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Abstract. The size of formal models is steadily increas-
ing and there is a demand from industrial users to be
able to use expressive temporal query languages for vali-
dating and exploring high-level formal specifications. We
present an extension of LTL, which is well adapted for
validating B, Z and CSP specifications. We present a
generic, flexible LTL model checker, implemented inside
the PROB tool, that can be applied to a multitude of for-
malisms such as B, Z, CSP, B||CSP, as well as Object
Petri nets, compensating CSP, and dSL. Our algorithm
can deal with deadlock states, partially explored state
spaces, past operators, and can be combined with exist-
ing symmetry reduction techniques of PROB. We estab-
lish correctness of our algorithm in general, as well as
combined with symmetry reduction. Finally, we present
various applications and empirical results of our tool,
showing that it can be applied successfully in practice.

Key words: Validation and Verification — Notations
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1 Introduction and Motivation

The B-Method and Z are used in railway systems [14],
the automotive sector [39], as well as avionics [21]. The
size of the formal models is steadily increasing and there
is a big demand from industrial users to be able to ani-
mate and validate high-level specifications [15], in order
to ensure that the correct system is built. PROB is an an-
imator and model-checker primarily designed for B [29].

1 This research is partially supported by the EU funded FP7
project 214158: DEPLOY (Industrial deployment of advanced sys-
tem engineering methods for high productivity and dependability).

By now PROB supports other formalisms like Z specifica-
tions [37], CSP, B||CSP, Object Petri nets, compensating
CSP and dSL (a programming language used for indus-
trial controllers). Beside animation, it can also be used to
detect invariant violations, deadlocks and check refine-
ment. However, there is also an industrial demand for
expressive temporal query and validation languages?, in
order to validate temporal properties of the system (not
easily expressed in B or Z), as well as to navigate in the
state space, and ask questions about the future and past
of the current state.

In this paper we present a methodology and imple-
mentation to satisfy this industrial need by

— using LTL as the core and—based on feedback from
case studies—extending it to enable convenient prop-
erty specification by the user,

— implementing the model checking algorithm and in-
tegrating it into the PROB tool set. Due to the flexi-
ble, high-level implementation our technology is not
limited to B and Z, but can also be applied to CSP,
combinations of B, CSP and Z, as well as to a few
other domain specific formalisms.

— providing a practical evaluation of our language and
tool, showing that we can express a large class of
problems (covering many described in earlier litera-
ture) and also solve those problems in practice using
our implementation.

2 LTL for Formal Models

LTL is a popular temporal logic for model checking [9],
and is now considered to be more expressive, intuitive
and practically useful than CTL (see, e.g. [49]). Despite
an apparent complexity problem (model checking LTL is

2 Private communication from Kimmo Varpaaniemi, Space Sys-
tems Finland.
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exponential in the size of the formula), “efficient” algo-
rithms exist for LTL model checking, notably by negat-
ing an LTL formula and translating it into a Biichi au-
tomata. The most prominent model checking tool that
supports LTL is probably SPIN [24]. But note that newer
versions of SMV now also support LTL. Despite its pop-
ularity and usefulness, there are a number of formalisms
which are still lacking an automatic LTL model checking
tool.

— The B-Method [1]

There has also been considerable interest in trying
to verify temporal properties for B specifications. In
[2] proof obligations are defined for liveness proper-
ties in B. A way to reason about temporal proper-
ties of B systems is described in [4] amongst oth-
ers, e.g., checking properties about when operations
are enabled. The work in [20] and the associated
JAG tool [19] aim to prove LTL properties of B ma-
chines by translating Biichi automata into a B repre-
sentation and generating suitable proof obligations.
However, none of these provide a fully automatic
model checker, as proof obligations still need to be
discharged. The works [3] and [8] also study the use
of LTL for B specifications, in particular examining
the link with refinement. The work in [36] describes
a LTL model checker for B based on CLPS-B [5].The
system does not cover the full B language (e.g., no
power set construction, no lambda abstractions nor
set comprehensions are supported) and deals with
standard LTL (albeit with fairness constraints).

Finally, the model checker PROB [29] is a fully au-
tomatic tool, but in its current form can only check

safety properties, as well as perform refinement checks.

In summary, to our knowledge there is no automatic
tool available to check LTL properties for full B (or
at least a large subset thereof). The same can be said
for the composition of B and CSP (see, e.g. [47] and
).

