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Abstract
PROB is a model checker for high-level B and Event-B models
based on constraint-solving. In this paper we investigate alternate
approaches for validating high-level B models using alternative
techniques and tools based on using BDDs, SAT-solving and SMT-
solving. In particular, we examine whether PROB can be comple-
mented or even supplanted by using one of the tools BDDBDDB,
Kodkod or SAL.

Categories and Subject Descriptors I.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving—Logic Programming; D.2.4
[Software Engineering]: Software/Program Verification—Model
Checking; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical verifi-
cation; Specification techniques

General Terms Languages; Verification

Keywords Logic Programming; formal methods; model check-
ing; verification; animation.1

1. Introduction
Event-B is a formal method for state-based system modelling and
analysis evolved from the B-method [1]. The B-method itself is
derived from Z and based upon predicate logic with set theory
and arithmetic, and provides a wide array of sophisticated data
structures (sets, sequences, relations, higher-order functions) and
operations on them (set union, difference, function composition to
name but a few).

Event-B has a tool support in a form of the Rodin Platform [2],
which is extensible with plugins. The platform supports the mech-
anisms, essential for rigorous model development among which
model checking (exemplified by PROB) plays an important role in
ensuring the model correctness and understanding the system be-
haviour.

1 This research is partially supported by the EU funded FP7 project 214158:
DEPLOY (Industrial deployment of advanced system engineering methods
for high productivity and dependability).
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PROB [14, 16] is an animator for B and Event-B built in Prolog
using constraint-solving technology. It incorporates optimisations
such as symmetry reduction and has been successfully applied to
several industrial case studies.

Still, sometimes the performance of the tool is suboptimal, es-
pecially in the context of complicated properties over unknown
variables, which is the reason we have investigated alternate ap-
proaches for animating or model checking B specifications. More
precisely, we investigate whether model checking of B/Event-B
could by done by mapping to the input languages for other tools
making use of either SAT/SMT solving techniques or of BDDs. If
so, what is the performance difference compared to PROB’s current
constraint solving approach? Can the constraint solving approach
be combined with the alternate approaches? These are the ques-
tions we try to answer in this paper. In Section 2 we provide some
background information about PROB and its constraint solving ap-
proach. In Section 3 we elaborate on our experience in trying to use
the BDDBDDB package [28], which provides a Datalog/relational
interface to BDDs and has been successfully used for scalable static
analysis of imperative programs. In Section 4 we present our expe-
rience and first results in mapping B to Kodkod [26], a high-level
interface to SAT-solvers used by Alloy [12]. In Section 5, we turn
our investigation to SAL [24], based on the SMT-solver Yices. We
conclude with a discussion about related and future work in Sec-
tion 7.

2. ProB
PROB [14, 16] is an animator and model checker for the B-method
based on the constraint solving paradigm. Constraint-solving is
used to find solutions for B’s predicates. As far as model checking
technology is concerned, PROB is an explicit state model checker
with symmetry reduction [15, 27, 19]. While the constraint solving
part of PROB is developed in Prolog, the new LTL model checking
engine [20] is encoded in C.

Some of the distinguishing features of PROB are

• the support for almost full syntax of B, integration into Atelier
B and Rodin,
• the support for Z [23] and Event-B, building on the same kernel

and interpreter as for “classical” B,
• the support for other formalisms such as CSP [18] via custom

Prolog interpreters which can be linked with the B interpreter
[7].

However, in this paper we will concentrate on B and Event-B.
PROB uses a custom built constraint solver over the datatypes of
B. The base types of B are booleans, integers and user-defined base



sets, while the composed types can be constructed using cartesian
product and the power set constructions. As such, B caters for sets,
relations, functions and sequences and provides many custom op-
erators on these datatypes (e.g., computing the inverse of a relation,
composing relations, ...). Note that the relations and functions can
be higher-order (and often are).

The performance of PROB is often good for animation and it has
been successfully applied to a variety of industrial specifications.
Recently, PROB has been extended to also deal with very large sets
and relations (with tens of thousands of elements or more) and it is
planned that PROB will be used by Siemens in production in 2009
for validating assumptions about rail network topologies [17].

