B constrained*

Sebastian Krings, Jens Bendisposto, Ivaylo Dobrikov and Michael Leuschel

Heinrich-Heine Universitat Diisseldorf
krings,bendisposto,dobrikov,leuschel {@cs.uni-duesseldorf.de
g P

1 The Constraint Based Approach

In a previous work, we applied constraint solving techniques to problems like invariant
preservation and deadlock freedom checking [2]. The idea behind constraint based dead-
lock checking is that we set up a logical formula encoding a state where the invariant
holds, but all guards are false. We then use the built-in constraint solver to check if the
formula has a model. If we can find such a model, we know that the system cannot be
proven to be deadlock free. The invariant preservation checking is similar. We encode a
state where the invariant holds and a successor state (for some event) where the invariant
is false. If this formula has a model, we know that the system cannot be proven correctly.
Note that in both cases we do not require that the states are reachable. The system
might behave correctly, but the invariant is too weak to prove its correctness.

2 Applications

It turned out that the constraint based approach can be applied to multiple other prob-
lems as described in the rest of this paper. We think that the constraint solver is applicable
for many more problems.

Refinement Checking

Using the constraint based approach to verify refinement relations between Event-B
machines is done by setting up the negation of the relevant proof obligations WFIS,
GRD/MRG and SIM. If ProB is able to find a model, the obligation is not provable and
the refinement is not valid. However, setting up these proof obligations is not as easy
as it is in case of deadlock checking and invariant preservation. The SIM PO contains
the before-after-predicates of the actions contained in every refined event. Hence, we had
to extend the ProB constraint solver to enable the generation of before-after-predicates
for Event-B Actions. Furthermore, we extended our approach to refinement checking to
classical B, including the generation of the weakest preconditions occurring in classical
B proof obligations.

ProB as a (Dis)Prover

The previous version of the Disprover Plugin for ProB implicitly used the constraint
based capabilities of the ProB core. It constructed a new Event-B model containing an
event which encoded the negation of the proof obligation’s goal in its guard [?]. If this
event is enabled, the instantiated parameters are a counter example for the PO. We
refined this approach, removed the intermediate machine, and used the constraint solver
directly. This new version of the disprover plugin also verifies if the check was exhaustive,

* Parts of this research has been sponsored by the DFG funded research project GEPAVAS and
the EU funded research FP7 project 287563: ADVANCE).

i.e., if the absence of a counter example is actually a proof for the PO. If the disprover
detects that it found a proof, it acts like a decision procedure and marks the goal as
proven. This is shown in the screenshot below. The implementation is not restricted to
the naive case where we can syntactically detect that all datatypes are finite, but it also
works if only a finite subset of an infinite datatype is used.

Enabling Analysis

In [1] we have introduced a method to analyze the influence of an event on the guards
of all events. This information can be used to discover the program flow that is implicit
encoded in Event-B. It can be used to improve the model checking performance by not
evaluating guards that are known to be false, and it is also required in the context of
partial order reduction to check that a reduction is sound. The output of the analysis
can be displayed in form of a table as shown in the screenshot below.

ProB 2.0

We have lifted the constraint solver into the Groovy shell of ProB 2.0. This means that a
user can integrate constraint based solving into his own code. For instance, one can ask
ProB to find a solution for the formula z + 1 = y — 2 and ProB will return one solution.
In this case it would be z = 0,y = 3. If ProB cannot find a solution, we distinguish
three cases: time out; no solution found, but there might be one; and there cannot be a
solution. This means that in principle, something like the disprover could be implemented
by a user in form of a script.

o 2
I Proof Tree 2 I¢] | H B v = [806 Enabling Analysis

W) generalized MP Enabling Information after Operation

Wiy simplification rewrites

wiy) type rewrites ‘ ‘ .
¥y simplification rewrites independent possible timeout{possible)

v/ & goal timeout(possible) keep keep

@p ProB (all cases checked) independent possible e o e
by functional image goal for troute(t) possble possible_eneble possble
) - 1 1 1 possible_disable independent independent
@ functional goa independent ‘ guarareed | impossible
independent possible possible

Save... Legend... Done
References

1. J. Bendisposto and M. Leuschel. Automatic flow analysis for Event-B. In D. Giannakopoulou
and F. Orejas, editors, Proceedings of Fundamental Approaches to Software Engineering
(FASE) 2011, volume 6603 of Lecture Notes in Computer Science, pages 50-64. Springer,
2011.

2. S. Hallerstede and M. Leuschel. Constraint-based deadlock checking of high-level specifica-
tions. Theory and Practice of Logic Programming, 11(4-5):767-782, 2011.

3. O. Ligot, J. Bendisposto, and M. Leuschel. Debugging event-b models using the prob dis-
prover plug-in. Proceedings AFADL’07, Juni 2007.

