
16 The Eclipse Requirements Modeling
Framework

M. Jastram

Abstract: This chapter presents the the Requirements Modeling Framework (RMF),
an Eclipse-based open source platform for requirements engineering. The core of RMF
is based on the emerging Requirements Interchange Format (ReqIF), which is an OMG
standard. The project uses ReqIF as the central data model. At the time of this writing,
RMF was the only open source implementation of the ReqIF data model.
By being based on an open standard that is currently gaining industry support, RMF
can act as an interface to existing requirements management tools. Further, by based
on the Eclipse platform, integration with existing Eclipse-based offerings is possible.
In this chapter, we will describe the architecture of the RMF project, as well as the
underlying ReqIF standard. Further, we give an overview of the GUI, which is called
ProR. A key strength of RMF and ProR is the extensibility, and we present the integra-
tion ProR with Rodin, which allows traceability between natural language requirements
and Event-B formal models.

16.1 Introduction
The Requirements Modeling Framework (RMF1) may be of relevance to the reader
for a number of reasons. First and foremost, RMF extends the Eclipse ecosystem
with a meta-model for modeling requirements, the Requirements Interchange Format
(ReqIF). We hope that ReqIF will have a similar effect on requirements engineering to
what UML did for modeling: providing a unified data model that tools could converge
on. By being open source, RMF contributes to spreading the use of ReqIF.

Second, RMF contains the stand-alone ProR application, a platform for require-
ments engineering. This tool uses ReqIF as the underlying data model and there-
fore offers sophisticated, standardized data structures for organizing requirements and
provides interoperability with industry tools. Especially in small companies or aca-
demic projects, users until now faced the dilemma: Tools like Word and Excel have
wide acceptance, but limited features for requirements engineering. Professional tools
like Rational DOORS2 or IRQA3 are not affordable. There are some free tools, like
Trend/Analyst4, Topcased [9] or Wikis5. But these either use their own data structures,

1http://eclipse.org/rmf
2http://www.ibm.com/software/awdtools/doors/
3http://www.visuresolutions.com/irqa-requirements-tool
4http://www.gebit.de/loesungen/technische-loesungen/trend-analyst-requirements.html
5http://www.mediawiki.org/



with their own limitations, or follow a standard with few features in respect to require-
ments, like SysML. ProR provides a lot of functionality out of the box, and offers
interoperability according to an international standard. The interest that ProR created
both in academia and industry confirms this.

Third, ProR can easily extended to provide additional functionality or for inte-
gration with other tools. ProR is implemented as Eclipse plug-ins. While it can run
standalone, it can be installed in any existing Eclipse system. No special project type
is required for ProR, therefore any Eclipse project can contain ProR requirements files.
ProR provides an extension point, which allows developers to build tool integrations.
For instance, we created an integration plug-in for Rodin, a tool for formal modeling
[2]. After installing ProR into Rodin, it was possible to use drag and drop to integrate
model elements into the requirements specification.

Forth, RMF can be used as a generic platform for working with ReqIF-based re-
quirements, independently of an Eclipse-based GUI. This can be useful for a wide
range of activities, from analysis, report generation, generation of requirements arte-
facts, product line management, etc. RMF is built on the Eclipse Modeling Framework
(EMF), which supports the integration with other EMF-based offerings.

Before discussing the technical details, we will provide an overview of the current
state of requirements modeling, both in industry and academia.

This chapter is structured as follows: Section 16.2 provides an overview of the
current state of requirements modeling. Section 16.3 describes the data model of the
ReqIF format. Section 16.4 introduces the architecture of the Requirements Modeling
Framework (RMF), followed in Section 16.5 by a description and tutorial of ProR, the
user interface. Section 16.6 demonstrates how the platform can be extended and inte-
grated with other Eclipse-based software. This chapter concludes with Section 16.7.

16.2 Requirements Modeling
While this chapter is concerned with a software platform, it is useful to put it into the
bigger context of requirements management and engineering, which we will do in this
section. Ultimately, a tool is only useful if used properly, and with a clear goal.

A tool must support the activities found in requirements engineering and require-
ments management. These include the structuring of requirements, establishing trace-
ability, handling versions, integrating with other processes (e.g. testing and project
management), to name just a few. The specific activities depend to a degree on the
process that the tool has to support.

After discussing requirements and specifications in general below, we will revisit
the topic of tool support in Section 16.2.5.

16.2.1 Specifying Systems
Everything is build twice: First an idea forms in the mind, then the idea is realized. This
is true from the smallest to the biggest projects, from hanging up a picture to building a
space rocket. In the case of the space rocket, there would be a number of intermediate
steps to account for the complexity and scale of the task at hand. The number of



intermediate steps and types of documentation depends on the size of the project, how
critical it is, how many people are involved and many other factors. Nevertheless,
requirements and specification are artefacts that are so important that they play part in
all but the smallest projects.

