
Interactive Model Repair by Synthesis

Joshua Schmidt, Sebastian Krings and Michael Leuschel

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

joshua.schmidt@uni-duesseldorf.de

{krings,leuschel}@cs.uni-duesseldorf.de

Abstract. When using B or Event-B for formal specifications, model
checking is often used to detect errors such as invariant violations, dead-
locks or refinement errors. Errors are presented as counter-example states
and traces and should help fixing the underlying bugs. We suggest au-
tomating parts of this process: Using a synthesis technique, we try to
generate more permissive or restrictive guards or invariants. Furthermore,
synthesized actions allow to modify the behaviour of the model. All
this could be done with constant user feedback, yielding an interactive
debugging aid.

1 Introduction and Motivation

Writing a formal model is a complicated and time consuming task. Often, one
iterates between changing a specification and proof or model checking. Once an
error has been detected, the model has to be adapted to make it disappear.

To some extent, the correction phase can be automated: Using examples of
positive or negative behaviour we can synthesize corrected guards, invariants
or actions. Such examples can be collected during model checking or directly
provided by the user.

For simplicity, we will focus on Event-B below. Our approach has been
implemented for Event-B and classical B and could be extended to various other
languages supported by ProB. As we do not have a user interface in place, our
prototype is not yet available to the general public. We intent to ship it as a
standalone tool or bundled with one of the next releases of ProB.

2 Synthesis Technique

Our synthesis approach is based on the one by Jha et. al. [7] and is implemented
inside ProB [11,10] using its capabilities as a constraint solver as outlined in [9].

The main idea is the composition of program components, represented as
formulas describing input and output. Each component defines a single line of
the program written in three-address code: For instance, arithmetic operations
can be encoded by components that map two input values i1, i2 to an output
value o1. In case of addition, a constraint would ensure that o1 = i1 + i2 holds.



By setting up constraints for each I/O example one defines valid connections
between program parameters, input and output values and components as well
as in between components. In the example above, this could result in connecting
o1 to the input of another component in order to synthesize more involved
operations.

Other constraints encode the position or line of components in the code block.
Additionally, well-definedness constraints are added to enforce a syntactically
correct program. This includes ensuring type compatibility, i. e., we define
connections between locations referring to the same type and explicitly add
constraints preventing connections between differently typed ones.

Once a candidate program has been found, we search for another semantically
different solution. That is, we search for a set of input values where the output
of the solutions differs. We ask the user to choose amongst the solutions based
on this distinguishing input. We iterate through further solutions in the same
fashion. The ongoing search for distinguishing inputs provides us with additional
I/O examples. Eventually this leads to a unique solution. Once it is found, we
return the program synthesized so far.

The synthesis technique in [7] relies on two oracles. One is used to compute
the output of synthesized events while the other is used to assert the correctness
of a solution. We implement them as follows:

The I/O oracle used to compute output based on given input is replaced by
the model checker and the user. For a given input, we use ProB to compute
the matching output. Essentially, this amounts to computing a single animation
step from the given input state to the output state using the synthesized event.
Afterwards, we check the invariant on the output state: If it holds, we assume the
state pair is correct and the target state is used as the output. Otherwise, the
user has to decide: The event can be disabled on the input state, the invariant
can be relaxed or a new output state can be provided.

The validation oracle is used to check if a synthesized event is correct. To
provide it, we ask ProB to find two states s1, s2 such that the synthesized event
connects s1 7→ s2 and s2 violates the invariant. If a solution is found validation
fails. If ProB finds a contradiction validation succeeds. Of course, a timeout
might occur. In this case we have to rely on other validation options like the
provers ml/pp of Atelier B [4] or the SMT solvers [5]. As a last resort, we can
again query the user.

3 Interactive Workflow

The process as outlined in Figure 1 is guided and enforced by ProB. The workflow
itself is quite mature and has been fully implemented within the system. Given
that our implementation is prototypical we have not considered a user interface by
now. Currently, we only provide access via the developer command-line interface
of ProB.

Repair is performed successively, i. e., we loop until no error can be found
anymore and the user is satisfied with the model. Each step starts with regular



Perform Model 
Checking

invariant 
violation?

no

yes user 
interaction

done

find offending 
pair of states 

p, s

synthesize 
guard 

synthesise 
invariant

synthesize 
action

remove s

replace s

keep s

transition t 
missing?

no

relax guard or 
synthesise 
complete 

event
yes

Fig. 1. Interactive Workflow

explicit-state model checking as supported by ProB. There are two possible
outcomes:

– An invariant violation has been found. The user can decide to make the last
transition, leading from a state satisfying the invariant to one violating it,
impossible by synthesizing a stronger guard. Alternatively, the system can
generate a weaker invariant or a new action in case the user edited the output
state of a transition.