In some real life scenarios, PROB can actually be more efficient
than, e.g., Spin or SMV working on equivalent lower-level models
(see [13] or or [11]). Still, there are many scenarios where the
performance is not (yet) adequate.

For example, PROB’s performance can be disappointing when
values for variables have to be found which satisfy complicated
predicates, and those constraints allow little deterministic con-
straint propagation to occur (see, e.g., the example in Section 4.3).
For example, finding values for the constants of a B model which
satisfy complicated constants can be very challenging. Another sce-
nario with similar characteristics is the use of PROB as a disprover
[4] for proof obligations: here one wants to find values which make
the hypotheses of the proof true but the consequent false.

In this paper we investigate whether PROB can be comple-
mented by other technologies in order to improve its performance.
We also study whether the entire constraint solving engine could be
replaced, if other technologies turn out to be universally superior.

3. BDDs via Datalog
Symbolic model checking with binary decision diagrams (BDDs)
has become very popular since the very successful applications on
hardware models [6]. We investigated, if and how we could use this
approach for Event-B or B models.

BDDBDDB [28] offers the user a Datalog-like language that aims
to support program analysis. It uses BDDs to represent relations
and compute queries on these relations. We wanted to use the tool
to find states that violate the invariant of a model, using Datalog
queries that follow the schema

check(S) :- init(I),do_events(I,S),inv_violated(S).
do_events(A,A).
do_events(A,B) :- step(A,C),do_events(C,B).
step(A,B) :- event_X(A,B).
step(A,B) :- event_Y(A,B).

check(S) should return a reachable state that violates the invariant.
To find such a state, we start in an initial state I, do zero or more
operations from I to S via do_events and check if the resulting
state violates the invariant with inv_violated. do_events(A,B)
is specified by doing either zero steps (A and B are the same) or
doing one step to an intermediate state C and continuing recursively.
step again models the transition between two states by an event,
here e.g. event_X and event_Y.

What can not be seen in the query above is how an initial state,
a state that violates the invariant or an event is specified. To do that,
one has to represent a state of the model as a bit-vector and events
have to be implemented as relations between two of those bit-
vectors. These relations have to be constructed by creating BDDs
directly with the underlying BDD library (JavaBDD) and storing
them into a file.

If we take e.g. a model that contains two integers a and b, and
an event with the action a := a + b, we have to define a boolean
formula that specifies for every bit of a in the new state how it

correlates with the bits of a and b in the original state and for all
other bits that they stay the same.

Soon after starting experimenting with BDDBDDB it became ap-
parent that due to the lack of more abstract data types than bit vec-
tors, the complexity of a direct translation from B to BDDBDDB was
too high, even for small models. So we abandoned this approach,
especially as there are other tools like SAL or Kodkod that give us
the possibility to use symbolic approaches but offer a more power-
ful interface to define the models.

4. SAT Solving via Kodkod
Kodkod [26] is a constraint solver for first order logic that offers
an extensive set of operations on relations. It uses an underlying
SAT-solver (like minisat) to find solutions to a given problem.

It seems to be much more suitable for our purpose than the
previously mentioned low-level approach using BDDs, because
sets and relations (Kodkod considers sets as unary relations) are
heavily used in B specifications. To use Kodkod, one basically has
to provide four things to find solutions for a problem:

• An universe of atoms.
• n-ary relations between the atoms.
• A predicate, called formula, is constructed as an abstract syntax

tree and can refer to previously defined relations.
• Bounds on the relations define which atoms can be in each

relation.

Kodkod then provides possible instances for the relations.
Kodkod itself does not define an input language, but comes as a

Java library and the user defines the components of the problem via
the API. We used this library to implement a component of PROB
that runs in a separate process. We do not replace a whole B spec-
ification by a kodkod problem description but we rather replace
single predicates. This allows us to mix Kodkod and PROB’s con-
straint solving technique, which is particular useful if components
of the specification are not translatable.

4.1 Translation from B to Kodkod
In a first approach, we restricted ourselves to expressions that used
only deferred sets or enumerated sets as data types. To translate a
B predicate into a Kodkod problem, we do the following:

First, we construct the atoms of Kodkod’s universe by creating
an atom for each element of an enumerated set. Deferred sets
can be treated the same way, because PROB assigns a fixed finite
cardinality to each deferred set.

