
ProTest: An Automatic Test Environment for B Specifications

Manoranjan Satpathy1 Michael Leuschel2 and Michael Butler2

1 Department of Computer Science

University of Reading, Reading RG6 6AY, UK

2 School of Electronics and Computer Science

University of Southampton, Highfield, Southampton, So17 1BJ, UK

M.Satpathy@reading.ac.uk, {mal,mjb}@ecs.soton.ac.uk

Abstract

We present ProTest, an automatic test environment for B specifications. B is a model-oriented notation where

systems are specified in terms of abstract states and operations on abstract states. ProTest first generates a state

coverage graph of a B specification through exhaustive modelchecking, and the coverage graph is traversed to

generate a set of test cases, each being a sequence of B operations. For the model checking to be exhaustive, some

transformations are applied to the sets used in theB machine. The approach also works if it is not exhaustive;

one can stop at any point in time during the state space exploration and generate test cases from the coverage

graph obtained so far. ProTest then simultaneously performs animation of the B machine and the execution of

the corresponding implementation in Java, and assign verdicts on the test results. With some restrictions imposed

on the B operations, the whole of the testing process is performed mechanically. We demonstrate the efficacy of

our test environment by performing a small case study from industry. Furthermore, we present a solution to the

problem of handling non-determinism in B operations.

keywords: Specification Based Testing; B–Method; Test Environment; Non Determinism.

1 Introduction

Software testing is broadly classified into two categories:structured testingandfunctional testing[2, 6]. Struc-

tured testing (or white-box testing) derives test cases from the structure of the implementation or part of the

implementation. Such test cases are derived from a programmer’s perspective with the aim of covering as much as

possible the structure of the object under test. This approach is likely to miss out many bugs because it may give all

the code coverage that we may need, but it may not give us all ofthe system coverage that users may expect. The

test cases for functional testing (or black-box testing) onthe other hand are written from a user’s perspective. They

1

are derived from the external specification of the software behaviour with no consideration given to the internal

organisation, logic, control or data flow. Structured teststell a developer that the code is doing things right while

functional tests tell a developer that the code is doing the right things [8].

Functional testing involves executing the implementationunder test in relation to a set of test cases and exam-

ining the correctness of the generated output. In this context, we have the following issues:

• Generation of test cases:How to obtain test cases so that they cover all features of a requirement under all

scenarios?

• Execution of the test cases:How to execute the test cases which are obtained from requirements or spec-

ifications? This may be a difficult task because even if the implementation preserved the intent of the

requirement/specification, it may not preserve the structure or the logic of the latter.

• Validation of test outcomes:Once we run the test cases, the program would produce some outputs. How to

ensure that the results are correct?

If the development process is formal, many of the above issues can be handled in a rigorous manner. Formal

specifications precisely define the high level aspects of a software while omitting the detailed structural informa-

tion; they are more likely to encode all of the required functions and their scenarios. Therefore testers can use the

underlying mathematical framework to generate, possibly mechanically, test cases for functional testing.

Even if we obtain test cases from specifications, it may not beeasy to use them to execute the implementation.

This is because a high level functionality may have been implemented in a variety of ways, and the mapping be-

tween the high level functionality and the low level implementation may not be apparent to the tester. Consider an

example of a test case being a sequence of high level operations at specification level, but this operation sequence

may not map easily to the operations at the implementation level. Some authors have proposed the use of spe-

cial mappings calledrepresentation mappingsto bridge this semantic gap [17]. In addition, there is the problem

of non-determinism. The choice made by a non-deterministicoperation may not correspond to the deterministic

choice made by the implementation. And then how are we going to use a test case involving non-determinism?

When a system executes a test case, it produces an outcome, and the outcome is often interpreted by the tester

to assign a verdict that the system has passed the test. This problem can be tackled by incorporating oracles into

the testing process [17, 23]. A test oracle determines if thesystem behaved correctly in relation to the test case.

Test oracles are usually obtained from specifications. The outcome of a test case and the outcome obtained from

a test oracle need to be matched to establish the equivalencebetween abstract outputs and concrete results. There

are two issues in this context; first, there must be a mapping between the abstract state of the specification and the

concrete state of the implementation, and second, there must be a mechanism to show their equivalence. The first

problem can be solved by representation mapping; Antony andHamlet [4] have discussed how the users could

write explicit code for a representation mapping between the concrete data structures of C++ instance variables

and the abstraction of the specification. And the second can be addressed though the use of probing or observation

operations both at the abstract as well as at the concrete state levels.

2

In this paper, we discussProTest, an automatic test environment for B specifications. ProTest is based on ProB,

a model checking and animation tools for B [16]. ProTest follows an approach similar to the one by Dick and

Faivre [10] (discussed in Section 2) and generates test cases from B specifications by partition analysis of the

state invariant and the operation preconditions of a specification. Our method offers some guidelines and if the

implementation follows them, then the whole cycle of the testing process can be automated. We also discuss a

small industrial case study to illustrate our approach and the test environment. The main results of our paper can

be summarised as follows:

• ProTest generates test cases by partitioning and exploringthe state space. ProTest then simultaneously

animates the specification and runs the implementation withrespect to the test cases and assigns verdicts

whether the implementation has passed the tests. The whole process is automatic; however, at this stage the

test environment imposes some restrictions on operation arguments and results.

• We have presented a solution to handle non-determinism in B operations; however the current implementa-

tion of the ProTest does not support this.

The organisation of the paper is as follows. Section 2 discusses the related work. Section 3 presents our

approach. Section 4 discusses our implementation and in Section 5 we preset an analysis of our test environment

in relation to existing work. Section 6 concludes the paper.

2 Related Work

The concept of specification based testing most probably originated from the work by Hall [13] in which he

discussed partitioning the input space by examining predicates in the operations of Z specification [20]. The aim

was to induce software correctness based on test results.