Every project should have a goal. A goal typically says nothing about the “how”
(“How do I achieve this?”), but the “what” (“What is it that I want to achieve?”). A
goal is typically very simple and high-level. This does not necessarily mean that it is
not precise or quantifiable.

A requirement puts the goal into the context of the world. A requirement for hang-
ing a picture on a wall is that it stays there, which in turn has to take the picture’s
properties into account. This does not mean that it should indicate how the picture is
mounted — a nail or two screws — because a good requirement does not provide a
solution, but precisely describes the problem.

For big projects it is not practical to go directly from goal to requirements. The
goal is typically broken down in subgoals, an overall architecture is established that
allows partitioning of the tasks at hand, etc. In addition, there is a lot of overhead that
does not directly contribute to the development, but that is crucial nevertheless. This
includes artefacts for sub-disciplines like project management, testing, and many other
areas of interest.

It is the specification’s job to provide a solution to the problem. This is the place
that describes that a nail shall be used to put up the photo, and where to put it. It is
dangerous to look for solutions sooner than at this point, because it is easy to miss
important requirements or something crucial regarding the context.

16.2.2 Structuring Requirements

A good structure of requirements can make a huge difference in their management and
traceability, and quite a bit of research went into understanding this relationship better.
In industrial environments, this manifests itself in standards like IEEE 830-1997 [7] or
the relevant aspects of process frameworks like RUP [14].

In academia, Gunter, Jackson and Zave [6] developed WRSPM as a reference model
for requirements and specifications. A reference model is attractive for discussion, as
it draws on what is already understood about requirements and specifications, while
being general enough to be flexible. There are a number of concrete approaches that fit
nicely into the WRSPM reference model, including Problem Frames [8] , KAOS [3] or
the functional-documentation model [16].

WRSPM distinguishes five artefacts:

Domain Knowledge (W ) describes how the world is expected to behave.

Requirements (R) describe how the world should behave.

Specifications (S) bridge the world and the system.



Program (P) provides an implementation of S.

Programming Platform (M) provides an execution environment for P.

Inexperienced users sometimes confuse requirements and domain knowledge, but
the distinction is quite important:

• Requirements describe how the world should behave, and the system is respon-
sible for this.

• Domain knowledge describes how the world is expected to behave, and the func-
tioning of the system depends on the domain knowledge holding.

The relationship between requirements, domain knowledge and the specification
can be expressed formally:

S∧W ⇒ R

Or in words: Assuming a system that conforms to the specification S, and assuming
that the domain properties W hold, the requirements R are realized. There are some
subtleties (e.g. we are probably not interested in the trivial solution), but this is a
central idea of WRSPM.

Note that WRSPM does not know the concept of a goal. But according to WRSPM,
a goal is merely a high-level requirement. Also note that there is a whole category of
approaches called goal-oriented requirements engineering (GORE) [19].

The reference model defines phenomena, which act as the vocabulary to formulate
the artefacts. There are different types of phenomena based on their visibility. For
instance, there may be phenomena that the machine is not aware of. Consider a ther-
mostat: the controller is not aware of the temperature6, but only of the voltage at one
of its inputs.

The reference model can be applied to any requirements or specifications, no matter
whether they use natural language or a formalism. Once applied, more formal reason-
ing about the specification is possible.

Informal requirements rarely explicitly distinguish between requirements, domain
knowledge, or even specification elements and implementation details. In the follow-
ing, artefacts will refer to all of them.

16.2.3 Informal and Formal Specifications
Artefacts can be formalized by modeling them using a formalism. Many formalisms
exist, all with their respective advantages and disadvantages. Modeling can also be
applied on various levels of the development process — for goals, requirements, the
specification and even for the implementation.

6To be precise, whether the controller is aware of the temperature or not depends on where the line is
drawn between system and environment. In this simple example, the sensor is not part of the system (the
controller).



Some formalisms are more, others less “formal”. Often, a formalism only mod-
els a certain aspect of the specification and has to be complemented with additional
information. Here are a few examples:

Context Diagrams only formalize a small aspect of a system, it’s boundary to the
world. They help in the requirements elicitation process, by forcing us to de-
fine the boundary of the system and to identify the actors that can interact with
it. Using a context diagram in the elicitation process will leave its traces in the
structure of the requirements (i.e. by systematically enumerating all actors and
how they interact with the system). They are formal only in the sense that they
allow reasoning about a tiny aspect of the system and need to be complemented
with much more information.