— CSP [41]
This formalism is supported by the refinement checker
FDR [18]. Here, the idea is to model both the system
and the property in the same formalism, e.g., as CSP
processes, and perform refinement checks.
The relationship between refinement checking and
LTL model checking has been studied (e.g., [42] and
[13]) and we ourselves have even proposed a way to
perform LTL model checking for CSP using FDR in
[33], by translating Biichi automata into CSP pro-
cesses, language intersection into CSP synchronisa-
tion and the emptiness check into a refinement check.
However, this approach is not that useful in practice
(because the complexity is on the wrong side of the
refinement check for FDR to be efficient, and because
it requires several tools to be applied in sequence).

Contributions: In the rest of this paper we describe an
extension of LTL, called LTLI®), which is well adapted for

validating B, Z and CSP specifications, by allowing us
to reason about enabled operations and the execution of
operations. In addition, we present the implementation
of a LTL!®! model checking algorithm inside PROB, which
can

— deal with deadlock states and partially explored state
spaces,

— be applied in conjunction with symmetry reduction,

— be directly applied to multiple formalisms, such as
B, CSP, B || CSP, Z, Object Petri nets, StAC (CSP
with compensations), and dSL.

We establish correctness of our algorithm in general, as
well as combined with symmetry reduction. In addition
we provide various applications and useful LTL!® pat-
terns, as well as empirical results. We also briefly present
an extension to allow Past LTL operators [27].
Discussion about the approach: The interested rea-
der may ask the question: “Why did we not translate
our formal models into, e.g., Promela and use the SPIN
LTL model checker?” Indeed, this approach is perfectly
valid, and has proven to be successful for some lower-
level languages (e.g., for Java in [23] or dSL in [50]).
For very high-level languages, however, this approach
becomes much more difficult. Indeed, translating B di-
rectly into Promela would be extremely challenging (it
is already difficult enough to write a B interpreter in
Prolog with constraint solving like we did for PROB),
and it is furthermore very difficult to avoid additional
state space explosion due to the smaller granularity of
Promela (see, [28]).> Another option would be to com-
pute the state space with PROB, and then translate it to
a Promela model. We have actually implemented such
a translation, but it has so far not proven to be prac-
tically useful. First, the overhead of starting up an ex-
ternal tool can be considerable (typically 6 seconds were
needed for SPIN to generate and compile the pan.c files).
Also, translating the high-level properties into atomic
Promela properties can be expensive, and it is not obvi-
ous how to exploit the symmetry present in the high-level
model in the Promela model. Most importantly, the ex-
tensions of the LTL language, which are needed for most
interesting practical applications discussed in Section 6,
are not supported by SPIN. Still, we plan to reevaluate
this approach in the future.

3 LTL

We want to use the LTL model checker for models speci-
fied in B, Z, etc. Those models can have deadlock states,
but usually LTL formulas are defined over Kripke struc-
tures such that every state must have at least one suc-
cessor state. To support models with deadlock states, we

3 This process was actually attempted in the past — without
success — within the EPSRC funded project ABCD at the Uni-
versity of Southampton.



D. Plagge, M. Leuschel: Seven at one stroke: LTL model checking for High-level Specifications 3

simply extend the definition of a Kripke structure to also
allow states without successors.

Another approach to treat deadlock states is to add
a ‘dummy’ loop transition to each deadlock state or even
to add an additional state with a loop. But this intro-
duces subtle differences, e.g. when a dummy transition is
added, the formula Xp is true in a deadlock state iff p is
true in the state itself. We think that Xp should not be
true at all because there is no next state. Our approach
has the advantage that the underlying labeling transi-
tion system remains unaltered whereas the performance
impact is very low.

From preliminary case studies it became clear that
often it is interesting to know which kind of operation
has been performed to get into a certain state. Especially
in CSP models, we are often only interested in the op-
eration performed, not in the state between operations.
We add labels on transitions in the relation of the Kripke
structure. LTL with support for labelled transitions can
also be found in [7], but the definition there is limited to
infinite paths.

Propositions on transitions give us the possibility to
express statements like ‘the next operation on the path
is opI(x) with > 3’. In the formalism below we denote
such statements with [t], where ¢ is the proposition on
the transition.

Definition 1. A labelled Kripke structure M with pos-
sible deadlocks over atomic propositions AP and transi-
tion propositions TP is a tuple M = (S, Sy, R, L) con-
sisting of a set of states S, a set of initial states Sy C 5,
a ternary relation between states R C S x 277 x S, and
a labeling function L € § — 247,

For our purposes we do not restrict the relation to
be total, so the structure may have deadlock states. The
set of deadlock states is

deadlocks = {s € S|-3t, s’ : (s,t,s") € R}.

