ProTest: An Automatic Test Environment for B Specifications

Manoranjan Satpathylichael Leuschéland Michael Butlet

1 Department of Computer Science
University of Reading, Reading RG6 6AY, UK

2 School of Electronics and Computer Science

University of Southampton, Highfield, Southampton, S013,1BK
M Sat pat hy@ eadi ng. ac. uk, {mal, nj b}@cs. soton. ac. uk

Abstract

We present ProTest, an automatic test environment for Bfggadions. B is a model-oriented notation where
systems are specified in terms of abstract states and opesatin abstract states. ProTest first generates a state
coverage graph of a B specification through exhaustive mduetking, and the coverage graph is traversed to
generate a set of test cases, each being a sequence of Bioperaior the model checking to be exhaustive, some
transformations are applied to the sets used in Bhmachine The approach also works if it is not exhaustive;
one can stop at any point in time during the state space eafitor and generate test cases from the coverage
graph obtained so far. ProTest then simultaneously perfoamimation of the B machine and the execution of
the corresponding implementation in Java, and assign e&sdin the test results. With some restrictions imposed
on the B operations, the whole of the testing process is prgfd mechanically. We demonstrate the efficacy of
our test environment by performing a small case study frashastry. Furthermore, we present a solution to the
problem of handling non-determinism in B operations.

keywords: Specification Based Testing; B—Method; Test Environmeiot) Reterminism.
1 Introduction

Software testing is broadly classified into two categorsgictured testingndfunctional testind2, 6]. Struc-
tured testing (or white-box testing) derives test casem ftbe structure of the implementation or part of the
implementation. Such test cases are derived from a progesisiperspective with the aim of covering as much as
possible the structure of the object under test. This agprizikely to miss out many bugs because it may give all
the code coverage that we may need, but it may not give us tibafystem coverage that users may expect. The
test cases for functional testing (or black-box testingd@nother hand are written from a user’s perspective. They

are derived from the external specification of the softwagleaviour with no consideration given to the internal
organisation, logic, control or data flow. Structured téslisa developer that the code is doing things right while
functional tests tell a developer that the code is doingitijie things [8].

Functional testing involves executing the implementatioder test in relation to a set of test cases and exam-
ining the correctness of the generated output. In this ggniee have the following issues:

e Generation of test casesiow to obtain test cases so that they cover all features af@nement under all
scenarios?

e Execution of the test casektow to execute the test cases which are obtained from reqaires or spec-
ifications? This may be a difficult task because even if thelémpntation preserved the intent of the
requirement/specification, it may not preserve the streatu the logic of the latter.

¢ Validation of test outcome®nce we run the test cases, the program would produce somgsuHow to
ensure that the results are correct?

If the development process is formal, many of the above gssaa be handled in a rigorous manner. Formal
specifications precisely define the high level aspects oftware while omitting the detailed structural informa-
tion; they are more likely to encode all of the required fimas and their scenarios. Therefore testers can use the
underlying mathematical framework to generate, possitdghmanically, test cases for functional testing.

Even if we obtain test cases from specifications, it may nadsy to use them to execute the implementation.
This is because a high level functionality may have beenemginted in a variety of ways, and the mapping be-
tween the high level functionality and the low level implemtetion may not be apparent to the tester. Consider an
example of a test case being a sequence of high level opssatispecification level, but this operation sequence
may not map easily to the operations at the implementatiegl.lESome authors have proposed the use of spe-
cial mappings calledepresentation mapping® bridge this semantic gap [17]. In addition, there is thabpgm
of non-determinism. The choice made by a non-determinggiiration may not correspond to the deterministic
choice made by the implementation. And then how are we gaingé¢ a test case involving non-determinism?

When a system executes a test case, it produces an outcatrtbeasutcome is often interpreted by the tester
to assign a verdict that the system has passed the test. rbhigm can be tackled by incorporating oracles into
the testing process [17, 23]. A test oracle determines isttstem behaved correctly in relation to the test case.
Test oracles are usually obtained from specifications. Tieome of a test case and the outcome obtained from
a test oracle need to be matched to establish the equivabeteeen abstract outputs and concrete results. There
are two issues in this context; first, there must be a mapmhgden the abstract state of the specification and the
concrete state of the implementation, and second, therebmwsmechanism to show their equivalence. The first
problem can be solved by representation mapping; AntonyHardlet [4] have discussed how the users could
write explicit code for a representation mapping betweendbncrete data structures of C++ instance variables
and the abstraction of the specification. And the second eautressed though the use of probing or observation
operations both at the abstract as well as at the concretelavals.

2

In this paper, we discug?roTest an automatic test environment for B specifications. Proifdsased on ProB,
a model checking and animation tools for B [16]. ProTestoie# an approach similar to the one by Dick and
Faivre [10] (discussed in Section 2) and generates test dam@ B specifications by partition analysis of the
state invariant and the operation preconditions of a spetifin. Our method offers some guidelines and if the
implementation follows them, then the whole cycle of thditgsprocess can be automated. We also discuss a
small industrial case study to illustrate our approach aedést environment. The main results of our paper can
be summarised as follows:

e ProTest generates test cases by partitioning and expltnmgtate space. ProTest then simultaneously
animates the specification and runs the implementation rggpect to the test cases and assigns verdicts
whether the implementation has passed the tests. The wiuzlegs is automatic; however, at this stage the
test environment imposes some restrictions on operatgumagnts and results.

¢ We have presented a solution to handle non-determinism ipelBations; however the current implementa-
tion of the ProTest does not support this.

The organisation of the paper is as follows. Section 2 dsesidhe related work. Section 3 presents our
approach. Section 4 discusses our implementation and tio8écwe preset an analysis of our test environment
in relation to existing work. Section 6 concludes the paper.

2 Related Work

The concept of specification based testing most probabginated from the work by Hall [13] in which he
discussed partitioning the input space by examining patescin the operations of Z specification [20]. The aim
was to induce software correctness based on test results.