UML and SysML Diagrams provide modeling elements for many elements of the
system and their relationship, ranging from class diagrams for object relation-
ships to state diagrams for transitions. While they are useful, they are not formal
enough to express complex functionalities and must be complemented somehow,
for example by use cases.

Problem Frames [8] introduce problem diagrams, which extend the notation of con-
text diagrams and make the problem explicit by showing the requirements in the
diagram. The notation of context diagrams is also formalized by distinguish-
ing between machine domain, designed domains and given domains. The nota-
tion further introduces problem frame diagrams for concisely recording problem
frames.

Z, VDM, B and many others are a particular kind of mathematically-based techniques
for the specification of sequential behavior. These and similar notations are used
to specify and verify systems. While formal methods do not guarantee correct-
ness, they can greatly increase the understanding of a system and help revealing
inconsistencies, ambiguities and incompleteness that might otherwise go unde-
tected [1].

CSP, CSS and others are formal methods that are used for specifying concurrent be-
havior.

16.2.4 Traceability
Traceability refers to the relationships between and within the artefacts and other ele-
ments [5, 13]. These are plentiful and exist implicitly. But the implicit traceability can
be made explicit. By doing so, those traces become themselves artefacts that must be
maintained. Therefore, the benefits and costs of making traces explicit must be weight
carefully — as with some artefacts, the cost of stale traces may be higher than the cost
of no explicit traces.



Making traces explicit can in itself provide useful information. Consider the “is
realized by” relationship between requirements and specification. Such a relationship
would immediately identify those requirements that are not specified yet, namely those
requirements that have no outgoing traces. Such a requirement can then be inspected
and the specification extended to realize it. After the specification has been extended,
a new trace is created, marking the requirement as realized.

While this approach works in principle, there are at least two problems with it. First,
which elements will be traced? It would be nice if there was a one-to-one relationship
between requirements and specification elements, but this is true only for the simplest
toy examples. In practice, this is an n-to-m relationship, and sometimes one end of the
trace can be elusive. Just consider quality requirements that apply to the system as a
whole.

Maintenance is the second issue. Creating a trace correctly is one thing, but keep-
ing it updated is quite another. Consider again the ‘is realized by” relationship. All
incoming traces would have to be verified to make sure that the specification element
still, in fact, realizes all requirements that it traces. But this works only if all traces
have been created in the first place. And when more corrections have to be done during
this verification (both on requirements and specification), it may trigger another wave
of verifications. Tools support can help to mark traces for verification — but how much
this helps depends on the completeness and correctness of the traces.

The ease of traceability depends, amongst other things, on the structure and quality
of the artifacts. For instance, one quality criteria for good requirements is the lack of
redundancy. Not having redundancy also eases traceability. Further, there are many
ways to structure the artefacts. A good structure can make traceability significantly
easier. The structure depends on notation and approach. The approach guides the
artefacts towards a certain structure, while the notation constrains how easy or difficult
it is to express something. Some notations require a certain approach and may also
push the artefacts in a certain structure. This is good if the notation is well-suited for
the problem at hand, but it can be counter-productive if this is not the case. Just imagine
drawing the blueprint of a house with UML, or to document an enterprise-system with
a mechanical drawing. Other notations are open to everything, like natural language.
But the downside in this case is that the notation provides no guidance, and can be
ambiguous or contradicting.

16.2.5 The Importance of Tool Support
The previous sections described the concerns regarding the working with requirements
and specifications. We created RMF specifically to provide a platform that could be
used in academia and industry to realize their ideas. We believe that there is a real
need for this: research projects often build their own tools in isolation with proprietary
data structures, which vastly decreases their survival chances. In industry, we see a lot
of customization of proprietary tools (for instance, there is a whole industry creating
scripts for IBM Rational DOORS7). RMF in turn builds on the open ReqIF standard
that is currently being adapted by commercial tools, and it is built on top of Eclipse

7http://www-01.ibm.com/software/awdtools/doors/



EMF [18]. Specifically, here are the areas where RMF could be put to use:

Structuring Requirements RMF provides all the features necessary for structuring
artefacts, both according to WRSPM or other approaches. In itself, the ProR
tool does not put any constraints on the structure, but this can be achieved via
specific plug-ins which could also provide guidance to the use, for instance by
providing wizards.

Model Integration as we will see in Section 16.6, an integration with models can be
achieved via plug-ins as well, especially if the formal modeling tools are built
using Eclipse EMF. In that case, referenced model elements can be seamlessly
incorporated into ProR specifications.

Traceability ReqIF includes data structures for typed traces, and RMF can be ex-
tended for intelligent handling of the traceability. For instance, traces could be
marked as suspect, as soon as the source or target element of the trace changes.