Definition 2. A path 7 in M can be either infinite or
finite ending in a deadlock state:

— A finite path of length |7| = k, k > 1 is a finite
sequence m = sg 1%, ... "~2g. | with sy € S, sp_1 €
deadlocks and Vi : 0 <i <k —1= (s;,t;,8.+1) € R.

— Infinite paths have the form 7 = sg ., s; ', ..., 50 €
So, Vi > 0: (84,t;,8i+1) € R. We denote |7| = w for
the infinite length of 7.

We denote 7 as the suffix of m without 7’s first i ele-
ments.

We extend the semantics of LTL formulas in two as-
pects: First we claim that a formula of the form X¢ is
only true if the current state is not a deadlock. Second
we allow to check if a transition proposition holds in the
transition to the next state by using the [¢] construct. A
state s in M satisfies a formula ¢ (denoted M, s = ¢) if
all paths starting in s satisfy ¢. Whether a path 7 sat-
isfies a formula ¢ (denoted M, w = ¢, or shorter 7 = ¢

if M is unambiguous) is defined by:

7 [ true
TEDp and p € L(sg)

for atomic propositions p € AP
TEoe el
TEQVY s TEporTy
TEXe & n|>2andn! =
TEeUY & Ik <|r|:7F v

andVi:0<i<k=n'FE¢

< |m| > 2 and

S T =3S5)...

T [t
=50t 7! with ¢ € tg
for transition labels t € TP

So far we have defined only a few basic LTL!! opera-
tors. We introduce other operators like conjunction (A),
finally (F), globally (G), release (R) and weak until (W)
in the usual way:

false := —true
PAY = =(pV )
Fo :=trueUyp

Gy := ~F-p = =(true U—y)
p Ry = ~(mp U
Wi =GpV Ut =(trueU—p) V o Ut

4 The Model Checking Algorithm

Below we adapt the LTL model checking algorithm from
[34] and [9]. One may ask why we did not use the “stan-
dard” LTL model checking algorithm based on Biichi
automata. Our motivations were as follows:

— It can be easily extended to deal with “open” nodes,
on which no information is available. This is espe-
cially useful for infinite state systems, where only
part of the state space can be computed. Also, it is
not clear to what extent Biichi automata can easily
deal with the [t] operator from LTL!l.

— The state space for B and Z specifications is, due
to the high-level nature of the operations, typically
much smaller than for other more low-level formalisms
such as Promela. This is especially true when we ap-
ply symmetry reduction (cf. Section 7). Hence, the
bottleneck is generally not to be found inside the
LTL model checking algorithm.

— The algorithm can also later be extended to CTL*
[9].

We implemented the algorithm in C, using SICStus
Prolog’s C-Interface to integrate it into the PROB tool.
The model checking module is not specific to the B for-
malism, in fact it uses callback mechanism to let the
Prolog code evaluate the atomic propositions and out-
going transitions for every state.
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4.1 Overview of the algorithm

To check if a model satisfies a given LTL!® formula, we
use a modified version of the tableau algorithm given in
[34] and [9]. We adapted the algorithm in a way that
deadlock states and propositions on transitions are sup-
ported.

To check if a state s in the structure M satisfies a
given LTL formula, we try to find a counter-example
by searching for a path starting in s that satisfies the
negated formula .

In the next paragraphs we explain how a graph can
be constructed that contains some nodes (called atoms)
for each state of the model. An atom represents a pos-
sible valuation of ¢ and its subformulas that is consis-
tent with the corresponding state. E.g. for a formula
¢ = aV Xb with a,b € AP, the valuations of a and b
are defined by the state but there are two atoms, one
where X is true and one where Xb is false. There is an
edge between two atoms A and B if there is a transition
between the corresponding states and if subformulas of
the form X1 in A have the same valuation as 9 in B.

Then we search for a path of atoms that serves as a
counter-example with the following properties: The path
starts with an atom (sg, F) of the initial states (so € Sp)
where ¢ € Fy. And for each atom on the path where
11 Upy is true, 1 is true until a state is reached where
1o is true. A counter-example may be infinitely long,
then it consists of a finite path, followed by a cycle. To
find also those cycles, we search for a strongly connected
component (SCC) with certain properties.