– The model has been checked and no error was found.1 We query the user if
a state transition is missing. In case any action is able to reach the missing
state, we can synthesize a relaxed guard for the event if necessary. Otherwise,
we can synthesize a new action, possibly with already appropriate guards.

4 Running Example

In Figure 2 you find the Event-B model of a simple vending machine. The machine
accepts coins and gives out a can of soda per coin. There are two errors we intend
to fix as outlined in Section 3:

– The invariant is violated if soda = 0, i. e., selling the last can is not allowed.
– get soda can be executed if coins = 0. The guard is too permissive.

First, ProB discovers the violating state S , coins = −1 ∧ soda = 2. The

user now has to decide, whether coins = 0 ∧ soda = 3
get soda−−−−−→ S is a valid

transition. We select to discard the transition resulting in a negative example.
Other positive examples are collected from the state space. After a few seconds,
the missing guard coins > 0 is synthesized.

We update the machine and model check it again. Now ProB finds coins =
0 ∧ soda = 0 to violate the invariant. This time we decide this state is valid, i. e.,
we need to change the invariant. The system now tries to find a replacement for

1 Either the check has been exhaustive or a timeout occurred.



machine SimpleVendingMachine
variables soda co in s
invariants

soda > 0 & co in s >= 0
events

event INITIALISATION
then

soda , c o in s := 3 , 0
end
event get soda

where
soda > 0 & co in s >= 0

then
soda , c o in s := soda − 1 , c o in s − 1

end
event i n s e r t c o i n

then co in s := co in s + 1
end

end

Fig. 2. Vending Machine

event SYNTHESIZED EVENT
where

soda > 2 & co in s > 1
then

soda , c o in s := soda − 3 , −2 + co in s
end

Fig. 3. Synthesized Event

soda > 0 using positive and negative examples found during model checking. The
solution, soda > −1 is then synthesized and gets conjoined with coins >= 0.

After updating the machine, no further invariant violation is found. To proceed
further, we can synthesize a new event. For instance, we could synthesize a “three
for the price of two” event by providing the two example transitions

coins = 2 ∧ soda = 3
?−→ coins = 0 ∧ soda = 0, and

coins = 4 ∧ soda = 4
?−→ coins = 2 ∧ soda = 1.

For these inputs ProB synthesizes the event in Figure 3. Of course there is no
guarantee that proper guards will be synthesized simultaneously, as it highly
depends on the given I/O examples. Another iteration might be necessary.



5 Discussion and Conclusion

Compared to other approaches like [2,1] we synthesize entirely new predicates
or actions based on input and output values instead of transforming an existing
specification. Synthesis has been used for repair as well, see for instance [6]. An
interactive approach has been suggested in [8].

In CEGAR [3] spurious counter examples are used to refine a model checking
abstraction. Our synthesis tool is guided by real counter examples and provides
an interactive debugging aid for model repair. Moreover, we not only rely on
the model checker to find counter-examples but also make use of ProB as a
constraint-solver. This leads to more flexibility in model repair, i. e., we are able
to avoid or allow specific states and even extend a machine in case model checking
has been exhaustive.

We believe that an interactive modeling assistant like the one we outlined
above will have its merits both for teaching as well as for professional use. First
tests using our prototypical implementation seem promising.

References

1. E. Bartocci, R. Grosu, P. Katsaros, C. Ramakrishnan, and S. A. Smolka. Model
repair for probabilistic systems. In Proceedings TACAS, LNCS 6605, pages 326–340.
Springer, 2011.

2. G. Chatzieleftheriou, B. Bonakdarpour, S. Smolka, and P. Katsaros. Abstract
model repair. In Proceedings NFM, LNCS 7226, pages 341–355. Springer, 2012.

3. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. LNCS 1855, pages 154–169. Springer, 2000.

4. ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France, 2014.
Available at http://www.atelierb.eu/.

5. D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for Rodin. In
Proceedings ABZ, LNCS 7316, pages 194–207. Springer, 2012.

6. T. Gvero and V. Kuncak. Interactive synthesis using free-form queries. In Proceed-
ings ICSE, pages 689–692, 2015.

7. S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In Proceedings ICSE, pages 215–224, 2010.

8. E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program repair. In Proceedings
CAV, LNCS 9207, pages 217–233. Springer, 2015.

9. S. Krings, J. Bendisposto, and M. Leuschel. From Failure to Proof: The ProB
Disprover for B and Event-B. In Proceedings SEFM, LNCS 9276. Springer, 2015.

10. M. Leuschel and M. Butler. ProB: A model checker for B. In Proceedings FME,
LNCS 2805, pages 855–874. Springer, 2003.

11. M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf., 10(2):185–203, Feb. 2008.


	Interactive Model Repair by Synthesis