16.3 Requirements Interchange Format
We will provide a brief overview on the Requirements Interchange Format (ReqIF)
[15] file format and data model. We are mainly concerned with the capabilities and
limitations of the data model. The tool that we describe in Section 16.5 uses ReqIF as
the underlying data model. Doing so provides interoperability with industry-strength
tools, and builds on top of a public standard.

ReqIF allows the structuring of natural language artefacts, supports an arbitrary
number of attributes and the creation of attributed links between artefacts. It therefore
provides the foundation of collecting and organizing artefacts in a way that users are
comfortable with, but provides additional structure for supporting a solid traceability.

ReqIF was created in 20048 by the “Herstellerinitiative Software” (HIS9), a body
of the German automotive industry that oversees vendor-independent collaboration. At
the time, the car manufacturers were concerned about the efficient exchange of require-
ments with their suppliers. Back then, exchange took place either with lo-tech tools
(Word, Excel, PDF) or with proprietary tools and their proprietary exchange mecha-
nisms. ReqIF was meant to be an exchange format that would allow the exchange to
follow an open standard, even if the tools themselves are proprietary.

The basic use case for ReqIF consists of the following steps (described in detail in
the ReqIF specification [15]):

1. The manufacturer exports the subset of requirements that are relevant to the sup-
plier, with the subset of attributes that are relevant.

2. Those attributes that the supplier is expected to modify are writable, other con-
tent is marked as readable only.

8At the time of its creation, the format was called RIF and only later on renamed into ReqIF.
9http://www.automotive-his.de/



3. The supplier imports the data from the manufacturer into their system. If this
not the first import, then the data may be merged into an existing requirements
database.

4. The supplier can then edit the writable attributes, or even create a traceability to
other elements in their database (e.g. a systems specification).

5. The supplier performs an export with the data relevant to the manufacturer.

6. The manufacturer merges the data back into their requirements database.

16.3.1 The ReqIF Data Model
In general terms, a ReqIF model contains attributed requirements that are connected
with attributed links. The requirements can be arbitrarily grouped into document-
like constructs. we’ll first point out a few key model features and then provide more
specifics from the ReqIF specification [15].

A SpecObject represents a requirement. A SpecObject has a number of Attribute-
Values, which hold the actual content of the SpecObject. SpecObjects are organized
in Specifications, which are hierarchical structures holding SpecHierarchy elements.
Each SpecHierarchy refers to exactly one SpecObject. This way, the same SpecObject
can be referenced from various SpecHierarchies.

ReqIF contains a sophisticated data model for Datatypes, support for permission
management, facilities for grouping data and hooks for tool extensions.

ReqIF is persisted as XML, and therefore represents a tree structure. The top level
element is called ReqIF. It is little more than a container for the ReqIFHeader, a place-
holder for tool-spefic data (ReqIFToolExtension) and the actual content (ReqIFCon-
tent). The ReqIFContent has no attributes, but is simply a container for six elements.
These are:

SpecObject A SpecObject represent an actual requirement. The values (Attribute-
Value) of the SpecObject depend on its SpecType.

SpecType A SpecType is a data structure that serves as the template for anything that
has Attributes (e.g. a SpecObject). It contains a list of Attributes, which are
named entities of a certain datatype and an optional default value. For example,
a SpecObject of a certain type has a value for each of the SpecType’s attributes.

DatatypeDefinition A DatatypeDefinition is an instance of one of the atomic data
types that is configured to use. For instance, String is an atomic data type. A
DatatypeDefinition for a String would have a name and the maximum length of
the string. Each attribute of a SpecType is associated with a DatatypeDefinition.

Specification SpecObjects can be grouped together in a tree structure called Specifi-
cation. A Specification references SpecObjects. Therefore it is possible for the



same SpecObject to appear in multiple Specifications, or multiple times in the
same Specification.

In addition, a Specification itself may have a SpecType and therefore Attribute-
Values.

SpecRelation A SpecRelation is a link between SpecObjects, it contains a source and
a target. In addition, a SpecRelation can have a SpecType and therefore At-
tributeValues.

RelationGroup SpecRelations can be grouped together in a RelationGroup, but only
if the SpecRelations have the same source and target Specifications. This con-
struct got added to accommodate certain data structures of existing, proprietary
requirements tools.

We just learned that there are four element types that can have attributes: SpecOb-
jects, Specifications, SpecReleastions and RelationGroups. These four are all SpecEle-
mentsWithAttributes, or SpecElements for short. Each SpecElement has its own sub-
class of SpecType (SpecObjectType, SpecificationType, SpecRelationType and Re-
lationGroupType). A SpecType has any number of AttributeDefinitions, which ulti-
mately determines the values of a SpecElement. Correspondingly, a SpecElement can
have any number of AttributeValues. The AttributeValues of a SpecElement depend on
the AttributeDefinitions of the SpeElement’s SpecType. This fact can not be deducted
from the model.