The work by Dick and Faivre [10] is a major contribution to theuse of formal methods in software testing

in which they have discussed a strategy for generating test cases from model oriented formal specifications. A

VDM [14] specification has state variables and an invariant (Inv) to restrict the state variables. An operation, say

OP , is specified by a pre-condition (OPpre) and a post-condition (OPpost). The approach of Dick and Faivre is to

partition the input space ofOP by converting the expressionOPpre ∧ OPpost ∧ Inv into its Disjunctive Normal

Form (DNF); and each disjunct of it represents an input subdomain of OP . Next, as many operation instances

of OP are created as the number of non-contradictory disjuncts inthe DNF. An attempt is then made to create a

FSA (Finite State Automaton) in which each node represents apossible machine state and an edge represents an

application of an operation instance. A set of test cases arethen generated by traversing the FSA where each test

case is a sequence of operation instances. The work of Dick and Faivre discusses only the mechanisation of the

partitioning algorithm.

Legeard et al. [15] have developed a tool called the BZ Testing Tool (BZ-TT) for deriving test cases from Z or B

specifications. Since our approach has many similarities with the BZ-TT, we present it here in some detail. So far

3

as B specifications are concerned, they assume (i) the specification consists of a single B machine, and (ii) all sets

in the B machine are transformed into finite enumerated sets.The test case generation proceeds in the following

steps:

• The definition of each B operationOp is transformed into itsnormalised form[1] which looks like:

outs←− Op(inps) = Pre | @s′, outs′ . Post =⇒ outs, s := outs′, s′

where,s is the state variable of the machine,Pre is the precondition (overinps ands) andPost is the

postcondition. inps andouts are respectively the operation input and the result. The normal form tells:

providedPre is true, the valuess′ andouts′ are non-deterministically chosen such thatPost is satisfied.

Post may refer tos andouts as well ass′ andouts′.

• Pre andpost are transformed into their DNF; i.e

(
∨

i Prei) | @s′, outs′ . (
∨

j Postj) =⇒ outs, s := outs′, s′

• The above expression partitions the input space into subdomains of the form:

∃ inps, s′, outs′ . (
∨

i Prei)
∧

Postj.

Test cases are generated from the above expression using a CLP (Constraint Logic Programming) solver.

However, in order to generate boundary goals, BZ-TT uses cost functions to partition further the input subdomains.

If an input subdomain is represented by the predicate#(W ∪ R ∪ A) < #{X1,X2,X3}, then some candidates

for the maximization and minimization cost functions couldbe#W +#R+#A = 2 and#W +#R+#A = 0

respectively. Given a boundary condition, Prolog search techniques are used to generate a test preamble. At

a boundary state, all eligible operations are applied to generate test cases as sequences of operation instances.

From the test cases, automatic test scripts are generated inthe target language, and representation mappings are

created manually. Because of problems due to non-determinism and those related to matching between abstract

and concrete states, automatic verdict assignment was not implemented. It is to be noted that the BZ-TT does not

handle constants, properties and set comprehension, all ofwhich we use in our case study.

The work of Richardson et al. [17] discusses the derivation and use of test oracles for checking test results in the

context of multi-lingual and multi-paradigm (formal) specifications. Test oracles are derived from specifications

in conjuction with the derivation of test data in relation tosome testing criteria. Test execution is monitored and

the results are verified against oracles; sometimes the authors considered it useful to compare intermediate results

in addition to the end results. To make verification possible, their approach constructs mappings between the name

space of the implementation and the name space of the oracle (same as the name space of the specification). There

are two kinds of mappings: control and data. Control mappings are between control points in the implementation

and locations in the specification where the implementationand the specification should be in same state. Data

mappings describe the transformation between the data structures in the implementation and objects in the speci-

fication. These mappings are also called representation mappings [15], and usually they are developed manually.

The implementation state and the state changes are monitored at the pre-determined control points, and data map-

4

pings are used to establish the correspondence between the implementation and the specification state as oracle.

The authors point out that many of the steps described could be automated.

3 Our Approach

Let us assume that a formal specification has adequately specified all the requirement functions under all pos-

sible scenarios. Then our aim is to generate test cases whichwould test all such functions of the corresponding

implementation under the given scenarios. In addition, ourtest environment would examine the test results for

assigning verdicts. ProTest is a test environment for B specifications.

3.1 The B method

The B-method, originally devised by J.-R. Abrial [1] is a theory and methodology for formal development of

computer systems. B is model-oriented in the sense of Z and VDM; B is used to cover the whole of the software

development cycle; the specification is used to generate code with a sequence of refinement steps in between. At

each stage, the current refinement needs to be proved consistent with the previous refinement.

The basic unit of specification in the B method is called aB machine. Larger specifications can be obtained

by linking B machines in a hierarchical (tree like) manner. This is a design restriction on the B method with

view to making proofs compositional. A B machine consists ofa set of variables, an invariant to restrict the

variables and a set of operations to modify the state variables. A machine has an initial state which initializes the

state variables. An operation has a precondition, and an operation invocation is defined only if the precondition

holds. The initialization action and an operation body are written as atomic actions coded in a language called the

generalized substitution language[1]. The language allows specification of deterministic andnon-deterministic

assignments. An operation transforms the machine state to anew state. The behaviour of a B machine can be

described in terms of a sequence of operations; the first operation of the sequence originates from the initial state

of the machine.

3.2 Our Example

For our case study, we will consider a component of the teletext system of a commercial television from Philips

Electronics [18]. The component description is as follows:a TV screen has a display window consisting ofR rows

which can display a sequence ofN teletext page titles. At any time a subsequence of the transmitted sequence

could be displayed and therefore, the display of theN page titles (N ≥ R) would require scrolling. Page titles

could be scrolled by pressing theup and thedownarrow buttons of the TV remote. Every slot of the display

window has a default colour and it can display a teletext pagetitle. At any point in time, the cursor resides

on exactly one slot which is displayed with a different colour. The component has non-trivial cursor movement

operations. A pictorial form of the component has been shownin Figure 1. We have specified this teletext

component as a single B machine and a sketch of it has been shown in the Appendix.