We adapt the original algorithm’s rules of how atoms
can be constructed and when a transition from one atom
to another exists. And in contrast to the original algo-
rithm we consider deadlock states in the requirements of
the SCC we search for.

After presenting the algorithm, we show how nodes
that are not yet explored can be handled and present a
proof for the correctness of our extensions to the algo-
rithm.

For the interested reader we provide our algorithm in
full detail below. The reader not interested in this can
skip to Section 5.

4.2 The closure of a formula

The closure Cl(p) of a formula ¢ is the smallest set of
LTL! formulas satisfying the following rules:

v € Cl(p)
v € Cllp) = () € Cl(yp),
identifying ——¢ with ¢
1 Vibg € Cl(p) = 1 € Cl(p) and 1y € Cl(p)
XY eClp) = ¢ €Cly)
~X¢ € Cl(p) = X(—) € Cl(p)
U1 Utg € Cl(p) = 1h1 € Cl(p), ¥z € Cl(p),

X (1 Urp) € Cl(yp)

Informally, the closure Cl(p) contains all formulas that
determine if ¢ is true. This definition has been taken
without modification from the original algorithm.

4.8 Atoms of a state

An atom is a pair (s, F) with s € S and F a consistent
set of formulas F' C Cl(p). F is consistent if it satisfies
the following rules:

— p € Fiff p € L(s) for atomic propositions p € AP

— Y e Fiff () & F for ¢ € Cl(p)

— 1 Viog € Fiff 1 € F or ips € F for ¥y Vi)g € Cl((p)

— Uiy € F iff iy € F or 1/)1,X(1/)1U¢2) € F for
i Utn € Cllp)

— If s € deadlocks then (=X1)) € F for X1 € Cl(p)

— If s ¢ deadlocks then Xy € F < (X—) ¢ F for
X9 € Cl(yp)

— If s € deadlocks then (—[t]) € F for all transition
propositions t € T'P.

Our changes to the original rules are as follows: We
added the last rule for transition propositions and we
introduced the distinction of the cases s € deadlocks
and s ¢ deadlocks for the X operator.

Whether a formula 1 € Cl(y) is in F or not for an
atom (s, F') thus depends on the current state’s atomic
propositions and whether formulas with next operators
X1 and the transitions propositions [t] are in F' or not.
We denote the set of all possible atoms of a state s with
A(s) and all atoms of the set of states S with A(S). The
number of atoms of s is limited by |A(s)| < 2N= . 2N¢,
where N, is the number of next operators in Cl(yp) and
N; the minimum of the number of transition propositions
in Cl(y) and the maximum vertex degree X(G). Thus
the maximum number of atoms grows exponentially with
the number of next and until operators (because an un-
til operator implies an additional next operator in the
closure) and N;.
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4.4 Search for self-fulfilling SCCs

We construct a directed graph G with the set of all atoms
A(S) as nodes. There is an edge from (s1, F1) to (s2, F3)
labelled with ¢ iff

— there is a transition in M from the state s; to sy with
(s1,t,82) € R, and

- Xy € F} & ¢ € Fy for all formulas X¢ € Cl(y),
and

— [t e Fy &t etforall [t'] € Cl(p)

The last rule is an addition to the original algorithm.

A strongly connected component (SCC) C'is a maxi-
mal subgraph of G such that between all nodes in C' there
exists a path in C'. We search for an SCC C' that is reach-
able from an atom (sg, Fp) of an initial state sy € Sy with
p € Iy and that has the following properties:

— For every atom (s, F') in the component C, and every
formula vy Utpy € F there exists an atom (s, F') in
C with 1y € F'. (‘self-fulfilling’)

— There exists an edge in C' (‘nontrivial’) or C' consists
of exactly one deadlock state.

In contrast to the original algorithm we added the ex-
ception for deadlock states.

We use Tarjan’s algorithm [46] to identify the SCCs
in the graph. If we find a nontrivial self-fulfilling SCC
C, we can construct an a-path (a path of atoms in G)
fe (s, F)

—

t
o = (s0,Fo) _°, ... (50, Fe)

T ™2

with sg € Sy, ¢ € Fy and (8¢, F,) in C. The first part
w1 is the a-path from an initial atom to an atom in the
found SCC C. The second part 75 is a loop in C' that
includes an atom (s, F') with 1y € F for each 1 Uty €
Cl(p).

The path 7 = s0 o ..
counter-example.