The AttributeDefinition references a DatatypeDefinition that ultimately determines
the value of the AttributeValue of the corresponding SpecElement. For each atomic
data type of ReqIF, there is a corresponding DatatypeDefinition, AttributeDefinition
and AttributeValue each.

The ReqIF specifification [15] contains a number of class diagrams that nicely vi-
sualize these relationships.

ReqIF supports the following atomic data types:

String A unicode text string. The maximum length can be set on the Datattype.

Boolean A boolean value. No customization is possible.

Integer An integer value. The maximum and minimum can be set on the Datattype.

Real An real value. The maximum and minimum can be set on the Datattype, as well
as the accuracy.

Date A date- and timestamp value. No customization is possible.



Enumeration An enumeration Datatype consist of a number of enumeration values.
The AttributeDefinition determines whether the values are single value or multi-
ple value.

XHTML XHTML is used as a container for a number of more specific content types.
The AttributeValue has a flag to indicate whether the value is simplified, which
can be used if the tool used to edit only supports a simplified version of the
content. For instance, if rich text is not supported, and therefore the new content
is stored as plain text.

ReqIF consist of 44 element types in total. The ones we just described are important
for understanding ReqIF in general and this chapter in particular. Elements we omitted
concern aspects like access control and identifier management.

16.3.2 The Impact of ReqIF
Even though ReqIF was initially created as a file-based exchange format, we believe
that it can be much more than that. By employing ReqIF directly as the underlying
data model for an application, we can take full advantage of the model’s versatility.
Conveniently, the OMG made the data model available in the CMOF format, thereby
facilitating the process of instantiating the data model in a concrete development envi-
ronment. As we will see in the next section, RMF is based on EMF [18], which can
use CMOF as an input.

On the significance on ReqIF and our first-clean room implementation of the stan-
dard, we draw comparisons to model-driven software development: After the specifi-
cation of UML, a lot of publications and work concentrated on this standard, paving the
way for low-cost and open source tools. We hope that our open source clean-room im-
plementation of the standard based on Eclipse can serve as the basis for both innovative
conceptual work and new tools.

This is by no means guaranteed, and there are examples where this approach did
not work. For instance, the XMI format (in model-based community) was not that
successful, and XMI was also promoted by OMG.

16.4 The Requirements Modeling Framework (RMF)
RMF grew out of the Deploy10 research project [17] and the VERDE11 research project.
It is an Eclipse Foundation project that unifies a generic core engine to work with
RIF/ReqIF content, and a GUI called ProR.

The vision or RMF is to have at least one clean-room implementation of the OMG
ReqIF standard in form of an EMF model and some rudimentary tooling to edit these
models. The idea is to implement the standard so that it is compatible with Eclipse
technologies like GMF, Xpand, Acceleo, Sphinx, etc. and other key technologies like
CDO.

10http://www.deploy-project.eu/
11http://www.itea-verde.org/



16.4.1 High-Level Structure
Figure ?? depicts the high-level architecture of RMF. It consists of an EMF-based im-
plementation of the ReqIF core that supports persistence using the ReqIF XML schema.
The core also support the older versions RIF 1.1a and RIF 1.2.

.reqif
Exchange

Format

Eclipse Modeling Framework

Implementation
of

ReqIF Meta-Model

Meta-
Model

Extensions

Eclipse Platform

Requirements
Capturing

GUI

GUI
Extensions

Persistence

Standard Contribution Eclipse Extensions

Fig. 16.1: High-level architecture of RMF

The GUI for capturing requirements is called ProR (see also Section 16.5). It op-
erates directly on the ReqIF data model. This is an advantage compared to existing
requirements tools, where a transformation between ReqIF and the tool’s data model is
necessary. Not all tools support all ReqIF features, therefore information may be lost
in the process.

ProR at this time only supports the current version of ReqIF 1.0.1, not the older
versions.

These contributions have their origins in research projects, where they are actively
used. In particular, these research projects already produced extensions, demonstrating
the value of the platform. These are depicted in Figure ?? as well and described in
Section 16.6.

16.4.2 Extending RMF
RMF is designed as a generic framework for requirements modeling, and the ProR
GUI is designed as an extensible application. It has been used and extended in various
projects, as we will describe in Section 16.6. It provides an extension point that allows
the tailoring with plug-ins.