The work by Dick and Faivre [10] is a major contribution to thee of formal methods in software testing
in which they have discussed a strategy for generating tesstscfrom model oriented formal specifications. A
VDM [14] specification has state variables and an invari@ant{ to restrict the state variables. An operation, say
OP, is specified by a pre-conditio®(,,..) and a post-condition({ P,,;). The approach of Dick and Faivre is to
partition the input space @ P by converting the expressianF,,. A OPp.s: A Inv into its Disjunctive Normal
Form (DNF); and each disjunct of it represents an input soi@do of OP. Next, as many operation instances
of OP are created as the number of non-contradictory disjundiseéridNF. An attempt is then made to create a
FSA (Finite State Automaton) in which each node represeptssaible machine state and an edge represents an
application of an operation instance. A set of test casetharegenerated by traversing the FSA where each test
case is a sequence of operation instances. The work of Ditiaivre discusses only the mechanisation of the
partitioning algorithm.

Legeard et al. [15] have developed a tool called the BZ TgStool (BZ-TT) for deriving test cases from Z or B
specifications. Since our approach has many similarititls the BZ-TT, we present it here in some detail. So far

as B specifications are concerned, they assume (i) the sjagicifi consists of a single B machine, and (ii) all sets
in the B machine are transformed into finite enumerated Jdts.test case generation proceeds in the following
steps:

e The definition of each B operatiaflp is transformed into iteormalised fornj1] which looks like:
outs < Op(inps) = Pre | Qs' outs’ . Post = outs, s := outs’, s’
where, s is the state variable of the machinBre is the precondition (oveinps ands) and Post is the
postcondition. inps and outs are respectively the operation input and the result. Thenabform tells:
provided Pre is true, the values’ andouts’ are non-deterministically chosen such tliatst is satisfied.
Post may refer tas andouts as well ass’ andouts’.

e Pre andpost are transformed into their DNF; i.e
(Vi Pre;) | @Qs',outs’ . (\V; Postj) = outs,s:=outs’, s

e The above expression partitions the input space into subohsnof the form:
3 inps,s’,outs’ . (\/; Pre;) \ Post;.
Test cases are generated from the above expression using é30hstraint Logic Programming) solver.

However, in order to generate boundary goals, BZ-TT usaduostions to partition further the input subdomains.

If an input subdomain is represented by the predigatd’ U R U A) < #{X;, X2, X3}, then some candidates

for the maximization and minimization cost functions cob#W + #R+ #A = 2and#W + #R+#A =0
respectively. Given a boundary condition, Prolog searchrtigues are used to generate a test preamble. At
a boundary state, all eligible operations are applied teegea test cases as sequences of operation instances.
From the test cases, automatic test scripts are generatkd iarget language, and representation mappings are
created manually. Because of problems due to non-detesmiaind those related to matching between abstract
and concrete states, automatic verdict assignment wasptgrnented. It is to be noted that the BZ-TT does not
handle constants, properties and set comprehension,wahioh we use in our case study.

The work of Richardson et al. [17] discusses the derivatimhuse of test oracles for checking test results in the
context of multi-lingual and multi-paradigm (formal) sffesations. Test oracles are derived from specifications
in conjuction with the derivation of test data in relationsimme testing criteria. Test execution is monitored and
the results are verified against oracles; sometimes themutionsidered it useful to compare intermediate results
in addition to the end results. To make verification possilhileir approach constructs mappings between the name
space of the implementation and the name space of the osartee(as the name space of the specification). There
are two kinds of mappings: control and data. Control mapparg between control points in the implementation
and locations in the specification where the implementadiot the specification should be in same state. Data
mappings describe the transformation between the dattates in the implementation and objects in the speci-
fication. These mappings are also called representatiopinggp[15], and usually they are developed manually.
The implementation state and the state changes are mahébtke pre-determined control points, and data map-

pings are used to establish the correspondence betweemplenientation and the specification state as oracle.
The authors point out that many of the steps described cauitltbmated.

3 Our Approach

Let us assume that a formal specification has adequatelyfispesll the requirement functions under all pos-
sible scenarios. Then our aim is to generate test cases winighl test all such functions of the corresponding
implementation under the given scenarios. In addition,test environment would examine the test results for
assigning verdicts. ProTest is a test environment for Bifipations.

3.1 The B method

The B-method, originally devised by J.-R. Abrial [1] is adimg and methodology for formal development of
computer systems. B is model-oriented in the sense of Z andlMBis used to cover the whole of the software
development cycle; the specification is used to generate withh a sequence of refinement steps in between. At
each stage, the current refinement needs to be proved emtsisgth the previous refinement.

The basic unit of specification in the B method is calleB emachine Larger specifications can be obtained
by linking B machines in a hierarchical (tree like) manneiisTis a design restriction on the B method with
view to making proofs compositional. A B machine consistaadfet of variables, an invariant to restrict the
variables and a set of operations to modify the state vasalA machine has an initial state which initializes the
state variables. An operation has a precondition, and aratipe invocation is defined only if the precondition
holds. The initialization action and an operation body ariten as atomic actions coded in a language called the
generalized substitution languagé]. The language allows specification of deterministic and-deterministic
assignments. An operation transforms the machine statentwvastate. The behaviour of a B machine can be
described in terms of a sequence of operations; the firsatiperof the sequence originates from the initial state
of the machine.

3.2 Our Example

For our case study, we will consider a component of the telstestem of a commercial television from Philips
Electronics [18]. The component description is as folloa3V screen has a display window consistingofows
which can display a sequence df teletext page titles. At any time a subsequence of the trigieshsequence
could be displayed and therefore, the display of M@age titles V > R) would require scrolling. Page titles
could be scrolled by pressing thg and thedown arrow buttons of the TV remote. Every slot of the display
window has a default colour and it can display a teletext gitge At any point in time, the cursor resides
on exactly one slot which is displayed with a different cololihe component has non-trivial cursor movement
operations. A pictorial form of the component has been showhigure 1. We have specified this teletext
component as a single B machine and a sketch of it has beemshadkae Appendix.