Then we can translate the given (i.e. enumerated or deferred) set
into an unary relation which contains exactly all atoms that belong
to its elements. The information that the relation contains exactly
those atoms is specified as a bound on the relation. We translate
each element of an enumerated set to an unary singleton relation
which contains exactly the associated atom.

For every variable (or constant) that is referenced in the pred-
icate we create a Kodkod relation. If the variable’s type is a set
or relation, the translation is straight-forward, if the variable’s type
is an element of a deferred or enumerated set, we have to add the
predicate that the relation is a singleton.

B expressions often have a direct Kodkod counterpart: E.g. the
cartesian product, set union, intersection and difference, reverse
and closure of a relation, the relational image. Some expressions
can be translated using other existing constructs. E.g. the domain
restriction S C R with S ⊆ A and R ∈ A↔ B can be rewritten
into S C R = R ∩ (S × B), that again can be translated directly.
Identifiers are translated to references to the according relations, as
described above. Also many B predicates like conjunction, disjunc-
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Figure 1. PROB and Kodkod

tion, negation, universal and existential quantification, set member-
ship, subsets, etc. can be directly translated.

Fig. 3 shows an example of a predicate in B syntax and the
corresponding Kodkod formula. The formula is taken from the
output of the toString method of the corresponding Java object
and only slightly modified to improve readability. One can see
that it’s very similar to the original B predicate, the additional
one lentry in the beginning states that lentry is a singleton
set. && is the logical conjunction, . the relational image, & the
intersection, ~ the inverse and -> the cartesian product.

Limitations of the translation Currently the data type of each
expression that we translate must be an element of a given set,
a subset of a given set, or a relation between those types. Our
approach does not support types like sets of sets, as those cannot
be translated to Kodkod easily.

Another limitation is that we currently do not consider integers.
Kodkod has limited support for integers, one can specify integers
and sets of integers and use basic operations like addition or multi-
plication on them. Internally, Kodkod maps each integer to an atom
(at least if a set of integers is used) and uses a bit encoding with
a fixed number of bits for the integer operations. Integer overflows
are silently ignored. We are currently working on a version which
first does a static analysis on the B predicate to determine the possi-
ble intervals of each expression. This is needed to pass a maximum
bit width to Kodkod that guarantees the integer operations to be
correct. Additionally, we need the intervals to create an atom for
each possible integer if a set of integers is used in an expression.

4.2 Interaction between PROB and Kodkod
To make use of Kodkod’s features in PROB, a predicate in the in-
ternal syntax tree is replaced by a special syntax element that de-
scribes a Kodkod representation of the predicate. When the inter-
preter encounters this element the first time, the description of the
problem is sent to a separate Java process (see Fig. 1). After this ini-
tialisation phase, each time the interpreter evaluates the predicate,
the currently known values of used variables are sent to the pro-
cess, which in turn returns possible values (calculated by Kodkod)
for the remaining variables of the predicate.

In the example above, PROB would send the value of succ, and
the Java process returns the 7 possible values for L and lentry.

4.3 Performance comparison
For now, we do not have an exhaustive performance comparison
between PROB and Kodkod. Evaluating two extreme examples
suggests that depending on the problem, either approach can show
its strength.

Kodkod and large relations Kodkod does not seem to scale well
when encountering large relations. This has only been relevant for
certain applications of PROB, such as the property verification on
real data [17]. The log-log plot in Figure 2 contains a small experi-
ment where the performance of the set-difference operation is anal-
ysed. PROB scales linearly, while Kodkod exhibits an exponential
growth (slope of the Kodkod curve > 1).
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Figure 2. Performance of PROB vs Kodkod on large sets

Blocks = {b1, b2, b3, b4, b5, b6, bentry, bexit}
succs = {bentry 7→ b1, b1 7→ b2, b2 7→ b3, b3 7→ b3, b3 7→ b4,

b4 7→ b2, b4 7→ b5, b5 7→ b6, b6 7→ b6, b6 7→ bexit}
The predicate in B syntax

lentry ∈ L
∧ succs−1[L \ {lentry}] ⊆ L
∧ ∀l.(l ∈ L⇒ lentry ∈ (L C succs B L)+[{l}])

and encoded in Kodkod

one lentry && lentry in L &&
((L-lentry) . ~succs) in L &&
all l: one Blocks | (l in L =>
lentry in (l.^(((L->Blocks)&succs)&(Blocks->L))))

Figure 3. Finding loops in a control flow graph

Finding loops in a control flow graph For a certain class of
problems, Kodkod is much faster. The problem given in Fig. 3 is
encoded in a B-machine by defining the basic blocks Blocks as an
enumerated set, the relation succs as a constant and the predicate as
a precondition for an operation with two parameters L and lentry.

