph, so that it can be handled by
NAUTY.

Correctness of Encoding Edge Colours as
Vertice Colours

We only formalise and prove the transformation of an
edge-coloured graph into a vertice-coloured graph. The ex-
tension to a vertice- and edge-coloured graph is straight-
forward. Readers who are not interested in the correctness
of the translation can skip directly to the description of the
model checking algorithm.

Definition 3.1 An edge-coloured graph is a tuple 〈V,C,E〉
where V is a set of vertices, C a set of colours, and E ⊆
C × V × V .

A vertice-coloured graph is a tuple 〈V,C,L,E〉 where V
is a set of vertices, C a set of colours, L : V → C a vertice
labelling function, and E ⊆ V × V .

Give an edge-coloured (resp. vertice-coloured) graph g
we denote by vert(g) the set of vertices of g.

Definition 3.2 Let V and V ′ be two sets of vertices and π a
bijection between V and V ′.

The bijection π can be applied to an edge-coloured graph
g = 〈V,C,E〉 as follows: π(g) = 〈V ′,C,E′〉, where V ′ =
{π(v) | v ∈ V} and E′ = {(c, π(v1), π(v2)) | (c, v1, v2) ∈
E}.

The bijection π can be applied to a vertice-coloured
graph g = 〈V,C,L,E〉 as follows:
π(g) = 〈V ′,C,L′,E′〉, where V ′ = {π(v) | v ∈ V},
∀ v ∈ V : L′(π(v)) = L(v) and E′ = {(π(v1), π(v2)) |
(v1, v2) ∈ E}.

Two edge-coloured (resp. vertice-coloured) graphs
g1, g2 are isomorphic iff there exists a bijection π from
vert(g1) to vert(g2) such that π(g1) = g2.

We now show how to formally translate an edge-
coloured graph into a vertice-coloured graph, encoding ev-
ery edge-colour as a level in the vertice-coloured graph:

Definition 3.3 Let g = 〈V,C,E〉 be an edge-coloured graph.
We denote by level(g) the vertice-coloured graph 〈V ×
C,C,L×,E×〉, where

• L×((v, c)) = c,3

• E× = {((v, c), (v, c′)) | v ∈ V ∧ c, c′ ∈ C} ∪
{((v1, c), (v2, c)) | v1, v2 ∈ V ∧ c ∈ C ∧ (c, v1, v2) ∈
E}

Proposition 3.4 Let g, g′ be two edge-coloured graphs. If
g and g′ are isomorphic then level(g) and level(g′) are iso-
morphic.

For showing the opposite direction we need the following
Lemma, that says that if a vertice (v, c) is mapped onto a
vertice (v′, c) under π then for any colour c′ ∈ C the cor-
responding vertice (v, c′) is mapped to the corresponding
vertice (v′, c′) with the same v′.

Lemma 3.5 Let π be a bijection such that π(level(g)) =
level(g′). Let level(g) = 〈V × C,C,L,E〉 and level(g′) =
〈V ′ × C,C,L′,E′〉. Then for any v ∈ V, v′ ∈ V and c ∈ C
we have: π((v, c)) = (v′, c)⇒ ∀ c′.(c′ ∈ C ⇒ π((v, c′)) =
(v′, c′)).

Proposition 3.6 Let g, g′ be two label-coloured graphs. g
and g′ are isomorphic if level(g) and level(g′) are isomor-
phic.

3For a vertice- and edge-coloured graph g the colour of a vertice in
level(g) indeed depends on the vertice v in g and edge-colour c of an edge
in g



Model checking algorithm

We now formalise our modified model checking algo-
rithm. To show how symmetry detection via graph isomor-
phism is integrated into the checking, see Algorithm 3.7
adapted from [15]. When a new state is encountered it is
not explored further if its canonical form has already been
explored. In the algorithm error is a function which returns
true if the argument is an error state: usually, this means an
invariant violation or a deadlock4. Also observe our use of
the random function, and α, which is a user defined value.
Its effect varies whether model checking progresses using a
depth first or breadth first search.