——————

| ! TV Remote
DISPLAY | ! ¢
WINDOW | :

| i Teletext page

.1 number sequence

Figure 1. Display of N page titles over the Display window of size R

A B machine has a name, and in our case it is calledétext The SETS:lause shows the sets those will be used
by the machine. ThREONSTANT 8lause declares the constants used in the machine aRIROEERTIESlause
tells of their types and values. TAMARIABLESheading shows the state variables and IM@ARIANTclause
puts restrictions on the state variables in the form of magdss; in the appendix we have shown a fragment of the
invariant. ThelNITIALISATIONCclause initializes the state variables. TOEERATIONSlause shows a set of
operations which can either probe the machine state or snadifin our example, the most important operations
arede fine, upCursor anddownCursor. TheupCursor tries to move the cursor one position up and it may
involve scrolling. ThedownCursor tries to move the cursor one position down and it may invobmling in
the opposite direction. All such actions are possible ifdbgine operation has placed the machine idefined
mode of operation

3.3 Partitioning of the input spaces

A B machine has a state which can be modified through the opesadf the machine. ThIENITIALISATION
clause puts a B machine in its initial state. Thereafter,rasvehen the precondition of an operation holds, the
operation is eligible for application. Application of thigible operations defines the behaviour of the machine.
Following the terminology of Dick and Faivre [10], we will fllee a test case as a sequence of eligible operations.
Every operation has a precondition which defines its inpatsp Dick and Faivre, partition this input space into
subspaces meaning that each subspace defines a possilaleosaader which the operation can be applied. We
follow the same approach for a B machine. We enumerate otitipaing method in the following steps.

Step 1: Consider a machine operation QRCompute the DNF of the precondition of the operation. Asjeul

out by Legeard et al. [15], in practice, the precondition mi@eration is sometimes trivial and therefore, a DNF
based analysis would not result in interesting partitiomsorder to address this problem, we do the following
transformation. Consider an operation with & construct in its body such a#& < if-predicate > THEN ...
ELSE ...We then add (through conjunction) the predicéteif-predicate > V = < if-predicate >) to the
precondition. Note that the above idautology and therefore, it does not modify the precondition but sutts

in a better partition of the input space. We do the same fothallif—predicates in the operation. Refer to the
operationupCursor in Figure 3.3, and observe how the original preconditionieen expanded to create more
partitions.

Note that this transformations is not only limited to IF poades. They are also applied over the predicates of
the CASEand theSELECTstatements. The rules for adding predicates to the pretomdiave been shown in
the Appendix. After all these transformations of the pretition, it is subjected to the DNF analysis. Note that,
for the moment, situations like ah¥' statement inside ad NY statement is ignored. The problem is: it might
depend on the bound variables which are not part of the inptitedinitial state.

Step 2: Let the DNF of the precondition be the disjunction of the wisitsC, Cs, ..., C),. The way we have
lifted tautologies constructed out of the predicates in peration body, means that some of these disjuncts may
be self contradictory, and further some of them might cali¢tethe invariant of the B machine. We then filter
out these contradictory disjuncts by subjecting them toigertheorem prover. Let the disjuncts that remain after
filtering areCy, Cs, . . ., Ck. These disjuncts partition the input space’dP; into k£ subspaces.

Step 3: Createk instances of the operation @Ret the instanc® P; corresponds to disjun¢t;, 1 < i < k. What

this means is that the instan€eP; is eligible for application when the conditiat; holds. The way we have lifted
the predicates to the pre-condition, implies that eachaijmer instance represents a valid control path inside the
operationO P;.

Step 4: Create similar instances for all operations in the machine.

Step 5: The full state space of the B machine is explored to consal€$M (finite state machine) whose initial
node is the initial state of the B machine. Each node in the F§lesents a possible machine state and each
edge is labelled by an operation instance. Of course, tmexphe full state space, it is assumed that all the sets
of the specification are of finite type and they are small ie.sithe state space search is performed by the ProB
tool; more about the implementation will be discussed latee aim here is that all the operation instances which
we have generated in our partition analysis appear at legst im the FSM. It may not be possible since some
operation instances may not be reachable.

Step 6: Starting from the initial state, traverse the FSM to gereeaset of operation sequences such that each
operation instance in the FSM appears in the generated rsggpiat least once. Each operation sequence should
start with the initial state, and an operation instance npgear in more than one sequence. Each such sequence
would constitute one test case for the subsequent impleti@mt And the set of test sequences would be our test
suite. The traversal of the FSM to generate an optimal numiiesst sequences isfaP—complete problem [12];
therefore, we need to follow some heuristic for travershgydraph.

G

upCursor = PRE Status = DEFINED THEN
IF Sel ected > 1 THEN
Sel ected := Selected - 1 ||
IF (Plist_size >= Display_size) THEN
IF Scroll >0 THEN
IF Sel ected = Scroll + 2 THEN
Scrol | Scroll-1 ||
ELSE IF (DisCol ours(Di splay_size)=white &
Di sPnanes(Di spl ay_si ze) =bl ank) THEN

Di sCol ours := {nn,cc |}
ELSE DisColours :={nn,cc | } END
END

ELSE /* Scrolling not necessary */
I F Sel ected >= 2 THEN Di sCol ours := {nn,cc | ...}
END

END

ELSE DisColours := {nn,cc |...} END

END END;

®)

upCursor = PRE
Status = DEFINED & (Selected > 1 or Selected <= 1)
(Plist_size >= Display_size or Plist_size < Display_size)
(Scroll >0 or Scroll <=0)
(Selected = Scroll + 2 or Selected /= Scroll +2)
(Selected >= 2 or Selected < 2)
((Di sCol ours(Display_size) = white & D sPnames(Di spl ay_si ze) = blank) or
(Di sCol ours(Di splay_size) /= white or D sPnanmes(Display_size) /= blank)) &
(Selected = 1 or Selected >1) & (Scroll =0 or Scroll > 0)