PROB needs 683 sec to find all 7 solutions without Kodkod-
support. When the predicate is replaced by a call to the Kodkod-
process, the computation time reduces to 10 ms.

4.4 Conclusion and ongoing work
For a certain problems, the use of a SAT solver via Kodkod seems
very promising. We do not see that this approach might replace the
constraint solving mechanism of PROB, because there still will be
constructs in specifications that are very hard to translate.

The lack of support for integers turned out to be a hurdle for try-
ing out more examples. So we are currently working on supporting
integers and will then continue the evaluation of this approach.

Replacing single predicates in the syntax tree has the advantage
that we can mix both techniques and that we have no restrictions
on the elements that can be used in specifications. However, this
approach restricts us to explicit state model checking. For making
symbolic techniques like bounded model-checking available, we
must be able to translate the whole specification. We are currently
thinking about ways to circumvent this restriction by using predi-
cate abstraction [8].

5. SAL
SAL [24] is a model-checking framework combining a range of
tools for reasoning about information systems, in particular concur-
rent systems, in a rigorous manner. The core of SAL is a language
for constructing system specifications in a compositional way. The



SAL tool suite includes a state of the art symbolic (BDD-based)
and bounded (SAT-based) model checkers.

The overall aim of our work is to investigate the potential ap-
plications of SAL in a combination with the Rodin platform, a de-
velopment tool for the Event-B formalism. Unlike SAL, Rodin re-
lies mostly on theorem proving for model analysis. We are looking
for a way of complementing the Rodin platform with a plugin that
would automate some of the more difficult tasks such as liveness,
deadlock freeness and reachability analysis.

5.1 Event-B to SAL translation
In this section we describe our ongoing work on translating Event-
B models into the input language of SAL. We report the results
on initial experiments on verifying Event-B models in the SAL
framework. The benchmark for our efforts is PROB[14, 16]. Since
PROB is Prolog-based, we had started with an expectation of
achieving some performance advantage for a considerable subset
of problems.

Table 1 and Figure 4 present the comparative performance of the
PROB Event-B model checker and SAL 2 run on the result of trans-
forming the same model into the input language of SAL. The first
model is a synthetic benchmark based on bubble sort algorithm. In
this model a single event swaps neighbouring elements of an array
if they are in a wrong order. The other four models are the examples
bundled with PROB distribution. These demonstrate the translation
and the performance of some of the most ”inconvenient” parts of
Event-B syntax for SAL: sets, functions, relations and operators on
them such as union, intersection, cardinality and etc.

In the comparison tables ”SAL run” stands for the time of iterat-
ing through the state space, and ”SAL total” is the total time includ-
ing generation of model checker. On the charts we show PROB and
total SAL times with values connected by lines where there is an
evident dependency between the size of state space and correspond-
ing timings. During model checking the Club specification we were
changing several parameters, and each of them had its effect on the
size of state space and total model checking time. Thus we show
results for this model as a set of non-connected points. All figures
are meaningful for comparative analysis only: they could change
substantially depending on the operating system, compiler distribu-
tion, and, obviously, the performance of a machine on which tests
are run.

These results are obtained with default settings in both model
checkers. By enabling hash or nauty symmetries, one is able to
obtain much better results in PROB (see also [13]) , although
this requires some understanding on when these options should
be enabled. In some cases, symmetry reduction may slow down
the process but mostly it reduces the model checking time. For
example, with hash symmetry enabled, PROB can model check
the Scheduler specification with parameter set to 5 in just 0.25s
compared to 1.7s with default settings (see Table 2). Also, for Life
with set size 20, PROB only generates 232 states with symmetry
and the model checking time goes down to 2.2 seconds. Finally, for
Club with MaxInt = 20 and set size 4, the number of states goes
down to 682 from 3597, and the model checking time goes down
to roughly 6 seconds.