5

DISPLAY

WINDOW

TV Remote

number sequence
Teletext page

Figure 1. Display of N page titles over the Display window of size R

A B machine has a name, and in our case it is calledTeletext. TheSETSclause shows the sets those will be used

by the machine. TheCONSTANTSclause declares the constants used in the machine and thePROPERTIESclause

tells of their types and values. TheVARIABLESheading shows the state variables and theINVARIANTclause

puts restrictions on the state variables in the form of predicates; in the appendix we have shown a fragment of the

invariant. TheINITIALISATIONclause initializes the state variables. TheOPERATIONSclause shows a set of

operations which can either probe the machine state or modify it. In our example, the most important operations

aredefine, upCursor anddownCursor. TheupCursor tries to move the cursor one position up and it may

involve scrolling. ThedownCursor tries to move the cursor one position down and it may involve scrolling in

the opposite direction. All such actions are possible if thedefine operation has placed the machine in adefined

mode of operation.

3.3 Partitioning of the input spaces

A B machine has a state which can be modified through the operations of the machine. TheINITIALISATION

clause puts a B machine in its initial state. Thereafter, as and when the precondition of an operation holds, the

operation is eligible for application. Application of the eligible operations defines the behaviour of the machine.

Following the terminology of Dick and Faivre [10], we will define a test case as a sequence of eligible operations.

Every operation has a precondition which defines its input space. Dick and Faivre, partition this input space into

subspaces meaning that each subspace defines a possible scenario under which the operation can be applied. We

follow the same approach for a B machine. We enumerate our partitioning method in the following steps.

Step 1: Consider a machine operation OP1. Compute the DNF of the precondition of the operation. As pointed

6

out by Legeard et al. [15], in practice, the precondition of an operation is sometimes trivial and therefore, a DNF

based analysis would not result in interesting partitions.In order to address this problem, we do the following

transformation. Consider an operation with anIF construct in its body such as:IF < if -predicate > THEN ...

ELSE ...We then add (through conjunction) the predicate(< if -predicate > ∨ ¬ < if -predicate >) to the

precondition. Note that the above is atautology, and therefore, it does not modify the precondition but it results

in a better partition of the input space. We do the same for allthe if–predicates in the operation. Refer to the

operationupCursor in Figure 3.3, and observe how the original precondition hasbeen expanded to create more

partitions.

Note that this transformations is not only limited to IF predicates. They are also applied over the predicates of

the CASEand theSELECTstatements. The rules for adding predicates to the precondition have been shown in

the Appendix. After all these transformations of the precondition, it is subjected to the DNF analysis. Note that,

for the moment, situations like anIF statement inside anANY statement is ignored. The problem is: it might

depend on the bound variables which are not part of the input or the initial state.

Step 2: Let the DNF of the precondition be the disjunction of the disjunctsC1, C2, . . . , Cp. The way we have

lifted tautologies constructed out of the predicates in an operation body, means that some of these disjuncts may

be self contradictory, and further some of them might contradict the invariant of the B machine. We then filter

out these contradictory disjuncts by subjecting them to a naive theorem prover. Let the disjuncts that remain after

filtering areC1, C2, . . . , Ck. These disjuncts partition the input space ofOP1 into k subspaces.

Step 3:Createk instances of the operation OP1; let the instanceOP i
1 corresponds to disjunctCi, 1 ≤ i ≤ k. What

this means is that the instanceOP i
1 is eligible for application when the conditionCi holds. The way we have lifted

the predicates to the pre-condition, implies that each operation instance represents a valid control path inside the

operationOP1.

Step 4: Create similar instances for all operations in the machine.

Step 5: The full state space of the B machine is explored to constructa FSM (finite state machine) whose initial

node is the initial state of the B machine. Each node in the FSMrepresents a possible machine state and each

edge is labelled by an operation instance. Of course, to explore the full state space, it is assumed that all the sets

of the specification are of finite type and they are small in size. The state space search is performed by the ProB

tool; more about the implementation will be discussed later. The aim here is that all the operation instances which

we have generated in our partition analysis appear at least once in the FSM. It may not be possible since some

operation instances may not be reachable.

Step 6: Starting from the initial state, traverse the FSM to generate a set of operation sequences such that each

operation instance in the FSM appears in the generated sequences at least once. Each operation sequence should

start with the initial state, and an operation instance may appear in more than one sequence. Each such sequence

would constitute one test case for the subsequent implementation. And the set of test sequences would be our test

suite. The traversal of the FSM to generate an optimal numberof test sequences is aNP–complete problem [12];

therefore, we need to follow some heuristic for traversing the graph.

7

(A)

upCursor = PRE Status = DEFINED THEN

IF Selected > 1 THEN

Selected := Selected - 1 ||

IF (Plist_size >= Display_size) THEN

IF Scroll > 0 THEN

IF Selected = Scroll + 2 THEN

Scroll := Scroll-1 ||

ELSE IF (DisColours(Display_size)=white &

DisPnames(Display_size)=blank) THEN

DisColours := {nn,cc |}

ELSE DisColours := {nn,cc |} END

END

ELSE /* Scrolling not necessary */

IF Selected >= 2 THEN DisColours := {nn,cc | ...}

END

END

ELSE DisColours := {nn,cc |...} END

END END;

(B)

upCursor = PRE

Status = DEFINED & (Selected > 1 or Selected <= 1) &

(Plist_size >= Display_size or Plist_size < Display_size) &

(Scroll > 0 or Scroll <= 0) &

(Selected = Scroll + 2 or Selected /= Scroll +2) &

(Selected >= 2 or Selected < 2) &

((DisColours(Display_size) = white & DisPnames(Display_size) = blank) or

(DisColours(Display_size) /= white or DisPnames(Display_size) /= blank)) &

(Selected = 1 or Selected >1) & (Scroll = 0 or Scroll > 0)

THEN END;

Figure 2. Lifting of predicates to a precondition: (A) Defini tion of operation upCursor, (B) New pre-

condition of upCursor

8

3.4 Testing strategy

Each test case of the test suite we have generated is nothing but a sequence of operations of the B machine

that specified our problem. We will not address the issue of non-determinism here; it will be discussed in a later

section. If we could animate the B machine with respect to a test case, at the end of covering the test sequence, we

would obtain a state, say Statespec. Let us assume that we have an implementation of the B-machine and we are

able to execute the implementation in relation to the same test case, and let the resulting state be called Stateimpl.