THEN END;

R Ro R R0 Ro

Figure 2. Lifting of predicates to a precondition: (A) Defini tion of operation upCursor (B) New pre-
condition of upCursor

3.4 Testing strategy

Each test case of the test suite we have generated is nothireydequence of operations of the B machine
that specified our problem. We will not address the issue ofdeterminism here; it will be discussed in a later
section. If we could animate the B machine with respect tstdase, at the end of covering the test sequence, we
would obtain a state, say Staig.. Let us assume that we have an implementation of the B-macind we are
able to execute the implementation in relation to the sastectese, and let the resulting state be called Sigte
Now if we are able to match Staje. with State,,,,; then we could assign a verdict whether the implementation
has passed the test. The whole process has been shown irutiee3fig

Specification _>
Animation spec \

Test Case MATCHING_____

Verdict

Executaion of

Implementationin |

ProTest Environment

Figure 3. The testing process

3.5 The Matching Problem

The operations of a B machine can be divided into two categotipdate operationsvhich can modify the
machine state, angrobing operationsvhich only perform queries on the state variables. The pigbperations
can query the system state to extract out important statectspTable 1 shows all the update and the probing
operations of our case study. We assume that the implemiempégments all the probing as well as the update
operations. The probing operations of the specificationtande of the implementation can now respectively
query important properties of Statg. and Statg,,,, and match their responses. Of course this would require
mapping between the name space of Spateand that of Statg,,;, a mapping similar to the work of Richardson
et al [17].

4 Implementation: The ProTest Environment

ProTest is a test environment built on top of the ProB toololvhias been developed by Leuschel and But-
ler [16]. In the following, we will present a brief descripti of it.

4.1 The ProB Tool

The ProB tool is an automated consistency checker of B mashiia model checking and constraint-based
checking. The activity of consistency checking shows thatdperations of a machine preserves the machine
invariant. The ProB environment has been developed man§ICStus Prolog with a graphical user interface
implemented in Tcl/Tk. ProB uses the JBTools [22] packageaeslate a B machine into XML form, and then
the Pillow package [7] is used to to transform the XML filesimt Prolog term representation. The ProB front
end then uses this Prolog term representation. The ProBagémimprovides visualization of the state space that has
been explored so far by the animator. Further details alb@uPtoB can be found in [16]

The model checker component of ProB tries to explore the space of a B machine systematically and
automatically. It alerts the user as soon as a problem ligartbariant violation is found, and then presents the
shortest trace within the states already explored thasl&ad the initial state to the place of error. The model
checker also detects when all states for finite state modeis been explored, and thus can formally guarantee
the absence of errors. For such exhaustive model checkiagsets of the machine are restricted to small finite
sets and integer variables are restricted to small numaniges. Under these restrictions only, ProB can traverse
all the reachable states of the machine. ProB can also amianBtmachine. In addition, ProB supports random
animation in which eligible operations are applied at randil their number reaches a certain limit given by a
user.

In addition to temporal model checking, i.e. model checlafithe above type, ProB also suppoctnstraint
based checkindf there is an invariant violation because of an operativodation, ProB model checker can find
it through systematic exploration. However, constrairgdobchecking finds a state of the machine that satisfies the
invariant but where we can apply a single operation to reesthta that violates the invariant. ProB supports this
approach through the use of Prolog’s co-routining and cammtfacility [16]. We will use both these approaches
of ProB in our testing environment.

4.2 The ProTest Tool

Our test environment makes the following assumptions:

1. The B specification consists of a single machine. Thiséabse, at this stage, ProB can animate and model
check a single B machine.

2. The operation parameters of the machine and those of tilerimentation are of basic types, and in addition
the operations have a single return value of basic type. Quet implementation performs automatic
verdict assignment under these restrictions. They keepefiresentation mapping between the specification
and implementation namespaces simple. However, in fulveentend to lift these restrictions.

3. All the machine operations are deterministic. Note thahis paper we will present our solutions to handle
non-determinism; however, our current implementationsdust support them.

10

The ProB tool has been augmented with the following enhaeoésrto build the ProTest environment:

e The Partition Analyser: The preconditions and the machimariants are extracted and both are converted
into their DNFs. A naive theorem prover eliminates all thejuticts from the DNF of the precondition
which are either self-contradictory or which contradiat thvariant. The remaining disjuncts are used to
create partitions of the operation input space, and theokeation instances.

e ProTest has an interface for running Java Programs witleotsp test cases, and to explore the execution
states through the use of probing operations.

e Coverage Graph Display: ProTest can display the state spaeeage in the form of a graph. Nodes in this
graph represent the abstract machine states and the eddabelted with the operation instances. An edge
signifies state transformation through the applicatiorheflabelled operation instance.

4.3 Mechanical generation of test cases

In a pre-processing phase, the infinite and deferred sete & machine are transformed into finite enumerated
states; and also the sizes are kept small to facilitate estlraumodel checking. The ProTest partition analyzer
partitions the input space of each B operation to generatt afsoperation instances. Then the ProB model
checker tries to explore the whole state space and gendhatestate coverage graph. The coverage graph is a
directed graph and it has a start state which is also termedoibt of the coverage graph. Figure 4 shows the
coverage graph for a particular assignment (of the paramefahede fine operation) of our case study; each
edge has been labelled with an operation instance. Nota tifferent assignment of thé fine operation would
result in a different coverage graph. Table 1 shows the numbeperation instances covered by some of the
graphs generated. It can be seen that for operatigpldsursor and downCursor, only a small percentage of
instances appear in the coverage graphs. The reasons) &ne: diven initialization and the constant set-up makes
many instances unreachable, and (ii) our naive theoreneped\this stage does not remove some partitions which
could be inconsistent. It is to be noted that a large majafitthe uncovered partitions are contradictions, and at
the moment our simple theorem prover does not catch themrewea@king on using CLP to catch more.