Reasoning on timings we obtained during our experiments,
we drew preliminary conclusions about efficiency of SAL model
checker on our models:

• SAL verification stage alone can be more than 10x up to 1000x
faster than PROB (without symmetry) for a large class of mod-
els;

2 All timings are obtained using sal-smc model checker

Sort
Parameters States PROB SAL run Sal total
array[3] of 1..10 1000 18 sec 0.08 sec 0.2 sec
array[4] of 1..10 10000 5 min 41 sec 0.1 sec 0.3 sec
array[6] of 1..10 1000000 > 30 min 13 sec 14 sec
array[6] of 1..12 2985984 > 30 min 29.5 sec 30.7 sec

Life
Parameters States PROB SAL run Sal total
set size = 5 243 0.9 sec 0.06 sec 0.28 sec
set size = 7 2187 11.8 sec 0.06 sec 0.42 sec
set size = 8 6561 72.5 sec 0.06 sec 0.8 sec
set size = 20 > 109 > 20 min 0.28 sec 2.7 sec

Max
Parameters States PROB SAL run Sal total
MaxInt = 7 256 1.4 sec 0.06 sec 0.22 sec
MaxInt = 8 512 3.3 sec 0.05 sec 0.25 sec
MaxInt = 9 1024 7.8 sec 0.08 sec 0.26 sec
MaxInt = 10 2048 20.7 sec 0.08 sec 0.28 sec
MaxInt = 11 4096 61 sec 0.09 sec 0.25 sec
MaxInt = 12 8192 3 min 18 sec 0.2 sec 0.6 sec
MaxInt = 30 > 109 > 30 min 0.4 sec 2 sec
MaxInt = 50 > 1015 > 30 min 2.2 sec 7.4 sec

Scheduler
Parameters States PROB SAL run Sal total
set size = 3 35 0.24 sec 0.05 sec 0.47 sec
set size = 4 124 0.7 sec 0.1 sec 1.8 sec
set size = 5 437 1.7 sec 0.1 sec 55 sec

Club
Parameters States PROB SAL run Sal total
capacity = 1..2
set size = 3 368 1.8 sec 0.03 sec 0.6 sec
MaxInt = 10
capacity = 1..2
set size = 4 958 4.6 sec 0.03 sec 5 sec
MaxInt = 10
capacity = 1..2
set size = 4 3358 11.8 sec 0.03 sec 5.5 sec
MaxInt = 30
capacity = 1..2
set size = 4 5758 30.3 sec 0.05 sec 6 sec
MaxInt = 50
capacity = 1..2
set size = 4 119758 > 30 min 0.05 sec 6 sec
MaxInt = 10000
capacity = 1..2
set size = 5 2408 9.5 sec 0.05 sec 4 min 29 sec
MaxInt = 10
capacity = 1..3
set size = 4 3597 14.2 sec 0.03 sec 5.4 sec
MaxInt = 20

Table 1. Comparison on Event-B and SAL specifications

• even in the case of enabled symmetry in PROB, SAL shows
either better or comparable performance;
• the bottleneck of SAL model checking performance is in the

pre-verification analysis and checker generation stages. In par-
ticular, unfolding quantifiers may take ∼ 95% of generation
time;
• SAL model checking time strongly depends on the complexity

of theorems, complex computations in theorems dramatically
reduce the overall performance.

In these models, we used a classical representation of sets in
predicates adopted from [25]. Let us look at an excerpt from a B
model which uses sets:



Figure 4. Comparison on Event-B and SAL specifications

SETS s ...

CONSTANTS total ...

VARIABLES a ...

INVARIANT a⊂s & card(a)≤total ...

OPERATIONS

add(b) = WHEN b∈s & b/∈a THEN a:=a∪{b} END;

...

The corresponding SAL specification is

modelname: CONTEXT =

BEGIN

ntype: TYPE = {n: prob!NAT1 | n <= prob!MaxSetSize};
s: CONTEXT = set{ntype;};
main: MODULE =

BEGIN

LOCAL a: s!Set ...