Now if we are able to match Statespec with Stateimpl then we could assign a verdict whether the implementation

has passed the test. The whole process has been shown in the figure 3.

State

impl
State

spec

Test Case

Specification
Animation

Implementation in

Executaion of Verdict

ProTest Environment

MATCHING

Figure 3. The testing process

3.5 The Matching Problem

The operations of a B machine can be divided into two categories: update operationswhich can modify the

machine state, andprobing operationswhich only perform queries on the state variables. The probing operations

can query the system state to extract out important state aspects. Table 1 shows all the update and the probing

operations of our case study. We assume that the implementerimplements all the probing as well as the update

operations. The probing operations of the specification andthose of the implementation can now respectively

query important properties of Statespec and Stateimpl and match their responses. Of course this would require

mapping between the name space of Statespec and that of Stateimpl, a mapping similar to the work of Richardson

et al [17].

4 Implementation: The ProTest Environment

ProTest is a test environment built on top of the ProB tool which has been developed by Leuschel and But-

ler [16]. In the following, we will present a brief description of it.

9

4.1 The ProB Tool

The ProB tool is an automated consistency checker of B machines via model checking and constraint-based

checking. The activity of consistency checking shows that the operations of a machine preserves the machine

invariant. The ProB environment has been developed mainly in SICStus Prolog with a graphical user interface

implemented in Tcl/Tk. ProB uses the JBTools [22] package totranslate a B machine into XML form, and then

the Pillow package [7] is used to to transform the XML files into a Prolog term representation. The ProB front

end then uses this Prolog term representation. The ProB animator provides visualization of the state space that has

been explored so far by the animator. Further details about the ProB can be found in [16]

The model checker component of ProB tries to explore the state space of a B machine systematically and

automatically. It alerts the user as soon as a problem like the invariant violation is found, and then presents the

shortest trace within the states already explored that leads from the initial state to the place of error. The model

checker also detects when all states for finite state models have been explored, and thus can formally guarantee

the absence of errors. For such exhaustive model checking, the sets of the machine are restricted to small finite

sets and integer variables are restricted to small numeric ranges. Under these restrictions only, ProB can traverse

all the reachable states of the machine. ProB can also animate a B machine. In addition, ProB supports random

animation in which eligible operations are applied at random till their number reaches a certain limit given by a

user.

In addition to temporal model checking, i.e. model checkingof the above type, ProB also supportsconstraint

based checking. If there is an invariant violation because of an operation invocation, ProB model checker can find

it through systematic exploration. However, constraint based checking finds a state of the machine that satisfies the

invariant but where we can apply a single operation to reach astate that violates the invariant. ProB supports this

approach through the use of Prolog’s co-routining and constraint facility [16]. We will use both these approaches

of ProB in our testing environment.

4.2 The ProTest Tool

Our test environment makes the following assumptions:

1. The B specification consists of a single machine. This is because, at this stage, ProB can animate and model

check a single B machine.

2. The operation parameters of the machine and those of the implementation are of basic types, and in addition

the operations have a single return value of basic type. Our current implementation performs automatic

verdict assignment under these restrictions. They keep therepresentation mapping between the specification

and implementation namespaces simple. However, in future,we intend to lift these restrictions.

3. All the machine operations are deterministic. Note that in this paper we will present our solutions to handle

non-determinism; however, our current implementation does not support them.

10

The ProB tool has been augmented with the following enhancements to build the ProTest environment:

• The Partition Analyser: The preconditions and the machine invariants are extracted and both are converted

into their DNFs. A naive theorem prover eliminates all the disjuncts from the DNF of the precondition

which are either self-contradictory or which contradict the invariant. The remaining disjuncts are used to

create partitions of the operation input space, and then theoperation instances.

• ProTest has an interface for running Java Programs with respect to test cases, and to explore the execution

states through the use of probing operations.

• Coverage Graph Display: ProTest can display the state spacecoverage in the form of a graph. Nodes in this

graph represent the abstract machine states and the edges are labelled with the operation instances. An edge

signifies state transformation through the application of the labelled operation instance.

4.3 Mechanical generation of test cases

In a pre-processing phase, the infinite and deferred sets of the B machine are transformed into finite enumerated

states; and also the sizes are kept small to facilitate exhaustive model checking. The ProTest partition analyzer

partitions the input space of each B operation to generate a set of operation instances. Then the ProB model

checker tries to explore the whole state space and generatesthe state coverage graph. The coverage graph is a

directed graph and it has a start state which is also termed the root of the coverage graph. Figure 4 shows the

coverage graph for a particular assignment (of the parameters of thedefine operation) of our case study; each

edge has been labelled with an operation instance. Note thata different assignment of thedefine operation would

result in a different coverage graph. Table 1 shows the number of operation instances covered by some of the

graphs generated. It can be seen that for operationsupCursor anddownCursor, only a small percentage of

instances appear in the coverage graphs. The reasons are: (i) the given initialization and the constant set-up makes

many instances unreachable, and (ii) our naive theorem prover at this stage does not remove some partitions which

could be inconsistent. It is to be noted that a large majorityof the uncovered partitions are contradictions, and at

the moment our simple theorem prover does not catch them; we are working on using CLP to catch more.