The following heuristic is used to traverse the state cayeegraph to generate a set of test cases, each test case
being of the form(preamble(p) :: OP, postulate(N')), where OP is the label of an edge joining the node pair
(N, N"), preamble(p) is the sequence of labels of a path from the root of the coeageaph taV, preamble(p) :

OP is the sequence obtained by insertii@ at the end opreamble(p), andpostulate(N') is the test oracle of
the test sequenceostulate(N) is obtained from the nod&” which is constituted from the results of the probing
operations on the state represented\y This heuristic uses Dijkstra’s shortest path algorithih][1

Algorithm: Generate-Test-Sequences
input: the coverage graph given by ProB model checker.
output: a set of operation sequences as test cases and aestéibr each.

11

o

setup_constants

norm_colour=red,sel_colour=lightgrey,Max_Display_size=10,
~ Max_Plist_size=15,PAGENR={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} titles(L, pl\)
titles(2,p2) titles(3,p3) titles(4,p4),
titles(5,p5), titles(6,p6),titles(7,p7),]
titles(8,p8) titles(9,p9) titles(10,p10), /
titles(11,p11) titles(12,p12) titles(13,p13),
titles(14,p14) titles(15,p15)

/

initialise_machine

“Display_size=0,Plist_size=0,Status=UNDEFINED;
[€ Selected=1,Scroll=0,DisColours={},
DisPnames={} .

define(5,4)===>(2)

Display_¢ =4,Plist_size=5,Status=DEFINED,

Selected=1,Scroll=0,DisColours(1,lightgrey), A
DisColours(2,red), D|5COI0urs(3 red),DisColours(4, red)
DisP 1,p1),Di 2,p2),DisP! /

>(10,16)

DisPnames(4,p4)

downCursor===>(43,79) upCursor===>(31,43)

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=2,Scroll=0,DisColours(1,red),
DisColours(2 lightgrey),| DlsCoIours(a red), DlsColours(4 red))
DisPi 1,p1),D 2,p2),D /
DisPnames(4,p4)

ﬂcwsor:n(lsl 187) upCursor===>(40,52)
Dlsplay size=4,Plist_size=5,Status= DEFINED
Selected=3,Scroll=0,DisColours(1,red), N

(DisColours(2,red),DisColours(3,lightgrey),DisColours(4,red),
: DisPi 1,p1),DisP! 2,p2),DisPi 3,p3)

DisPnames(4,p4)

EFINED,

Display_size=4,Plist_size=5,Status=|
Selected=4,Scroll=1,DisColours(1,red),
DlsColours(z red), DlsColours(3 Ilghtgrey) DlsColours(A red),)
DisP 1,p: p4),
D\sPnames(4.p5)

downCursor===>(257,281) upCursor===>(67,75)

Display_size=4, Plistfsize:S,Slalus:DEFINED; i

/ Selected=5,Scroll=2,DisColours(1,red),
(DisColours(2,red),DisColours(3,lightgrey),DisColours(4,white), downCursor===>(226)
AN DisPnames(1,p3),DisPnames(2,p4),DisPnames(3,p5),

DisPnames(4,blank)

upCursor===>(69,77) wcursorzzn(el) j downCursor===>(229)

=4 ,Plist_size=5,Status=DEFINED,

downCursor===>(261,285)

/ lected=4,Scroll= ,DisColours(1,red),
(DisColours(2,lightgrey),DisColours(3,red),DisColours(4,white),
. Di 1,p3),Di p4),Di p5)

DisPnames(4,blank)

Display_size=4,Plist_size=5,Status=DEFINED,
Selected=3,Scroll=1,DisColours(1,red),
DisColours(2,lightgrey),DisColours(3,red),DisColours(4,red),)
Di 1,p2), i p3),Di p4),

DisPnames(4,p5)

Figure 4. State coverage Graph

12

Operation name Type No. of partitions generated No. of partitions covered
PageAtColumnl probing 1 1
ColourAtColumnl probing 1 1
CurrentCursorPosition probing 1 1
PageAtCurCursor probing 1 1
ColourAtCurCursor probing 1 1
PageAtLastColumn probing 1 1
ColourAtLastColumn | probing 1 1
define update 3 3
undefine update 1 1
upCursor update 78 15
downCursor update 288 18

Table 1. partitions for each operation

< define — (2), upCursor — (10,16) >

< define — (2), downCursor — (43,79), upCursor — (31,43) >

< define — (2), downCursor — (43,79), downCursor — (151, 187), upCursor — (40, 52) >

< define — (2), downCursor — (43,79), downCursor — (151, 187), downCursor — (145,181), upCursor — (69,77) >
Table 2. Some test sequences obtained from the graph of Figur e 4

Mark every edge in the graph aacovered
while there is an uncovered ed@®’, N') with label OP; {
find the shortest path from the root of the graph to nod¥ using Dijkstra’s algorithm;
Output test case fap P;: (preamble(p) :: OP;, postulate(N"));
Mark all edges with labeD P; as covered,;
for each uncovered eddéV,, V;) with label O P,;, occurring in pathp {
Output test case fad P, (preamble(p’) :: O Py, postulate(Ny)), where
p’ is the path fromroot to N, (p’ is a prefix ofp);
Mark all edges with labeD P,;, covered;

}

By altering the assignments to the arguments ofdhgine operation to deliberately introduce an error in the
implementation, we have generatégitest cases. Some of these test cases are shown in Table @bkhelbes

not show the postulates which are generated for each of sheseégquences. Furthermore, observe that the test
sequences in the table have been generated from the cowgeaaeof Figure 4.