This is an important aspect of the project. As we have seen in industry, heavy
tailoring to the processes used and integration with other tools is what makes require-
ments tools successful. By using Eclipse as the platform for this tool, we can provide
integration with modeling tools like Rodin [2] or Topcased [9]. By providing a ver-
satile extension point, the behavior of the application can be adapted to the process
employed.



16.5 ProR
ProR is the Graphical User Interface (GUI) or RMF. ProR is available as a stand-alone
application, and it can be integrated into existing Eclipse installations.

This section will go through the more important features of ProR to provide an
impression of the tool in action. We provided a more extensive introduction to the tool
in [10]. We also created a screencast12 that demonstrates the basic features of ProR.

16.5.1 Installing ProR
ProR can be downloaded stand-alone, or installed into an existing application via its
update site. The download is a convenient option for non-technical people who just
want to get started with ProR. There are no special restriction for the update site ver-
sion: ProR can be installed into any reasonably new Eclipse installation.

16.5.2 Creating a ReqIF Model
ReqIF models can be created in any Eclipse project, and manifest themselves as a .reqif
file. A user creates a new ReqIF model via the FILE — NEW... menu, where there is a
wizard for a new “Reqif10 Model”. The wizard will create a new ReqIF model with a
very rudimentary structure, with one Datatype, one SpecType with one Attribute, using
the Datatype, one Specification with one SpecObject that uses the SpecType.

The user can then inspect the model structure in the outline and the properties
views. ProR provides its own Perspective, which ensures that all relevant views are
shown.

The editor in Figure 16.2 (the window in the middle) provides an overview of the
model. The most important section is the one labeled “Specifications”. Users can dou-
ble clicking on specifications to open them in their own editor, as shown in Figure 16.3.

Each row represents a requirement (SpecObject), and each requirement can have
an arbitrary number of attributes. Which specific attribute a requirement has depends
on its type.

Users can configure the editor to show an arbitrary number of columns. Each col-
umn has a name. If an element has an attribute of that name, then the value of that
attribute is shown in the corresponding column.

16.5.3 New Attributes
The actual information of requirements (SpecObjects) is stored in its attributes. Which
attributes a SpecObject has depends on its type. Users can add more attributes to exist-
ing requirement types.

To do this, the user opens the dialog for the datatypes via PROR — DATATYPE
CONFIGURATION... or the corresponding icon in the toolbar. The upper part of the
dialog shows the data structures, while the lower part contains a property view that

12http://www.youtube.com/watch?v=sdfTNZduvZ4



Fig. 16.2: ProR with a newly created ReqIF model, as produced by the wizard

allows editing the properties of the element that is selected in the upper part. New
child or sibling elements can be added via context menus.

In this example, the user adds two attributes to the type “Requirements Type”: an
ID for a human readable identifier, and a status field, which is an enumeration. The
result is shown in Figure 16.4.

The user just created a new datatype for the ID called “T ID”. For the status field,
the user created a new enumeration of type “T Status”. In the figure, we can see the
properties of the selected element in the lower pane, where they can be edited.

16.5.4 Configuration of the Editor

When closing the dialog and select a requirement, the three properties are visible in
the properties view, where the user can edit them. But the main pane of the editor
still only shows one column. The user can add new columns via PROR — COLUMN
CONFIGURATION... (or the corresponding tool bar icon), which opens a dialog for
this purpose. The dialog looks and works similar to the one for the datatypes. In
this example, the user adds one more column called “ID”. The dialog also allows the



Fig. 16.3: ProR with the specification editor open. The screenshot shows some sample
data. The screenshot shows the links expanded.

reordering of columns via drag and drop, and the user uses this mechanism to make the
ID column the first one.

With this setup, the user can set the status of individual requirements by selecting
them and updating the status field in the properties view. Upon clicking on the field, a
drop-down allow the selection of the new status value. Had the user added the status
field to the editor (as just described), they could adjust the values directly in the editor
as well.

Using this approach, users can add an arbitrary number of attributes to a require-
ment, which the user can all see and edit in the properties view. A selected number can
additionally be shown in the editor. For example, the user may decide that a require-
ment should have a comment field to record additional information.

16.5.5 Generating IDs
The ID column in now visible in the specification editor, but it is empty. While the user
could add IDs simply by hand, this is error prone, and one would expect the tool to be
able to handle this. ProR does not have the ability to generate IDs, but a “Presentation”



Fig. 16.4: The datatype dialog after adding some data

can. Presentations are ProR-specific plug-ins that modify the presentation of data and
inspect and modify the data. Presentations are described from a technical point of view
in Section 16.6.