The following heuristic is used to traverse the state coverage graph to generate a set of test cases, each test case

being of the form(preamble(p) :: OP, postulate(N ′)), where OP is the label of an edge joining the node pair

(N,N ′), preamble(p) is the sequence of labels of a path from the root of the coverage graph toN , preamble(p) ::

OP is the sequence obtained by insertingOP at the end ofpreamble(p), andpostulate(N ′) is the test oracle of

the test sequence.postulate(N) is obtained from the nodeN ′ which is constituted from the results of the probing

operations on the state represented byN ′. This heuristic uses Dijkstra’s shortest path algorithm [11].

Algorithm: Generate-Test-Sequences

input: the coverage graph given by ProB model checker.

output: a set of operation sequences as test cases and postulates for each.

11

norm_colour=red,sel_colour=lightgrey,Max_Display_size=10,
Max_Plist_size=15,PAGENR={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},titles(1,p1),

titles(2,p2),titles(3,p3),titles(4,p4),
titles(5,p5),titles(6,p6),titles(7,p7),

titles(8,p8),titles(9,p9),titles(10,p10),
titles(11,p11),titles(12,p12),titles(13,p13),

titles(14,p14),titles(15,p15)

setup_constants

Display_size=0,Plist_size=0,Status=UNDEFINED,
Selected=1,Scroll=0,DisColours={},

DisPnames={}

initialise_machine

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=1,Scroll=0,DisColours(1,lightgrey),

DisColours(2,red),DisColours(3,red),DisColours(4,red),
DisPnames(1,p1),DisPnames(2,p2),DisPnames(3,p3),

DisPnames(4,p4)

define(5,4)===>(2)

upCursor===>(10,16)

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=2,Scroll=0,DisColours(1,red),

DisColours(2,lightgrey),DisColours(3,red),DisColours(4,red),
DisPnames(1,p1),DisPnames(2,p2),DisPnames(3,p3),

DisPnames(4,p4)

downCursor===>(43,79) upCursor===>(31,43)

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=3,Scroll=0,DisColours(1,red),

DisColours(2,red),DisColours(3,lightgrey),DisColours(4,red),
DisPnames(1,p1),DisPnames(2,p2),DisPnames(3,p3),

DisPnames(4,p4)

downCursor===>(151,187) upCursor===>(40,52)

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=4,Scroll=1,DisColours(1,red),

DisColours(2,red),DisColours(3,lightgrey),DisColours(4,red),
DisPnames(1,p2),DisPnames(2,p3),DisPnames(3,p4),

DisPnames(4,p5)

downCursor===>(145,181)

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=3,Scroll=1,DisColours(1,red),

DisColours(2,lightgrey),DisColours(3,red),DisColours(4,red),
DisPnames(1,p2),DisPnames(2,p3),DisPnames(3,p4),

DisPnames(4,p5)

upCursor===>(69,77)

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=5,Scroll=2,DisColours(1,red),

DisColours(2,red),DisColours(3,lightgrey),DisColours(4,white),
DisPnames(1,p3),DisPnames(2,p4),DisPnames(3,p5),

DisPnames(4,blank)

downCursor===>(257,281) upCursor===>(67,75)

downCursor===>(261,285)

downCursor===>(226)

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=4,Scroll=2,DisColours(1,red),

DisColours(2,lightgrey),DisColours(3,red),DisColours(4,white),
DisPnames(1,p3),DisPnames(2,p4),DisPnames(3,p5),

DisPnames(4,blank)

upCursor===>(61)

upCursor===>(59)

downCursor===>(229)

Figure 4. State coverage Graph

12

Operation name Type No. of partitions generated No. of partitions covered

PageAtColumn1 probing 1 1

ColourAtColumn1 probing 1 1

CurrentCursorPosition probing 1 1

PageAtCurCursor probing 1 1

ColourAtCurCursor probing 1 1

PageAtLastColumn probing 1 1

ColourAtLastColumn probing 1 1

define update 3 3

undefine update 1 1

upCursor update 78 15

downCursor update 288 18

Table 1. partitions for each operation

< define → (2), upCursor → (10,16) >

< define → (2), downCursor → (43, 79), upCursor → (31,43) >

< define → (2), downCursor → (43, 79), downCursor → (151, 187), upCursor → (40, 52) >

< define → (2), downCursor → (43, 79), downCursor → (151, 187), downCursor → (145, 181), upCursor → (69, 77) >

Table 2. Some test sequences obtained from the graph of Figur e 4

{

Mark every edge in the graph asuncovered;

while there is an uncovered edge(N,N ′) with labelOPj {

find the shortest pathp from the root of the graph to nodeN using Dijkstra’s algorithm;

Output test case forOPj : (preamble(p) :: OPj , postulate(N ′));

Mark all edges with labelOPj as covered;

for each uncovered edge(Na, Nb) with labelOPab occurring in pathp {

Output test case forOPab: (preamble(p′) :: OPab, postulate(Nb)), where

p′ is the path fromroot to Na (p′ is a prefix ofp);

Mark all edges with labelOPab covered;

}

}

By altering the assignments to the arguments of thedefine operation to deliberately introduce an error in the

implementation, we have generated43 test cases. Some of these test cases are shown in Table 2; the table does

not show the postulates which are generated for each of the test sequences. Furthermore, observe that the test

sequences in the table have been generated from the coveragegraph of Figure 4.