4.4 Automating the test execution and verdict assignment

ProTest environment at this stage can deal with Java impi&tiens. Let us assume, we have a Java im-
plementation which has encoded all the update and the graiperations of a B machine. In this sense, the

13

test_case_generate: Test case successful: test(downCursor, 177)
test_case_generate: Test case successful: test(downCursor, 132)
test_case_generate: Test case successful: test(upCursor, 21)
test_case_generate: Test case successful: test(upCursor, 31)
test_case_generate: Test case successful: test(downCursor, 151)

bj asper: Java and B Return Value M smatch: (bl ank\==p7)
bj asper: Java and B Return Value M smatch: (white\==red)
test_case_generate: Test case has failed: test(downCursor, 253)

Table 3. Some test outputs of passed and failed test cases

implementation has been directed by the specification. dRitdon et al. [17] point out that while running a test

case, examination of the test result is not the only intergstbservation; sometimes intermediate results can
be examined at strategic points which they call control {goitn our case, control points could be the positions
before and after operation (or operation instance) inwoat ProTest has the capability to perform simultaneous
specification animation and code execution, and at selectetiol points, both the specification and the execution
states are examined by invoking their respective probirgraifons. The results of the probing operations are
matched by using the representation mappings, and if teexenismatch, it is reported to the user.

As mentioned earlier, by altering the assignments to tharpaters of operatiode fine, we have generated
43 test cases. In our first attempt, we obtair®2dtest cases in relation tée fine(5,4) out of which21 failed.
The reason was that the argument ordering fordégine operation was swapped in the implementation. After
it was corrected4 test cases still did not pass. This time the reason was aniertioe specification; one slot in
the display column was getting assigned to a wrong valuerdstingly, this error was not discovered during the
model checking since it was not violating the invariant. Bpecification was corrected and after that all the test
cases passed the tests. In the end, alitheest cases passed their tests. Table 3 shows test outpetsgpehby
ProTest for some of the above test cases.

4.5 Handling non-determinism

B supports two types of non-determinism: bounded choiceutiin the syntactic constru&ELECTand un-
bounded choice through the constradlY. In a SELECT construct, there are a finite number of guardbdtiu-
tions and a branch whose guard evaluates to ture is noradatstically chosen. In an ANY construct, an element
of a set is non-deterministically chosen.

Let us consider a B operatidDP having non-deterministic constructs. In order to handéertbn-deterministic
choices made by P, we require tha) P makes its choices visible by delivering them through regaiameters
(in addition to other result parameters of the operatiohY) P has madé: non-deterministic choices, then the
operation looks like:

r1,72,...,Tg, result +— OP = PRE P

14

THEN... END

Herery,...,r; are thek non-deterministic choices made in the course of operd@@BnLet us consider the case

when ProTest is doing simultaneous animation and execdtidng testing with respect to a test case, and we have

reached the operatiafl P. At this point ProTest observes what choices the implentienthas made. Thereatfter,

ProTest will follow the choices made by the implementati@e term this approactesting on the flyNote that

the current version of the ProTest does not support thiscaspe

5 Discussion

The following are the highlights of the ProTest environment

1. Partition Analysis: Many other works like [10, 15] padit the input space by considering both the pre-

and the postconditions of an operation. The reason theyisciteat usually the operation preconditions
are trivial in nature, and a DNF analysis over them would lyaresult in worthwhile partitions. In our
case, we strengthen an operation precondition by liftiregimates used within the operation bodies. We
have observed that our approach generate the same numbetiobips as the one by Legeard et al [15].
However, partition analysis in presence of hon-determmnisay need some more analysis with a view to
creating further partition of the input space.

. ProTest tool performs simultaneous specification animadand code execution to demonstrate that both
exhibit equivalent behaviour with respect to test casesthEuProTest makes it easier to check and vali-
date intermediate results. ProTest performs automatiticteassignment through the use of representation
mappings. However at present this task is easier becausalweansider simple types for operation ar-
guments and results. Automatic verdict assignment in peesef complicated data structures would be a
challenging task. One solution could be to choose probimgaijmns judiciously which can extract relevant
and important information out of complicated data struesgithis will keep the matching of specification
and implementation states within reasonable complexitywéver, this aspect need to be further explored
though larger case studies.

. Non determinism: Handling non-determinism is a noveftpar approach. The requirement of making
the non-deterministic choices visible does not pose anytiaddl burden on the specifier; however, the
implementer needs to be instructed to make the correspgmiditerministic choice visible by some mech-
anism such as the use of output operation parameters. Inwthds, an implementer need to be faithful
to many such recommendations from the specifier(s). Ouoagprof making testing on-the-fly may bring
out interesting test cases, which the static analysis magemeal.

. Once input subdomains are derived after a DNF based @&alys BZ-TT approach uses some (minimiza-
tion/maximization) cost functions to further partitioretinput space and then test cases are generated. At

15

this stage though the ProTest approach does not use coibhg)dt can use them in future to create further
partitions. This is just an enhancement which can be eagitgriated into the ProTest environment.

5. Reachability Analysis: ProTest performs exhaustiviestpace search to generate a state coverage graph.
If it finds an invariant violation in the process, it not onlgports it to the user, but it also informs the
shortest sequence of operations that led to the invariatdation. This information can be used by the tester
to perform intelligent debugging of the code.

There may be operation instances generated by partitidgsisavhich are not reachable in the course of
exhaustive model checking. One possible reason may beitlaization condition of the machine which
does not make it possible to reach the operation instanceever, there may be a different initialization
which can make this operation instance reachable. This edaund out by the constraint based checking
facility of ProB. ProB can even suggest an initializatiomdibion which can make this operation instance
reachable. In addition, it can be checked if applicationhig bperation instance can lead to invariant
violation.

ProTest uses this facility of ProB to generate a set of rotesttcases. Given an operation instance, not
reachable through exhaustive model checking, it can sayhe#h&om a different initialization of the ma-
chine the operation instance is reachable. If so, the saitialimation condition can be passed to the
tester/implementer so that the implementation can beitielimed. ProB can also give the set of operation
sequences which can make the original operation sequeackeatae.