To add a presentation, the user opens the presentation dialog via PROR — PRE-
SENTATION CONFIGURATION... (or the tool bar). The SELECT ACTION... dropdown
lists all installed presentations, and by selecting “ID Presentation”, the user creates a
new configuration element. In the properties, the user adjusts the prefix and counter
of the ID-presentation. But more important is the datatype that is associated with the
presentation. In this example, the user selects “T ID” — and this is the reason why the
user created a new datatype for the IDs earlier.

After closing the dialog, all requirements that did not have an ID yet will have
received one by the presentation.

16.5.6 Adding Requirements

Finally everything is ready for adding some data. The user does this via the context
menus, but in several places, keyboard shortcuts are available as well. Upon opening
the context menu for a requirement, the user adds new elements via the NEW SIBLING
and NEW CHILD submenus. A specification is a tree structure of arbitrary depth, and
the left margin indicates via a corresponding numbering scheme the position in the
hierarchy. In addition, the left margin of the first column is indented.

The context menu allows the creation of typed requirements — there is one entry



for each user-defined type — which can save a lot of clicking. But it is also possible
to add untyped requirements or even empty placeholders (SpecHierarchies). Adding a
placeholder can be useful for referencing an existing requirement. Requirements may
appear multiple times, both in the same specification and in other specifications of the
same ReqIF model.

To allow the rapid addition of requirements, ProR provides the CTRL-ENTER key-
board shortcut. Upon activating the shortcut, the new requirement is inserted below the
one that is currently selected and has the same type.

Last, a user can rearrange requirements via drag & drop or copy & paste.

16.5.7 Linking Requirements
The user can link requirements via drag & drop. As drag & drop is also used for
rearranging requirements, it has to be combined with a keyboard modifier. The key
that needs to be pressed is dependent of the operating system and is the same that is
used for creating file links and the like.

Once the user creates a link, the last column of the specification editor shows the
number of incoming and outgoing links. The user can toggle the showing of the ac-
tual link objects (SpecRelations) via PROR — SPECRELATIONS..., which are then
shown below the originating requirement (depicted in Figure 16.3). The last column
of link objects shows the destination object (selecting that column will show the target
requirement’s properties in the property view).

The user can assign types to link objects, resulting in them having attribute values.
The values will be shown in the specification editor, if the columns are configured
correspondingly.

This concludes the brief overview of the usage of ProR.

16.6 Extending ProR
The functionality of ProR is quite limited, but this is by design. ProR can be extended
using the Eclipse plug-in mechanism. Many features that should be standard in a re-
quirements engineering tool will not be implemented into the ProR core, but could be
made available via plug-ins. An example of this has been presented in Section 16.5.5,
where a plug-in was responsible for generating user-readable IDs.

Likewise, functionality like versioning or baselining will not be integrated into the
core. Versioning is already supported (albeit in a crude manner) by installing a repos-
itory plug-in like Subclipse13 or Subversive14 (Subversion support) or eGit15 (git sup-
port). However, these plug-ins perform versioning on the file-level. In practice, ver-
sioning on the requirement level would be more desirable, and from a technical point
of view, it is straight forward to realize this in the form of a plug-in.

13http://subclipse.tigris.org/
14http://www.eclipse.org/subversive/
15http://www.eclipse.org/egit/



Extensions for ProR exist — those have been driven mainly by academic needs so
far. In this section, we demonstrate how a developer can integrate RMF with other
Eclipse-based tools.

16.6.1 Traceability between Requirements and Event-B Models

The research project Deploy [17] is concerned with the deployment of formal methods
in industry. Traceability between natural language requirements and formal models
was one issue that the deployment partners were struggling with. Deploy continues
to develop the Eclipse-based Rodin tool [2], which was the main deciding factor for
using Eclipse for RMF. ReqIF was an attractive choice for providing interoperability
with industry tools. By using EMF, we could build directly on the ReqIF data model,
which allowed us to get a solid integration quickly. Figure 16.5 shows how we estab-
lish traceability between formal models and natural language requirements [12]. The
formal modeling is done in Event-B (using Rodin). Integration is seamless via drag
and drop, and a custom renderer supports color highlighting of model elements.

Fig. 16.5: Integration of ProR with an Event-B formal model. Model elements are
highlighted in the requirement text, and annotated traces to the model show the model
element in the property view.



16.6.2 Tracepoint Approach in ProR
The general concept of traceability in VERDE led to the decision to implement a trace-
ability that is independent of the types of artefacts that are involved. Since Eclipse-
based models are usually built on EMF, VERDE implements a generic solution for the
traceability of EMF-based elements called tracepoints [11]. The core data structure
is a mapping table with three elements: source element, target element and arbitrary
additional information. The elements are identified by a data structure, the so called
Tracepoint. The inner structure of a Tracepoint depends on the structure of the meta-
model that is being traced, but is hidden from the traceability infrastructure.