If the found SCC consists of exactly one atom (sq, Fy)
of a deadlock state sy, the found a-path has the form
To = (50, Fp) ', ... (54, F4), and the counter-example is

t
Sc %, ...S. then acts as a

™= 38p 2, ... 584
4.5 Handling of open nodes

An open node in the state space S is a node, whose
outgoing transitions are not calculated yet. The algo-
rithm explained above can be easily modified to work
with state spaces that contain open nodes. Whenever the
outgoing transitions of a node are needed in Tarjan’s al-
gorithm, we check if the current node is an open node. If
so, all transitions starting in the node will be calculated.
This way the LTL[¢l model checker can drive the explo-
ration of the state space. Also, part of the state space can
remain unexplored, while still ensuring the correctness
of the result.

Another alternative is to leave a node unexplored
if we want to explore only a limited number of states
or restrict the search to a given subset of states. Then
we only have to check if the state is a deadlock. If not,
we just store the information that we encountered an
such a node. The constructed atoms have no outgoing
transitions and are trivial SCCs. So the node won’t lead
to a false counter-example. If we do not find a counter-
example we give the user a warning that not the whole
state space was considered.

4.6 Correctness of the algorithm

The algorithm is used to find a counter-example for a
given LTL formula. This is done by searching for a path
of atoms to a self-fulfilling SCC or an SCC that con-
sists of a deadlock state. The proof consists of two steps:
First we show the equivalence between the existence of
a counter-example and the existence of an eventuality
sequence, then we show the equivalence of the existence
of an eventuality sequence and the existence of a path
to an SCC.

The complete proof (without our additions to the
LTL semantics and the algorithm) can be found in [9],
we extend it only in a way that it covers our additions.

Definition 3. An eventuality sequence 7, is an infinite
a-path or finite a-path ending in an atom of a deadlock
state such that if ¥1Uys € F4 for an atom A on 7,
there exists an atom B on 7 after A with ¢ € Fp.

Lemma 1. There exists a path m starting in sq with
7 = @ iff there exists an eventuality sequence starting at
an atom (sg, Fo) such that p € F.

Proof. We first show that the existence of an eventuality
sequence implies the existence of 7, then we show the
reverse direction.

1. Let 7o = (s0, Fo) ', (s1, F1) ', ... be an eventuality
sequence starting in (sg, Fy) = (s, F) with ¢ € F.
The corresponding path is 7 = sg, s1,.... We prove
7 |= ¢ by showing that 7% = ¢ < 1 € F; holds for
every ¢ € Cl(yp) and 0 < i < |n|. The proof is done
by induction on the subformulas of ¢. We describe
only the two cases that are affected by our changes
to the LTL semantics.

(a) If v = Xpy: If s; € deadlocks then by definition
X(pl ¢ F1 and Yy 17& Xng
If s; ¢ deadlocks then we have a transition from
(84, F;) t0 (Si41, Fit1), implying that X, € F; <
1 € Fiy1. By induction we know ¢ € F;1; <
7+ = 1 and by definition 71! = ) & X7t =
(1 holds.

(b) If ¢ = [t] with t € TP: If s; € deadlocks then it
follows from the definition of an atom that [t] ¢ F;
and from the definition of |= if follows m; & [t].
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If s; ¢ deadlocks then there exists a transition
(ShFi)t_)(SH_l,FH_l). By definition [t] cF &
t=t and 7' = s; " sip1... o0 =t

2. Let m = 59 51 ", ... be a path with 7 E o. Let

F,={y | ¢ € Cl(p) A7* |= 1} First we show that

there is an a-path 7, = (s0, Fo) 22 (s1, F1) . ...

(a) All (s;, F;) are atoms. This can be seen by com-
paring the definition of = with the definition of
consistency of an atom’s formulas.

(b) If s; € deadlocks: s; is the last element of 7. Be-
cause there is no transition in R starting in s,
there is neither a transition starting in (s;, F}).
If s; ¢ deadlocks: There is a state s;41 in 7. We
show that there is a transition from (s;, F;) to
(8i41, Fit1): For every X1 € Cl(p) holds by def-
inition that 7' = X1 < 7't = 4 and we have
XYpeF,&nkEXyandy € Fiy < 7t =1,
it follows that Xv € F; & ¢ € F;41.

Also for every [t] € Cl(¢), t € TP holds 7'
) etet, " E=[t] < [t] € F; , it follows that
te b, & tet;.