6. The approach of BZ-TT is the closest to that of ProTest;dwan there are important differences. First,
the approach to partition analysis is different though esult in similar partition sets. Second, ProTest is
different in the sense that it performs simultaneous speadifin animation and code execution to establish
the correspondence. Third, ProTest performs automatidiotesissignment. In addition, We address the
issue of non-determinism.

7. Snook and Butler [19] have developed a tool call&B which mechanically translates UML specifications
to B. Of course there are some restrictions on the UML classdbhat when translated they do not violate
the hierarchical structure of the B machines. Our ProTegt@mment could be integrated with the U2B
tool which would facilitate mechanical generation of temses from UML specifications. Further by test-
ing the implementation against the generated B specifitatios approach would indirectly establish the
correspondence between the UML specification and the imgéation.

6 Conclusion and Future Work

In this paper, we have presented ProTest, a testing enveonfar B specifications. The highlights of this tool
are that it performs in parallel the animation of the speaift;m and code execution with respect to test cases,
and it assigns verdicts on the test results. We have alscedff@ solution to handle non-determinism in the B

16

operations. We have discussed the efficacy of the ProTddtygmerforming a small case study from industry. We

have also demonstrated how through the use of temporal nsbdeking and constraint based checking, we can

obtain a set of robust test cases.

The ProTest environment can be extended in many dimensiomgrticular, we plan to do the following in

future:

e Enhancing the ProTest environment to handle non-detestitimdperations and to support on-the-fly testing.

¢ Integrating the U2B tool with the ProTest for generating tases for UML specifications.

References

(1]
(2]

(3]

(4]

(5]

(6]
[7]

(8]

9]

[10]

[11]
[12]
[13]
[14]
[15]

J.-R. Abrial, The B Book: Assigning Programs to MeaninGambridge University Press, 1996.

W. R. Adrion, M.A. Branstad and J.C. Cherniavsky, Vatida, Verification and Testing of Computer Software, ACM
Computing Surveys, Vol. 14(2), June 1982.

F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. LegdarBleureux, N. Vacelet and M. Utting, BZ-TT: A Tool-Set
for Test Generation from Z and B using Constraint Logic Pangming, Formal Approaches to Testing of Software,
Satellite Workshop of CONCURO02, August 24th, Brno, Czechudic, 2002.

S. Antoy and D. Hamlet, Automatically Checking an Implkentation against its Formal Specification, IEEE Transac-
tions on Software Engineering, Vol. 26(1), January 200059#69.

E. Bernard, B. Legeard, X. Luck and F. Peureux, GenenatibTest Sequences from Formal Specifications: GSM
11-11 Standard Case Study, Unpublished Draft.

B. Beizer,Black-Box Testing: Techniques for Functional Testing dfvare and Systemdgohn Wiley, 1995.

D. Cabeza and M. Hermenegildd,he PiLLoW Web Programming LibraryThe CLIP Group, School of Computer
Science, Technical University of Madrid, 2001. Availabtdntp://www.clip.dia.fi.upm.es/

J. Canna, Testing, fun? Really? (Using unit and funcildasts in the development process), website: http:/ @6~
ibm.com/developerworks/library/j-test.html.

D. Carrington and P. Stocks, A Tale of Two Paradigms: Falriiethods and Software Testing, Proc. of the Eighth Z
User Meeting (Eds. J.P. Bowen and J.A. Hall), Cambridgein§pr Verlag, 1994.

J. Dick and A. Faivre, Automating the generation anduseging of test cases from model-based specifications, Proc
of the FME’93: Industrial Strength Formal Methods EuropRQS 670, 1993, pp. 268—284.

E.W. Dijkstra, A note on two problems in connection wiftaphsNumerische Mathematikol. 1, 1959.

J. Gross, J. YellerGraph Theory and its Application€RC Press, 1999.

P.A.V. Hall, Relationship between Specifications ardting, Information and Software Technology, Jan/Feb 1991
C.B. JonesSystematic Software Development using VRN Edition, Prentice Hall, 1990.

B. Legeard, F. Peureux and M. Utting, Automated Bougdgesting from Z and B, Proc. of the FME'02 (Formal
Methods Europe) Conference, LNCS No. 2391, 2002, pp. 21-40.

17

[16]

[17]

[18]

[19]

[20]
[21]

[22]

M. Leuschel and M. Butler, ProB: A model-Checker for BYYR2003: 12th International FME Symposium, Pisa,
September 2003.

D.J. Richardson, S.L. Aha, T.O. O'Malley, Specificatibased Test oracles for Reactive Systems, Proc. of the 14th
ICSE, ACM Press, 1992, 105-118.

M. Satpathy, R. Harrison, C. Snook, M. Butler, A CompaaStudy of Formal and Informal Specifications through an
Industrial Case Study, IEEE/IFIP Joint Workshop on Forna&fications of Computer Based Systems, Washington
DC, April 2001.

C. Snook and M. Butler, Verifying Dynamic Propertiesidf¥IL Models by Translation to the B Language and Toolkit.
In UML 2000 Workshop on Dynamic Behaviour in UML Models: Seartia Questions, October 2000.

J.M. SpiveyUnderstanding ZCambridge University Press, 1988.

P. Stocks and D. Carrington, A Framework for SpecifmatBased Testing, IEEE Transactions on Software Engineer-
ing, Vol. 22(11), 1996, pp. 777—-793.