Algorithm 3.7[Model Checking with Symmetry Reduction ]

Input: An abstract machine M
Queue := {root} ; Canon := {}; SGraph := {}
while Queue is not empty do

if random(1) < α
then state := pop from front(Queue); /* depth-first */
else state := pop from end(Queue); /* breadth-first */
end if
if error(state) then

return counter-example trace in SGraph from root to
state

else
for all succ,Op such that state →M

Op succ do
sg := nauty canon(G(succ))
if ∃ s such that (sg, s) ∈ Canon then
SGraph := SGraph ∪ {state →Op s}

else
add succ to front of Queue
Canon := Canon ∪ {(sg, succ)}
SGraph := SGraph ∪ {state →Op succ}

end if
end for

end if
od
return ok

The variable Queue stores the states with transitions
yet to be explored, and Canon records canonical forms of
states already reached, along with the corresponding state.
SGraph stores the section of the model explored so far.
The function G converts a state of a B machine into a la-
belled, directed graph, as explained in Section 2. The func-
tion nauty canon computes a canonical form for such a
graph using NAUTY, as explained earlier. Note that all el-
ements of Queue and Canon have associated hash values.
It is therefore usually efficient to decide whether (sg, s) ∈

4We do not deal with liveness properties in this algorithm. In B such
properties are encoded via refinement.

Canon. We have implemented this algorithm within PROB,
and we provide empirical results later in Section 4.

4. Empirical Results

In the following we give the results of some runtime ex-
periments. The tests were conducted under Debian Linux
on a AMD Dual Core 3800+, 2GHz system.

We have compared the method presented in this paper,
abbreviated as nausym in the tables and the following, with
the other symmetry methods described in [7] (flood) and
[15] (canon), as well as the approximate method of [8]
(hash). Runtime results presented in those articles may
differ, since different hardware and operating system was
used. As baseline we have also conducted experiments with
PROB, where symmetry reduction was disabled (wo).

We have used a variety of B specifications in our exper-
iments, and we have partitioned them into two tables: Ta-
ble 1 contains those experiments were all symmetry reduc-
tion methods examined the same number of states (sym) and
Table 2 contains those experiments were the symmetry re-
duction methods differed in the number of states examined.
(Hence, Table 1 contains only a single column for the num-
ber of states computed by all symmetry methods; whereas
Table 2 contains one column per method). The machines
are the same as in [8], except for TokenRing which is a new
B model of a token ring network. We have also varied the
cardinality of the deferred sets in our experiments; the car-
dinality used is shown in the first column (card). Runtimes
are expressed in seconds; Table 1 also contains columns for
the speedup of our new method compared the other methods
(a value above 1 means that our method is faster).

Analysis of the results
nausym vs wo: We can see that for very small cardi-

nalities of the deferred set, the runtimes for each symme-
try method or even without symmetry do not differ much
in most cases. Except for machines like USB 4Endpoints,
where the runtime exceeds reasonable timeperiods already
for cardinality greater than three. The greater the cardinal-
ity of the deferred sets, the greater is also the speedup of
nausym compared to using no symmetry (see speedup wo).
For a cardinality of five, using nausym is already more than
ten times faster for all four machines.

nausym vs canon: We can see that in every instance our
new implementation is more efficient than canon from [15].
Sometimes the difference is dramatic, exceeding 3 orders
of magnitude. Recall that [15], has the same mathematical
foundation as our new method: The B-states are translated
into coloured graphs and a canonical label is computed, to
decide if the respective state has been computed already or
not (see Section 2 and [15]). However, in [15] the standard
canonical labelling algorithm was extended to vertice- and
edge-coloured graphs and implemented in Prolog. In this



paper we transform the B state graphs into vertice-coloured
graphs as explained in Section 3 and then apply NAUTY. In
the introduction we stated that the runtime of the approach
in [15], was disappointingly slow and therefore the ques-
tion was, if this was due to the method based on graph iso-
morphism or the implementation. Now we can answer this
question and say that the disappointing runtime results were
due to the implementation. Probably part of the blame goes
to the implementation in Prolog, the other part is that the
canonical labelling algorithm itself in [15] did not include
many of the optimisations and years of refinement that make
NAUTY such an effective tool.

nausym vs flood: flood employs a different approach
to symmetry reduction, called permutation flooding [7].
For small cardinalities it behaves similarly (sometimes even
slightly better) than our new implementation. But for higher
cardinalities the flooding of the state space induces often too
big of an overhead; meaning that our approach is generally
faster and much more scalable (see, e.g., scheduler1 or To-
kenRing).

nausym vs hash: The only method which is faster than
our new implementation is the hash marker method from
[8]. Indeed, it is the only other method that scales well for
the scheduler1 and TokenRing examples. The method us-
ing hash markers is about twice as fast as symmetry with
NAUTY in all four examples from Table 1 for most cardi-
nalities. Although it is precise for these examples, the sym-
metry reduction with hash markers is not an exact method
in general. That means that error states of a machine could
be missed out. This can be seen in Table 2: the hash mark-
ers often computes less states than required to exhaustively
model check the B machine. In fact, Table 2 shows that the
number of states computed by each method differs. Permu-
tation flooding and nausym compute the same number of
states, which is the minimum number for a correct model
checking.5