For every 1 U, € F; thereis a Fj, i < j < |n|, such

that ¥ € F, because Yy1Ups € F; & m; ': P1Uo

and by definition there is a j with ¢ < j < |«|, such
that 7; = 12 and that implies 1 € F};. So 7, is an
eventuality sequence.

Lemma 2. There exists an eventuality sequence start-
ing at an atom (sg, Fo) iff there is a path in G from
(s0, Fo) to a self-fulfilling SCC or an SCC consisting of
a deadlock state.

Proof. We only consider the case where the path ends in
a deadlock state. The other, infinite, case can be found
in the original proof.

1. Let my = (sg, Fy) ', ... "“=2(s4, F4) be a finite even-
tuality sequence ending in the deadlock state s;. We
know that (sq4, Fy) has no outgoing edges, so the atom
is the only node in the SCC.

2. Let there be a path (sg, Fp) 2, ... "=} (s4, Fy) to an
SCC consisting of just a deadlock state (sq4, Fy). We
have to show that 7, is an eventuality sequence by
proving that for every occurrence of Uy € F;
(0 <4 < d) there is an atom (sj,F;), i < j < d
with ¥ € Fj. Then, by the definition of an atom,
1Py € F; or X(¢1Uw2) € F implies 1/)1U¢2 S Fi+1.
Now we assume o ¢ F; for all j with i < j <
d. Then we know that X (¢1Us) € Fj, it follows
that X (¢Y1U9) € Fy. But s4 is a deadlock state, so
X (Y1Urs) ¢ Fy, we have a contradiction. So there
is an atom (s;, F}) with ¢y € Fj.

The lemmas 1 and 2 together show that there exists a
counter-example to a formula iff the presented algorithm
finds a suitable SCC.

5 LTLl®! with past

The definition of LTL!® in Section 3 only considers oper-
ators that enable us to express properties about current
or future states of the system. LTL with past [27] makes
it possible to reason about previous states and transi-
tions by introducing operators such as

— Y, which stands for “yesterday” and is the dual of
the LTL!®) next state operator X, and

— S, which stands for “since” and is the dual of the
LTLI operator until.

5.1 Definition of Past-LTLl!

To support Past-LTL[€!, we first have to make small
modifications to the formal definition of the LTL!¢! op-
erators. In the original definition of = in Section 3, the
current state of a sequence ™ = so 2, s ... is always the
first state sg. This prevents us from using this notation
to reason about the past of a sequence. E.g. 1 E X
is defined by m' = ¢, so ¢ cannot consider the state
so anymore. To allow this, an index ¢ is introduced that
indicates which state of the sequence is the current one.

Whether 7 = so %, 51 ... satisfies a Past-LTL! for-
mula ¢ in the it state of the sequence 7 in the Kripke
structure M (denoted M, (, i) =, ¢ or shorter (m,1) =,
©), is defined by:

(m,i) Ep true <0< < |m|
(m,4) Ep p < 0<i<|n|and p € L(s;)
for atomic propositions p € AP
mi) [y e & (M) Fp o
70) Fop 9V & (1) Fop ¢ 01 (m,3) Fop
mi)Ep X Si+l<|n|and (m,i+1) = ¢
1) Ep Uy & Fk i < k <|m| with (7, k) =, ¢
andVj:i<j<k= (mj)Epe
i+ l<|r|andtet;
for transition labels t € TP
(m,i) Ep Yy <<i>0and (m,i—1) |, ¢
(m,i) Ep S & Fk:0 <k <iwith (7,k) =p ¢
andVj:k<j<i= (mj)Epe

(m,7) = [t]

The definition of (m,0) =, ¢ is equivalent to m = ¢ for
formulas that do not contain the past operators Y or S.

We introduce operators like once (O, dual to finally),
history (H, dual to globally) and trigger (T, dual to
release) as usual:

Oy = true Sy
Hyp := -0-p = —(true S—yp)
Ty = ~(—p S~¢)

We decided not to include a dual operator to [t], because
it can be easily expressed by Yt].
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5.2 Closure and atoms of a Past-LTLI! formula

We add two rules to the definition of a closure Cl(¢p) (cf.
Section 4.2).