B. Tatibouet,The JBTools Packag2001, available at
http://lifc.univ-fcomte.fr/PEOPLE/tatibouet/JBTOOIEParseren.html.

[23] E.J. Weyuker, On Testing Nontestable Programs, Thepeden Journal, Vol 25(4), 1982, pp. 465-470.
Appendix
MACHI NE Tel et ext
SETS COLOURS = {red,white,lightgrey};
STATUS = { DEFI NED, UNDEFI NED} ;

PAGENAMES = {bl ank, p1, p2, p3, p4, p5, p6, p7. .. pl4, pl5}

CONSTANTS PAGENR, Max_Pl i st_size, Max_Di splay_si ze,

sel _col our, normcolour, titles

PROPERTI ES

VAR

PAGENR <: NAT & PAGENR = 1..15 &
Max_Plist_size : NAT & Max_Plist_size = 15 &
Max_Di spl ay_size : NAT & Max_Display_size = 10 &

sel _colour : COLOURS & sel _colour = lightgrey & /*Colour of slot at cursor*/
norm col our: COLOURS & normcolour =red & /*Usual col our of slots */
titles : PAGENR --> PAGENAMES & /* a total function */
titles ={ 1 |->pl, 2 |->p2, 3|->p3, ... 15 |-> pl5}

ABLES

Plist_size, [/* Actual nunber of pagess to be displayed */
Di sCol ours, /* Colour of slots from 1lst position onwards */

Di sPnanes, /* Page nanes fromfirst position onwards */
Scrol I, /* No. of pages crolled above the display colum */
Sel ect ed, /* Serial nunber of selected page in transm ssion*/
St at us,
Display_size /* Size of the display colum */
DEFI NI TI ONS
PageLi st Range0 == 0..15; Pageli st Rangel == 1..15;
Di spl aySi zeRange0 == 0..10; Displ aySi zeRangel == 1..10
I NVARI ANT

18

((Status UNDEFI NED) =>

(Plist_size = 0 & DisPnanes = {} & DisColours = {}))

((Status = DEFI NED) =>

(Plist_size > 0 & DisPna

&

mes /= {} & DisColours /= {} &

Di sCol ours(Selected - Scroll) = sel _colour &
(Scroll >0 => Selected > 1) &
(Scroll =0 => Selected < Display_size) &
Sel ected <= Plist_size &
((Plist_size < Display_size) => Scroll =10)&
(Plist_size = Display_size => (Scroll =0 or Scroll =1)) &
((Plist_size > Display_size) => Scroll <= Plist_size-Di splay_size+l)))
I NI TI ALI SATI ON Display_size := 0 || Plist_size :=0 ||
St at us = UNDEFINED || Selected :=1 ||
Scroll :=0 || D sColours, D sPnanmes := {},{}
OPERATI ONS /* 7 probing operations */
pp <-- PageAtColuml = ...; [/* returns page title at 1st slot */
cCc <-- ColourAtColuml = ...; /* returns colour of 1st slot */
pos <-- CurrentCursorPosition = /* returns slot position at cursor */
pp <-- PageAt Cur Cursor = - /* returns page title at cursor */
cc <-- Col our At Cur Cursor = ; /* returns slot colour at cursor */
pp <-- PageAtLast Col um = ; /* returns page title at last slot */
cc <-- Col our At Last Col um = . /* returns col our of |ast slot */

/* 4 update operations **/
define(trans_size, disp_size) =

/*defines display wi ndow size and

nunber of pages in transm ssion*/

undefine = /* puts tel etext

PRE

St at us UNDEFI NED & trans_size :
trans_size >0 & trans_size <6

& disp_size > 1 & disp_size <5 &
di sp_si ze Di spl aySi zeRangel &

((trans_size < disp_size) or (trans_size >= disp_si

PagelLi st Rangel &

THEN
Status :
Plist_size

DEFI NED | |
:= trans_size ||
Di spl ay_size : = disp_size ||
Selected := 1 || Scroll :=10 ||
IF trans_size >= disp_size THEN
Di sPnanes : {nn,tt | ..} ||
Di sCol ours := {nn,cc | ..}
ELSE /* trans_size < disp_size */
Di sPnanes : {nn,tt | ... } ||
Di sColours := {nn,cc | ... }
END
END;

PRE Status = DEFI NED THEN

St at us = UNDEFI NED || Selected :=1 ||

Scroll :=0 || Plist_size :=0 ||

Di splay_size := 0 || DisCol ours, Di sPnares: = {}, {}
END;

19

ze))

in an undefined node of operation */

Syntax Predicates to be lifted

IF P THEN S END PV - P
IFPTHENSELSETEND| PV =P

IF P, THEN S; PV

ELSEIFP; THEN S, (=P1 AP2) V

ELSEIF P, THEN S, (=Py A...=Py_1 APy) V
ELSE T END (=Py A...=Py_1 AN-Py)
IF P THEN S; PV

ELSEIFP; THEN S, (=P1 AP2) Vv

ELSEIFP, THENS, END | (=P1 A...—Py_1 APy) V
(=P1 A...2Pp_1 A-Py)

SELECTP THEN S END PV =P

SELECTP; THEN § (Pt N =Py...AN=Pg) V

WHEN P> THEN S, (=Pt AN Py...AN"Pg) V

WHEN P, THEN S (=P1 N ...mPy_1 ANP) Vv

END (—|P1 Ao P4 /\—|Pk)
SELECTP; THEN § (P1 AN=P2 ...A=Pg) V

WHEN P> THEN S, (=P1 AP>...AN-Pg) V

WHEN P, THEN S (=P1 N ...mPy_1 ANPy) V

ELSE T END (=P1 A ...mPy_1 AN—Py)
CASEE OF

EITHERI; THEN S§ (B e {i} NE ¢{la,....Ixs}) V
ORI THEN S (F e {lxg} NE ¢{l1,...,lg_1})V
END END (B ¢ {l,...,lx})

CASEE OF

EITHERI; THEN S§ (B e {i} NE ¢{la,....l[xs}) V
ORI THEN S (E e {lxg} NE ¢{l1,...,lg_1}) V
ELSE U END END (B ¢ {l,...,lx})

Table 4. Rules for extracting clauses

upCursor = [* defines action when up arrow button is pressed */
PRE ... THEN ... END
downCursor = /* defines action when down arrow button is pressed */
PRE
Status = DEFINED & ...
THEN
END

END /* End of Machi ne declaration */

20