Analysis of the graph canonicalisation time After
comparing the runtime of the symmetry reduction with
NAUTY with our other symmetry reduction methods, we
asked ourselves, how much time NAUTY actually takes to
compute the canonical forms, as compared to the total run-
time for model checking. Furthermore we wanted to know,
if there were any graphs for which the computation of the
canonical form was exceedingly expensive? In theory the
answer to the latter question is “yes”: in fact we were able
to construct a small graph with 15 vertices where the com-
putation of the canonical form took about a minute. Luckily,
such graphs never occurred during our empirical tests. We
measured for several machines the maximum time taken to
compute the canonical form of a single graph. In all exper-

5The Prolog implementation of the canonical labelling algorithm does
not detect symmetric states that arise during the constant setup phase,
therefore more states need to be model checked.

iments, this time was less than a millisecond. Considering
that the graphs can be quite big, for greater cardinalities of
the deferred sets, that was quite a surprising result.

A graphical representation of the size of the state graphs
which are fed to NAUTY, can be found in Figure 8. For
the first graph of Figure 8 we have chosen the machine
scheduler0 and compared the number of graphs depending
on the number of vertices for different cardinalities of the
deferred set of the machine. Each dot marks the number
of graphs occuring for a particular number of vertices. The
connecting lines between the dots are only for visibility.

It is expected that with increasing cardinality of the de-
ferred sets also the graphs grow. More interesting is the fact
that the graphs for each cardinality look similar. This we
observed also for most other machines in our experiments.
So often it is possible to estimate the size of the graphs for
a larger cardinality.

In the second graph of Figure 8 we showed several ma-
chines with cardinality three of the deferred set if not stated
otherwise in the Figure. We can see that there are always a
few graphs with very little number of vertices. The minimal
number of vertices for each cardinality is always four, but
most graphs are much bigger.

From our runtime experiments in the previous section
we see that the examples shown here are easily handled by
Nauty. E.g., for the USB4 Endpoints machine there are
more than 800 graphs with 45 vertices each, but the total
runtime of NAUTY is still quite small: most of the runtime of
1.14 seconds (see table 1) comes from ProB’s model check-
ing and interpretation of the B machine. We believe that
the graphs constructed from B-machine states have a spe-
cial structure, which makes it easy for NAUTY to compute
the canonical form. Still, we think that there is some poten-
tial in optimizing the code of the interface which performs
the translation of the state graphs, see section 3, for NAUTY.

5. Conclusion and Related Work

So far this paper has concentrated on model checking
B models. However, in [13] it was shown how Z models
could be translated into B models and how PROB could be
used to model check Z specifications. Also, in [9], we have
developed an LTL model checker for PROB, which can be
correctly applied without restriction in the presence of sym-
metry reduction. Hence, our new method is also applicable
to Z as well as for LTL model checking (something which
we have already successfully used in practice).

We have presented a new symmetry reduction imple-
mentation for high-level B and Z models. We have shown
(and proven correct) a way to translate B states into graphs
suitable for NAUTY, and have shown how the NAUTY tool
can be integrated into PROB. We have conducted exten-
sive empirical experiments, analyzing runtimes and various



Table 1. Empirical Results I
Runtimes of Symmetry Methods Speedup

card states states wo flood hash canon nausym wo flood hash canon
(wo) (sym) [7] [8] [15] [7] [8] [15]

scheduler0
2 16 10 0,04 0,03 0,03 0,05 0,03 1,3 0,9 0,9 1,4
3 55 17 0,23 0,08 0,08 0,16 0,09 2,5 0,9 0,8 1,8
4 190 26 1,10 0,24 0,17 0,60 0,21 5,4 1,1 0,8 2,9
5 649 37 5,10 0,94 0,33 2,76 0,41 12,4 2,3 0,8 6,7
6 2188 50 23,08 6,11 0,61 17,12 0,76 30,5 8,1 0,8 22,7
7 7291 65 115,01 55,07 1,00 139,05 1,28 89,9 43,0 0,8 108,7

scheduler1
2 27 14 0,06 0,04 0,03 0,26 0,05 1,2 0,7 0,7 5,12
3 145 29 0,46 0,12 0,10 1,29 0,16 2,0 0,8 0,7 8,08
4 825 51 3,36 0,43 0,25 6,27 0,39 8,6 1,1 0,6 16,03
5 5201 81 27,13 2,28 0,54 35,56 0,84 32,4 2,7 0,7 42,42
6 37009 120 333,82 35,71 0,96 674,26 1,61 207,9 22,2 0,6 419,93
7 - 169 * * 1,66 * 2,80 - - 0,6 -