Y e Cllp) = € Cl(p)
1 S1pa € Cl(p) = ¥1 € Cl(p), 2 € Cl(p),
Y (11 Sv2) € Cl(yp)

To the consistency definition of an atom (s, F'), we add
rules for Y and S (cf. Section 4.3):

— Ifs ¢ So then Y € Fiff (Y—p) ¢ F for Yp € Cl(p)
— If s € Sy then
- Yy e Fiff (Y-)¢F for Yy € Cl(p)
—or Yy ¢ F for Yo € Cl(p)
— ¢1S’l/)2 e Fiff ’(/JQ € F or Ql)l,Y(’(/)lswg) € F for
Y1S1s € Cl(yp)

The first rule is analogous to the non-deadlock case of
the X operator. It states that either Y or Y= is true,
but not both. But in the first state sy of a sequence
T = $9.° s1..., we have the additional case that all
formulas Y'¢ are false, even Ytrue. Because there might
be an s; in 7 with s; = s, we can have both cases in an
initial state s € Sy. The third rule is analogous to the
rule of the U operator.

We need an additional condition when there is an
edge in G from an atom (s1, F1) to an atom (sg, Fy) (cf.
Section 4.4):

— Y e Fy &Yy e F, for all formulas Yy € Cl(p)

The search for an SCC in G starts in the atoms
(so, Fo) with sg € Sy where Y ¢ F, for all formulas
Y e Cl(yp).

The proofs of Lemma 1 and Lemma 2 can be easily
extended to Past-LTL[. In the case distinctions of the
proofs, the operator Y can be handled analogously to
the operator X and the operator S analogously to the
operator U where the path ends in a deadlock state.

6 Some Examples and Experiments

6.1 LTL: Supported syntax and usage patterns

We provide several types of atomic propositions in our
implementation:

— One can check if a B predicate holds in the current
state by writing the predicate between curly braces,
e.g. {card(set) > 0}.

— And with e(op) it can be tested if an operation op
is currently enabled.

— If the user animates the model, he can use an atomic
proposition current to check if a state is the state
that is shown in the animator. This allows the user
to check a formula f in that state for all paths that
go through that state by using current — f.

And some types of transition propositions:

— With [op] it can be checked if op is the next executed
operation in the path.

— We provide simple pattern matching for the argu-
ments of an operation. E.g. with [op(5,_)] one can
check if the next operation is op and if its first ar-
gument is 5. Any B expression (including constants
and variables of the machine) or underscores as place-
holders for any value can be used as an argument.

— In future, we also plan to support combined pre- and
post-conditions like 2’ > x as transition propositions
(where 2’ refers to the value of x after the transition
has been executed).

Note that while checking if an operation is enabled with
e(op) is an atomic proposition, the check if the next
transition is done via a certain operation with [op] de-
pends on the actual computation path, not only on the
current state.

Some useful patterns of LTLI¢! formulas for B/Z spec-
ifications (and sometimes also CSP) are as follows:

— quasi-deadlock G (e(01) or ... or e(0On)) where
01,..,0n are the real state-changing operations (as op-
posed to query operations). To improve support for
this pattern, we introduced another atomic proposi-
tion keyword sink that is true for states that have
no outgoing transitions to other states.

— operation post-condition G ( [0p] => X {Post} )
([0Op] tests if the next executed operation is Op)

— operation pre-condition G ( e(0p) => {Pre} ).

— While animating a model, one may ask if an opera-
tion Op is executed in the past of the current state,
regardless of the computation path being taken to
reach it: current => YO[Op].

Later, in Section 6, we will see that LTLI is useful in
practice to solve a variety of other problems, and can
also be used to encode fairness constraints.

In the rest of this section we exhibit the flexibility
and practical usefulness of our approach. Notably, we
show how our tool can now be used to solve a variety of
problems mentioned in the literature. We also show that
the tool is practically useful on a variety of case studies.

All experiments were run on a Linux PC with an
AMD Athlon 64 Dual Core Processor running at 2 GHz,
and using PROB 1.2.8 built from SICStus Prolog 4.0.2.
Our model checker can actually drive the construction of
the state space on demand. However, to clearly separate
the time required for the LTL checking and the state
space construction, we have first fully explored the state
space in the examples below.

6.2 B Examples: Volvo Vehicle Function, Robot, and
Card Protocol

We have tried our tool on a case study performed at
Volvo on a typical vehicle function (see [29]). The B ma-
chine has 15 variables, 550 lines of B specification, and
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26 operations and was developed by Volvo as part of the
European Commission IST Project PUSSEE (IST-2000-
30103).