4.4 Automating the test execution and verdict assignment

ProTest environment at this stage can deal with Java implementations. Let us assume, we have a Java im-

plementation which has encoded all the update and the probing operations of a B machine. In this sense, the

13

test_case_generate: Test case successful: test(downCursor,177)

test_case_generate: Test case successful: test(downCursor,132)

test_case_generate: Test case successful: test(upCursor,21)

test_case_generate: Test case successful: test(upCursor,31)

test_case_generate: Test case successful: test(downCursor,151)

bjasper: Java and B Return Value Mismatch: (blank\==p7)

bjasper: Java and B Return Value Mismatch: (white\==red)

test_case_generate: Test case has failed: test(downCursor,253)

Table 3. Some test outputs of passed and failed test cases

implementation has been directed by the specification. Richardson et al. [17] point out that while running a test

case, examination of the test result is not the only interesting observation; sometimes intermediate results can

be examined at strategic points which they call control points. In our case, control points could be the positions

before and after operation (or operation instance) invocations. ProTest has the capability to perform simultaneous

specification animation and code execution, and at selectedcontrol points, both the specification and the execution

states are examined by invoking their respective probing operations. The results of the probing operations are

matched by using the representation mappings, and if there is a mismatch, it is reported to the user.

As mentioned earlier, by altering the assignments to the parameters of operationdefine, we have generated

43 test cases. In our first attempt, we obtained22 test cases in relation todefine(5, 4) out of which21 failed.

The reason was that the argument ordering for thedefine operation was swapped in the implementation. After

it was corrected,4 test cases still did not pass. This time the reason was an error in the specification; one slot in

the display column was getting assigned to a wrong value. Interestingly, this error was not discovered during the

model checking since it was not violating the invariant. Thespecification was corrected and after that all the test

cases passed the tests. In the end, all the43 test cases passed their tests. Table 3 shows test outputs generated by

ProTest for some of the above test cases.

4.5 Handling non-determinism

B supports two types of non-determinism: bounded choice through the syntactic constructSELECTand un-

bounded choice through the constructANY. In a SELECT construct, there are a finite number of guarded substitu-

tions and a branch whose guard evaluates to ture is non-deterministically chosen. In an ANY construct, an element

of a set is non-deterministically chosen.

Let us consider a B operationOPhaving non-deterministic constructs. In order to handle the non-deterministic

choices made byOP , we require thatOP makes its choices visible by delivering them through resultparameters

(in addition to other result parameters of the operation). If OP has madek non-deterministic choices, then the

operation looks like:

r1, r2, . . . , rk, result←− OP = PRE P

14

THEN . . . END

Herer1, . . . , rk are thek non-deterministic choices made in the course of operationOP. Let us consider the case

when ProTest is doing simultaneous animation and executionduring testing with respect to a test case, and we have

reached the operationOP . At this point ProTest observes what choices the implementation has made. Thereafter,

ProTest will follow the choices made by the implementation.We term this approachtesting on the fly. Note that

the current version of the ProTest does not support this aspect.

5 Discussion

The following are the highlights of the ProTest environment.

1. Partition Analysis: Many other works like [10, 15] partition the input space by considering both the pre-

and the postconditions of an operation. The reason they citeis that usually the operation preconditions

are trivial in nature, and a DNF analysis over them would hardly result in worthwhile partitions. In our

case, we strengthen an operation precondition by lifting predicates used within the operation bodies. We

have observed that our approach generate the same number of partitions as the one by Legeard et al [15].

However, partition analysis in presence of non-determinism may need some more analysis with a view to

creating further partition of the input space.

2. ProTest tool performs simultaneous specification animation and code execution to demonstrate that both

exhibit equivalent behaviour with respect to test cases. Further ProTest makes it easier to check and vali-

date intermediate results. ProTest performs automatic verdict assignment through the use of representation

mappings. However at present this task is easier because we only consider simple types for operation ar-

guments and results. Automatic verdict assignment in presence of complicated data structures would be a

challenging task. One solution could be to choose probing operations judiciously which can extract relevant

and important information out of complicated data structures; this will keep the matching of specification

and implementation states within reasonable complexity. However, this aspect need to be further explored

though larger case studies.

3. Non determinism: Handling non-determinism is a novelty of our approach. The requirement of making

the non-deterministic choices visible does not pose any additional burden on the specifier; however, the

implementer needs to be instructed to make the corresponding deterministic choice visible by some mech-

anism such as the use of output operation parameters. In other words, an implementer need to be faithful

to many such recommendations from the specifier(s). Our approach of making testing on-the-fly may bring

out interesting test cases, which the static analysis may not reveal.

4. Once input subdomains are derived after a DNF based analysis, the BZ-TT approach uses some (minimiza-

tion/maximization) cost functions to further partition the input space and then test cases are generated. At

15

this stage though the ProTest approach does not use cost functions, it can use them in future to create further

partitions. This is just an enhancement which can be easily integrated into the ProTest environment.

5. Reachability Analysis: ProTest performs exhaustive state space search to generate a state coverage graph.

If it finds an invariant violation in the process, it not only reports it to the user, but it also informs the

shortest sequence of operations that led to the invariant violation. This information can be used by the tester

to perform intelligent debugging of the code.

There may be operation instances generated by partition analysis which are not reachable in the course of

exhaustive model checking. One possible reason may be the initialization condition of the machine which

does not make it possible to reach the operation instance; however, there may be a different initialization

which can make this operation instance reachable. This can be found out by the constraint based checking

facility of ProB. ProB can even suggest an initialization condition which can make this operation instance

reachable. In addition, it can be checked if application of this operation instance can lead to invariant

violation.

ProTest uses this facility of ProB to generate a set of robusttest cases. Given an operation instance, not

reachable through exhaustive model checking, it can say whether from a different initialization of the ma-

chine the operation instance is reachable. If so, the same initialization condition can be passed to the

tester/implementer so that the implementation can be re-initialized. ProB can also give the set of operation

sequences which can make the original operation sequence reachable.

6. The approach of BZ-TT is the closest to that of ProTest; however, there are important differences. First,

the approach to partition analysis is different though bothresult in similar partition sets. Second, ProTest is

different in the sense that it performs simultaneous specification animation and code execution to establish

the correspondence. Third, ProTest performs automatic verdict assignment. In addition, We address the

issue of non-determinism.