10 - 386 * * 6,51 * 11,37 - - 0,6 -
15 - 1041 * * 35,67 * 67,08 - - 0,5 -
20 - 2171 * * 141,96 * 257,16 - - 0,6 -
RussianPostalPuzzle
1 15 15 0,03 0,03 0,03 0,07 0,06 0,5 0,5 0,5 1,1
2 81 48 0,21 0,14 0,13 0,42 0,25 0,8 0,6 0,5 1,7
3 441 119 1,40 0,54 0,43 2,20 0,81 1,7 0,7 0,5 2,7
4 2325 248 9,36 2,37 1,14 11,53 2,23 4,2 1,1 0,5 5,2
5 11985 459 64,52 15,91 2,58 63,97 5,57 11,6 2,9 0,5 11,5

USB 4Endpoints
1 29 29 0,21 0,21 0,23 24,67 1,14 0,2 0,2 0,2 21,7
2 694 355 10,69 5,80 7,74 547,17 21,97 0,5 0,3 0,4 24,9
3 16906 3013 1533,54 265,19 208,40 * 297,43 5,2 0,9 0,7 -

* means test has been cancelled or not done, because of excessive runtime

Table 2. Empirical Results II (where the methods calculate different number of states)
number of states Runtime of Symmetry Methods

card wo flood hash canon nausym wo flood hash canon nausym
[7] [8] [15] [7] [8] [15]

Token Ring
2 35 19 19 35 19 0,07 0,06 0,05 0,11 0,07
3 295 60 60 148 60 0,49 0,19 0,16 0,65 0,22
4 3097 174 141 646 174 6,57 1,44 0,46 6,47 0,86
5 38521 480 278 2248 480 175,61 42,90 0,97 61,98 2,96
6 - - 495 8460 1252 * * 2,09 921,79 9,90
7 - - 816 - 3160 * * 4,27 * 33,86

Dining
2 21 8 7 11 8 0,07 0,05 0,04 0,06 0,05
3 337 13 11 29 13 1,50 0,18 0,08 0,27 0,10
4 17713 48 17 165 48 145,53 18,13 0,15 3,39 0,54

Towns
2 17 11 11 11 11 0,34 0,20 0,21 0,24 0,21
3 513 105 105 105 105 67,78 13,45 13,73 15,68 13,93
4 65537 3045 3011 - 3045 * 1721,73 1748,45 * 1732,03

* means test has been cancelled or not done, because of excessive runtime
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Figure 8. Size of state graphs for scheduler0 (with varying cardinality) and for varying B machines



other aspects related to the graph canonicalisation proce-
dure.

This paper started with the question, if the disappoint-
ing performance results of [15] were due to the compu-
tation of the canonical labelling or the implementation of
the algorithm. In this paper, we have clearly answered this
question, and shown that our new technique and implemen-
tation outperforms [15]; often by several orders of magni-
tude. Our technique also is generally much more effective
than permutation flooding [7]. We have also shown that
graph canonicalisation is not the bottleneck, at least for the
experiments conducted. Our technique is generally slower
than the approximate method of [8], but scales equally well
while being fully precise.

In summary, we believe that we now have a tool which
can effectively exploit symmetries in B and Z models. Con-
trary to other approaches, such as, e.g., [2], the user has to
perform no annotation; symmetries induced by deferred sets
are exploited automatically. Furthermore, partial symme-
tries can be exploited (such as in the Dining example from
Table 2). Our long term goal is to provide a tool that can
both deal with a high-level formalism such as B or Z, while
at the same time providing performance comparable to tools
such as SPIN working on lower-level Promela models. In
first preliminary experiments, we have hand-translated the
scheduler1 example from Table 1, with the help of Promela
experts. The outcome was that for 4 processes PROB with
NAUTY symmetry reduction is actually quite competitive
compared to SPIN with partial order reduction, despite the
much higher-level input language. Furthermore, if we actu-
ally measure the total time taken to display the result to the
user, PROB is faster (for SPIN there is the overhead to gener-
ate and compile the C code). For 12 processes we were actu-
ally not able to perform the model checking in SPIN, despite
various attempts, whereas PROB checked the model in less
than 15 seconds. Of course, this is just one particular exper-
iment and it is too early to draw any general conclusions.
Also, in addition to partial order reduction, one could also
try and use symmetry reduction for SPIN, e.g., by using the
SymmSPIN tool [2] or TopSPIN tool [5], However, exploit-
ing symmetries at the Promela level is more difficult and
limited (no partial symmetries; only one symmetric scalar
set, etc...). In conclusion, we believe we have presented a
model checking technique and tool that can effectively and
accurately exploit symmetries in high-level B and Z models.
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