TRANSITION [

([](b:ntype): add:

NOT s!contains(a, b) --> a’ = s!union(a, b))...

END

th: theorem main `
G(EXISTS(n: prob!SizeType):

s!size(a, n) AND n<=total);

END

And the implementation of cardinality test is

size(s: Set, n: natural): boolean =

(n=0 and equals(s, Empty)) or

(n>0 and exists (f: [[1..n] -> T]) :

(forall (x1, x2: [1..n]): f(x1)=f(x2) => x1=x2) and

(forall (y: T): s(y) <=>

(exists (x: [1..n]) : f(x)=y)));

Such calculation of cardinality involves an excessive use of quan-
tifiers. In [9] a brute-force approach is proposed which iterates
through a function from a set type to boolean. We believe that this
can still be improved upon. Since SAL natively supports arrays, we
encoded sets as arrays of boolean type with an index being mapped
to values of a set type. Essentially, a set (and its derivatives such
as relation and function) is represented as a characteristic function.
The approach brings a number of advantages. For instance, car-
dinality calculation is realised with a relatively efficient recursive
function:

sizesofar(s: Set, n: SetArrayType): prob!SizeType =

if s[n] then 1 else 0 endif +

if n>1 then sizesofar(s, n-1) else 0 endif;

size(s: Set): prob!SizeType = sizesofar(s, prob!MaxSetSize);

As a further optimisation technique, for each set we introduce
an auxiliary variable storing the current set size. This variable is
updated each time the set is changed.

With our new style of set translation, the example above is trans-
formed into the following:

modelname: CONTEXT =

BEGIN

s: CONTEXT = set;

main: MODULE =

BEGIN

LOCAL a: s!Set, a size: prob!SizeType ...

INITIALIZATION ...; n = set!size(a); ...

TRANSITION [

([](b:set!SetArrayType): add:

NOT s!contains(a, b) -->

a’ = s!union(a, b); a size’ = set!size(a’);)...

END

th: theorem main ` G(a size <= total);

END

With this approach an invariant (SAL safety theorem) does not
involve the heavy calculation of a set size. Unsurprisingly, this re-
sults in a significant performance benefit for the models operating
on sets. We present the comparison of these timings in Table 2 and
Figure 5.

Figure 5. The comparative results for the efficient set translation
(Sal, new)

5.2 Ongoing work on the plugin
Our ongoing work is focusing on incorporating the SAL model
checker into the Rodin platform. A number of steps are being
performed to achieve this. We are aiming at developing a nearly
complete mapping of Event-B to the SAL input language. We
do not consider it practical to attempt to cover the whole of the



Club
Parameters States PROB Sal, old SAL, new
capacity = 1..2
set size = 5 2408 9.5 sec 4 min 29 sec 0.3 sec
MaxInt = 10
with symmetry 216 ≈ 1.5 sec
capacity = 1..2
set size = 6 5857 39.4 sec 0.4 sec
MaxInt = 10
with symmetry 245 ≈ 2.5 sec
capacity = 1..2
set size = 8 31738 >10 min 0.7 sec
MaxInt = 10
with symmetry 288 ≈ 4 sec

Scheduler
Parameters States ProB Sal, old SAL, new
set size = 5 437 1.7 sec 55 sec 0.4 sec
with symmetry 21 0.25 sec
set size = 7 5231 39.2 sec 0.7 sec
with symmetry 36 0.5 sec

Table 2. The comparative results for the efficient set translation
(Sal, new)

Event-B mathematical language. Instead, we intend for our tool to
cooperate with the PROB model checker so that models that cannot
be handled with SAL are automatically handled by PROB.

The result of developing the language mapping would be an
automated translation of Event-B models into SAL. The next step
is in providing a user with a meaningful feedback from the tool.

The summary of our translation approach is given in Table 3. It
covers the main Event-B model elements such as events, invariant,
variables, etc.

Since SAL requires variable types to be predefined and finite, all
variables of an Event-B model must be automatically constrained
to finite (and small) ranges. In Event-B models, definition of a vari-
able type is a part of invariant. Therefore, constraints on variables
can be obtained by analysing the invariant. In case of unbound type
the model translator would use predefined ranges either specified
by user or taken by default.