We added an adapter for the tracepoint approach for ProR, which was easy to re-
alize, as ProR is also built using EMF. This is true for all Eclipse-based offerings (and
what the tracepoint plug-in is targeted at). The tracepoint application adds a new view
to Eclipse. To set a tracepoint, the source and target are being selected in Eclipse and
stored by clicking one button for each.

16.6.3 Integration of Domain-Specific Languages
The possibility to specify requirements with textual domain specific languages (DSLs)
and to trace these to development artefacts is one of the foundations of the VERDE
project, which drove the DSL extension for ProR [11]. A textual DSL is a machine-
processable language that is designed to express concepts of a specific domain. The
concepts and notations used correspond to the way of thinking of the stakeholder con-
cerned with these aspects while still being a formal notation.

In the Verde requirements editor, the open-source tool Xtext [4] has been used. The
introduction of Xtext allows any project to define their own grammar and modelling.
Users can design and evaluate new formal notations for the specification of require-
ments.

The editor for the DSLs integrates itself directly into the requirements tool and is
activated as a presentation (as described in Section 16.5.5). Upon editing, a popup-
editor appears that gives immediate feedback to the user in the form of syntax high-
lighting and error markers, and supports the user by providing auto-complete and tool
tips, similar to what users are used to in modern programming editors.

16.7 Conclusion
In this chapter, we gave a broad overview of the current state in requirements engi-
neering both in academia and industry. We then introduced the ReqIF data model for
requirements, as well as Eclipse RMF and ProR. Last, we provided a few examples on
how this ReqIF-RMF-ProR-stack has been used to solve real problems.

As an Eclipse Foundation project, RMF relies on the feedback of users and on
contributors to thrive. We hope that we spurred some interest both in academia and
industry to see what RMF is capable of and to use it for their projects.



Bibliography

[1] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future direc-
tions. ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

[2] J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna. RODIN (rig-
orous open development environment for complex systems). EDCC-5, Budapest,
Supplementary Volume, page 2326, 2005.

[3] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde. GRAIL/KAOS: An
Environment for Goal-driven Requirements Engineering. In Proc. of the 19th int.
conf. on Software engineering, pages 612–613. ACM, 1997.

[4] S. Efftinge and M. Vlter. oAW xText: a framework for textual DSLs. In Workshop
on Modeling Symposium at Eclipse Summit, volume 32, 2006.

[5] O. Gotel and A. Finkelstein. An analysis of the requirements traceability problem.
In Proceedings of the First International Conference on Requirements Engineer-
ing, page 94101, 1994.

[6] Carl A. Gunter, Michael Jackson, Elsa L. Gunter, and Pamela Zave. A reference
model for requirements and specifications. IEEE Software, 17:37–43, 2000.

[7] IEEE. Recommended practice for software requirements specifications. Techni-
cal Report IEEE Std 830-1998, IEEE, 1997.

[8] M Jackson. Problem frames: analysing and structuring software development
problems. Addison-Wesley/ACM Press, Harlow England ;;New York, 2001.

[9] Michael Jastram and Andreas Graf. Requirement traceability in Topcased with
the requirements interchange format (RIF/ReqIF). First Topcased Days Toulouse,
2011.

[10] Michael Jastram and Andreas Graf. Requirements modeling framework. Eclipse
Magazin, 6.11, 2011.

[11] Michael Jastram and Andreas Graf. Requirements, traceability and DSLs in
eclipse with the requirements interchange format (RIF/ReqIF). In Tagungsband
des Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter Sys-
teme VII. fortiss GmbH, Mnchen, 2011.



[12] Michael Jastram, Stefan Hallerstede, and Lukas Ladenberger. Mixing formal and
informal model elements for tracing requirements. In Automated Verification of
Critical Systems (AVoCS), 2011.

[13] Michael Jastram, Stefan Hallerstede, Michael Leuschel, and Aryldo G Russo Jr.
An approach of requirements tracing in formal refinement. In VSTTE. Springer,
2010.

[14] Philippe Kruchten. The rational unified process: an introduction. Addison-
Wesley, 2004.

[15] OMG. Requirements interchange format (ReqIF) 1.0.1. 2011.

[16] D. L. Parnas and J. Madey. Functional documents for computer systems. Science
of Computer programming, 25(1):41–61, 1995.

[17] B. Part. Deploy project. 2008.

[18] D. Steinberg, F. Budinsky, M. Peternostro, and E. Merks. EMF Eclipse Modeling
Framework. Addison-Wesley, 2 edition, 2009.

[19] A. Van Lamsweerde et al. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the 5th IEEE International Symposium on Requirements
Engineering, volume 249, page 263, 2001.