7. Snook and Butler [19] have developed a tool calledU2Bwhich mechanically translates UML specifications

to B. Of course there are some restrictions on the UML classesso that when translated they do not violate

the hierarchical structure of the B machines. Our ProTest environment could be integrated with the U2B

tool which would facilitate mechanical generation of test cases from UML specifications. Further by test-

ing the implementation against the generated B specification, this approach would indirectly establish the

correspondence between the UML specification and the implementation.

6 Conclusion and Future Work

In this paper, we have presented ProTest, a testing environment for B specifications. The highlights of this tool

are that it performs in parallel the animation of the specification and code execution with respect to test cases,

and it assigns verdicts on the test results. We have also offered a solution to handle non-determinism in the B

16

operations. We have discussed the efficacy of the ProTest tool by performing a small case study from industry. We

have also demonstrated how through the use of temporal modelchecking and constraint based checking, we can

obtain a set of robust test cases.

The ProTest environment can be extended in many dimensions;in particular, we plan to do the following in

future:

• Enhancing the ProTest environment to handle non-deterministic operations and to support on-the-fly testing.

• Integrating the U2B tool with the ProTest for generating test cases for UML specifications.

References

[1] J.-R. Abrial,The B Book: Assigning Programs to Meanings, Cambridge University Press, 1996.

[2] W. R. Adrion, M.A. Branstad and J.C. Cherniavsky, Validation, Verification and Testing of Computer Software, ACM

Computing Surveys, Vol. 14(2), June 1982.

[3] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard,F. Peureux, N. Vacelet and M. Utting, BZ-TT: A Tool-Set

for Test Generation from Z and B using Constraint Logic Programming, Formal Approaches to Testing of Software,

Satellite Workshop of CONCUR02, August 24th, Brno, Czech Republic, 2002.

[4] S. Antoy and D. Hamlet, Automatically Checking an Implementation against its Formal Specification, IEEE Transac-

tions on Software Engineering, Vol. 26(1), January 2000, pp.55–69.

[5] E. Bernard, B. Legeard, X. Luck and F. Peureux, Generation of Test Sequences from Formal Specifications: GSM

11–11 Standard Case Study, Unpublished Draft.

[6] B. Beizer,Black-Box Testing: Techniques for Functional Testing of Software and Systems, John Wiley, 1995.

[7] D. Cabeza and M. Hermenegildo,The PiLLoW Web Programming Library. The CLIP Group, School of Computer

Science, Technical University of Madrid, 2001. Available at http://www.clip.dia.fi.upm.es/

[8] J. Canna, Testing, fun? Really? (Using unit and functional tests in the development process), website: http://www.106-

ibm.com/developerworks/library/j-test.html.

[9] D. Carrington and P. Stocks, A Tale of Two Paradigms: Formal Methods and Software Testing, Proc. of the Eighth Z

User Meeting (Eds. J.P. Bowen and J.A. Hall), Cambridge, Springer Verlag, 1994.

[10] J. Dick and A. Faivre, Automating the generation and sequencing of test cases from model-based specifications, Proc.

of the FME’93: Industrial Strength Formal Methods Europe, LNCS 670, 1993, pp. 268–284.

[11] E.W. Dijkstra, A note on two problems in connection withgraphs,Numerische Mathematik, Vol. 1, 1959.

[12] J. Gross, J. Yellen,Graph Theory and its Applications, CRC Press, 1999.

[13] P.A.V. Hall, Relationship between Specifications and Testing, Information and Software Technology, Jan/Feb 1991.

[14] C.B. Jones,Systematic Software Development using VDM, 2nd Edition, Prentice Hall, 1990.

[15] B. Legeard, F. Peureux and M. Utting, Automated Boundary Testing from Z and B, Proc. of the FME’02 (Formal

Methods Europe) Conference, LNCS No. 2391, 2002, pp. 21–40.

17

[16] M. Leuschel and M. Butler, ProB: A model-Checker for B, FM 2003: 12th International FME Symposium, Pisa,

September 2003.

[17] D.J. Richardson, S.L. Aha, T.O. O’Malley, Specification-based Test oracles for Reactive Systems, Proc. of the 14th

ICSE, ACM Press, 1992, 105–118.

[18] M. Satpathy, R. Harrison, C. Snook, M. Butler, A Comparative Study of Formal and Informal Specifications through an

Industrial Case Study, IEEE/IFIP Joint Workshop on Formal Specifications of Computer Based Systems, Washington

DC, April 2001.

[19] C. Snook and M. Butler, Verifying Dynamic Properties ofUML Models by Translation to the B Language and Toolkit.

In UML 2000 Workshop on Dynamic Behaviour in UML Models: Semantic Questions, October 2000.

[20] J.M. Spivey,Understanding Z, Cambridge University Press, 1988.

[21] P. Stocks and D. Carrington, A Framework for Specification-Based Testing, IEEE Transactions on Software Engineer-

ing, Vol. 22(11), 1996, pp. 777–793.

[22] B. Tatibouet,The JBTools Package, 2001, available at

http://lifc.univ-fcomte.fr/PEOPLE/tatibouet/JBTOOLS/BParseren.html.

[23] E.J. Weyuker, On Testing Nontestable Programs, The computer Journal, Vol 25(4), 1982, pp. 465–470.