SAL supports enumerated types which can be used for encoding
Event-B given sets. However, considering our general implementa-
tion of sets we see reasonable to map enumerated values into a
range of integers at the translation level. The result of a SAL model
checking would be traced back to the Event-B enumeration and
given to a user as a feedback in terms of the initial model.

Along with solutions to translating Event-B models into SAL,
we have identified a number of challenges:

• the use of cartesian products, relational composition and related
operators often leads to a state explosion even in examples with
modest model state space;
• it is apparent that some constructs of Event-B, such as closure,

set comprehension and others, are very hard to translate into
anything that would not preclude checking of interesting model
properties;
• for some language constructs, it is easier to do partial transla-

tion. That is, we choose to assume that some properties hold
without checking them to gain a performance benefit. This, for
example, happens when accessing a function - there is no check
of well-formedness of a function construct. Our intention is to
benefit for the Rodin platform static checker and theorem prover
to simplify translation by relying on the properties of a model
already demonstrated by a static checker or a theorem prover.

General scheme
Event-B SAL

Model + context Single module within a single SAL context

Events Named guarded commands in TRANSI-
TION block of a module

Event guards Transition guards

Non-
deterministic
choice (ANY)

Variable becomes a parameter of a guarded
command, the predicate becomes a part of a
guard. The event is splitted into two transi-
tions if necessary.

Invariants Constraints on variables and sets go into
type definition, remaining becomes a theo-
rem

Contexts

Carrier sets Enumerated types or arrays

Constants Constants

Named proper-
ties

Part of type definition, and guard of initial-
ization transition

Types

Basic types Subranges of equivalent SAL types. Sub-
ranging depends on model being translated
and model checking parameters.

Sets + operations Arrays of reasonable size and operations on
them

Total functions +
operations

Total functions

Partial func-
tions, injections,
surjection +
operations

Either definition in predicates or optimized
using arrays

Table 3. Translation scheme

6. Related Work
Preliminary experience with translating Event-B to Alloy is re-
ported in [22], but empirical results are not available yet. The au-
thors also encountered the problem encoding complicated expres-
sions of B in Alloy:

“Expressions are the hardest part to encode. There is not
only a myriad of complex expressions in Event-B but given
that Alloy uses only flat relations, some Event-B expres-
sions that introduce relations with nested sets generate many
(and potentially large) Alloy expressions.” [22]

Note that Daniel Jackson’s dream was to work directly in Z,
whose notation of expressions and predicates is very similar to
B, but he abandoned that goal and developed the Alloy language



much more suitable for automated analysis.3 Hence, it is no wonder
that translating Z or B into Alloy is not trivial. The Z2SAL [10]
project has similar goal as the translation to SAL shown here. Initial
translations were not very efficient (see discussion in [20]), but
more recent translations seem to perform better.

7. Conclusion and Future Work
We presented three approaches to model check B or Event-B spec-
ifications by translating them to other formalisms. A first naı̈ve at-
tempt to use low-level methods like BDDs soon turned out to be
impractical and has no apparent advantage over using a more so-
phisticated tool.

SAL and Kodkod both are very promising. There is still room
for improvements of the translation to support more expressions
and to enhance the efficiency of the translated model. For some sce-
narios, using those translations gives us a much faster model check
than PROB currently offers. On the other hand, for some tasks the
constraint-solving approach of PROB is much more efficient (e.g.,
when working on large relations). As such, we believe there is con-
siderable advantage in trying to combine these approaches (rather
than one approach supplanting the other).

For SAL there is still the problem in translating more compli-
cated Event-B data structures efficiently. Indeed, we have found
that the SAL input language imposes a number of restrictions on
what can be translated and how it is translated. For some objects,
such as functions, the semantic gap between native Event-B for-
mulae and SAL translation makes the interpretation of SAL output
a bigger challenge than it could be. In addition, with a complex
translation one has to worry about validity of the translation rules.
As a way to overcome these limitations we are considering the pos-
sibility of translating a subset of Event-B mathematical language
directly into Yices. The resulting tool could be used to improve the
performance of PROB model checker and also to build a more ca-
pable disprover plugin [21].
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