Appendix

MACHINE Teletext

SETS COLOURS = {red,white,lightgrey};

STATUS = {DEFINED,UNDEFINED};

PAGENAMES = {blank,p1,p2,p3,p4,p5,p6,p7...p14,p15}

CONSTANTS PAGENR, Max_Plist_size, Max_Display_size,

sel_colour, norm_colour, titles

PROPERTIES

PAGENR <: NAT & PAGENR = 1..15 &

Max_Plist_size : NAT & Max_Plist_size = 15 &

Max_Display_size : NAT & Max_Display_size = 10 &

sel_colour : COLOURS & sel_colour = lightgrey & /*Colour of slot at cursor*/

norm_colour: COLOURS & norm_colour = red & /*Usual colour of slots */

titles : PAGENR --> PAGENAMES & /* a total function */

titles = { 1 |-> p1, 2 |-> p2, 3 |-> p3, ... 15 |-> p15}

VARIABLES

Plist_size, /* Actual number of pagess to be displayed */

DisColours, /* Colour of slots from 1st position onwards */

DisPnames, /* Page names from first position onwards */

Scroll, /* No. of pages crolled above the display column */

Selected, /* Serial number of selected page in transmission*/

Status,

Display_size /* Size of the display column */

DEFINITIONS

PageListRange0 == 0..15; PageListRange1 == 1..15;

DisplaySizeRange0 == 0..10; DisplaySizeRange1 == 1..10

INVARIANT .

18

.

((Status = UNDEFINED) =>

(Plist_size = 0 & DisPnames = {} & DisColours = {})) &

((Status = DEFINED) =>

(Plist_size > 0 & DisPnames /= {} & DisColours /= {} &

DisColours(Selected - Scroll) = sel_colour &

(Scroll > 0 => Selected > 1) &

(Scroll = 0 => Selected < Display_size) &

Selected <= Plist_size &

((Plist_size < Display_size) => Scroll = 0)&

(Plist_size = Display_size => (Scroll = 0 or Scroll =1)) &

((Plist_size > Display_size) => Scroll <= Plist_size-Display_size+1)))

INITIALISATION Display_size := 0 || Plist_size := 0 ||

Status := UNDEFINED || Selected := 1 ||

Scroll := 0 || DisColours,DisPnames := {},{}

OPERATIONS /* 7 probing operations */

pp <-- PageAtColumn1 = ...; /* returns page title at 1st slot */

cc <-- ColourAtColumn1 = ...; /* returns colour of 1st slot */

pos <-- CurrentCursorPosition = ...; /* returns slot position at cursor */

pp <-- PageAtCurCursor =; /* returns page title at cursor */

cc <-- ColourAtCurCursor = ... ; /* returns slot colour at cursor */

pp <-- PageAtLastColumn = ... ; /* returns page title at last slot */

cc <-- ColourAtLastColumn = ...; /* returns colour of last slot */

/* 4 update operations **/

define(trans_size,disp_size) =

/*defines display window size and number of pages in transmission*/

PRE

Status = UNDEFINED & trans_size : PageListRange1 &

trans_size >0 & trans_size <6

& disp_size > 1 & disp_size <5 &

disp_size : DisplaySizeRange1 &

((trans_size < disp_size) or (trans_size >= disp_size))

THEN

Status := DEFINED ||

Plist_size := trans_size ||

Display_size := disp_size ||

Selected := 1 || Scroll := 0 ||

IF trans_size >= disp_size THEN

DisPnames := {nn,tt | ..} ||

DisColours := {nn,cc | ..}

ELSE /* trans_size < disp_size */

DisPnames := {nn,tt | ... } ||

DisColours := {nn,cc | ... }

END

END;

undefine = /* puts teletext in an undefined mode of operation */

PRE Status = DEFINED THEN

Status := UNDEFINED || Selected := 1 ||

Scroll := 0 || Plist_size := 0 ||

Display_size := 0 || DisColours,DisPnames:= {},{}

END;

19

Syntax Predicates to be lifted

IF P THEN S END P ∨ ¬ P

IF P THEN S ELSE T END P ∨ ¬ P

IF P1 THEN S1 P1∨

ELSEIFP2 THEN S2 (¬P1 ∧ P2) ∨

.

ELSEIFPk THEN Sk (¬P1 ∧ . . .¬Pk−1 ∧ Pk) ∨

ELSE T END (¬P1 ∧ . . .¬Pk−1 ∧ ¬Pk)

IF P1 THEN S1 P1 ∨

ELSEIFP2 THEN S2 (¬P1 ∧ P2) ∨

.

ELSEIFPk THEN Sk END (¬P1 ∧ . . .¬Pk−1 ∧ Pk) ∨

(¬P1 ∧ . . .¬Pk−1 ∧ ¬Pk)

SELECTP THEN S END P ∨ ¬ P

SELECTP1 THEN S1 (P1 ∧ ¬P2 . . . ∧ ¬Pk) ∨

WHEN P2 THEN S2 (¬P1 ∧ P2 . . . ∧ ¬Pk) ∨

.

WHEN Pk THEN Sk (¬P1 ∧ . . .¬Pk−1 ∧ Pk) ∨

END (¬P1 ∧ . . . ¬Pk−1 ∧ ¬Pk)

SELECTP1 THEN S1 (P1 ∧ ¬P2 . . . ∧ ¬Pk) ∨

WHEN P2 THEN S2 (¬P1 ∧ P2 . . . ∧ ¬Pk) ∨

.

WHEN Pk THEN Sk (¬P1 ∧ . . .¬Pk−1 ∧ Pk) ∨

ELSE T END (¬P1 ∧ . . .¬Pk−1 ∧ ¬Pk)

CASEE OF

EITHER l1 THEN S1 (E ∈ {l1} ∧ E /∈ {l2, . . . , lk}) ∨

.

OR lk THEN Sk (E ∈ {lk} ∧ E /∈ {l1, . . . , lk−1}) ∨

END END (E /∈ {l, . . . , lk})

CASEE OF

EITHER l1 THEN S1 (E ∈ {l1} ∧ E /∈ {l2, . . . , lk}) ∨

.

OR lk THEN Sk (E ∈ {lk} ∧ E /∈ {l1, . . . , lk−1}) ∨

ELSE U END END (E /∈ {l, . . . , lk})

Table 4. Rules for extracting clauses

upCursor = /* defines action when up arrow button is pressed */

PRE ... THEN ... END;

downCursor = /* defines action when down arrow button is pressed */

PRE

Status = DEFINED & ...

THEN

....

END

END /* End of Machine declaration */

20