To explore the full state space (1360 states and 25696
transitions) PROB required 25.29 seconds. Some of the
LTL!® formulas we checked are as follows:

— G (e(SetFunctionParameter)
=> e(FunctionBecomesNotAllowed))
The formula is valid and the model checking time is
0.12 seconds.
— G (e(FunctionBecomesAllowed)
=> X e(SetFunctionParameter))
A counter-example was found after 0.14 seconds.
— G ([FunctionBecomesAllowed]
=> X e(SetFunctionParameter))
The formula is valid and the model checking time is
0.20 seconds.
— G(e(Function0ff)
=> Y0O[SetFunctionParameter])
The formula is valid and the model checking time is
0.21 seconds.

We have also applied our tool to the (very) small
robot specification from [19]. The original LTL formula
G(({Dt=TRUE} & X{Dt=FALSE}) => {De=FALSE}) from
[19] can now be validated fully automatically (and in-
stantaneously). It is interesting to observe that the in-
tended temporal property can be more naturally en-
coded in our extension LTL!® as follows: G([Unload]
=> {De=FALSE}).

We have applied our tool on the T=1 protocol* spec-
ification from [8]. Computing the state space took 0.02
seconds (for 15 nodes). We tested the formula P, =
G({CardF2=bl} => F{CardF2=1b}) from [8]. This took
less than 0.01 seconds (and 36 atoms were computed).
However, our model checker provided a counter-example.
This is not surprising, as [8] also takes fairness con-
straints into account. These fairness constraints are writ-
ten in [8] as FAIRNESS = { Eject, Csends if (CardF2 =
bl), Rsends if (ReaderF2 = bl)}. Fortunately, these fair-
ness constraints can be expressed in our LTLI language
as follows:

f = GF[Eject] & GF{CardF2=bl => GF[Csends])

& (GF{ReaderF2=bl} => GF[Rsends])
Checking the formula f = P, was successful (no counter-
example found); this took 12.65 seconds (98,304 atoms
where computed). The time is an illustration that LTL
model checking is exponential in the size of the formula;
it may be worthwhile to investigate adapting our algo-
rithm to incorporate fairness, rather than encoding fair-
ness in the LTL[ formula itself.

Finally, we believe that our LTL model checker can
be used to check probabilistic Event B models ([22]),

4 En27816-3, FEuropean Standard—identification cards—
integrated circuit(s) card without contacts—electronic signal and
transmission protocols, 1992.

by enabling the encoding of the required fairness con-
straints.

6.3 CSP Examples: Peterson and Train Level-Crossing

First we tried a standard CSP example from the book
web page of [44]%, Peterson’s Algorithm version 1. Com-
puting the state space, consisting of 58 nodes and 115
transitions, took 0.44 seconds with PROB (which has re-
cently been extended to handle full CSP-M). Some of
the LTL!® formulas checked are as follows:

— G ([plcritical] => X(!e(p2critical)) )
The formula is valid; the model checking time is 0.01
seconds.
— G ([plcriticall
=> X(('e(p2critical)) W [plleave] ))
The formula is valid; the model checking time is 0.01
seconds.
— G ([p2criticall
=> X((le(plcritical)) W [p2leave] ))
The formula is valid; the model checking time is 0.02
seconds.

We have also tested version 2 of the same algorithm.
Computing the state space with 215 nodes and 429 tran-
sitions took 1.28 seconds.The CSP model is more generic
and elegant than the first version, which enables us to
write a single LTL[! formula basically covering the last
two formulas from above.

— G ([criticall
=> X((le(critical)) W [leave]))
The formula is valid; the model checking time is now
0.06 sec.

Another example we tested is crossing.csp, also
from [44]. This model by Bill Roscoe describes a level
crossing gate using discrete-time modelling in untimed
CSP. Computing the state space, consisting of 5517 nodes
and 12737 transitions, took 53.76 seconds. Some of the
LTL! formulas we checked are as follows:

— G F e(enter) The formula is valid; the model check-
ing time is 0.36 seconds.

— G F [enter] A counter-example (of length 554) was
found after 0.17 seconds.

6.4 CSP || B Examples: Control Annotations and
Philosophers

In [25] it is proposed to check compatibility of a CSP
controller with a particular B machine by adding proof
obligations. For this the NEXT annotation is introduced,
from which the proof obligations are derived. It turns
out that these annotations can also be checked (now au-
tomatically) by our LTL model checker. For example, for

5 http://www.cs.rhul.ac.uk/books/concurrency/
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the traffic light controller from [25], the NEXT annotation
for the Stop_A1l operation can be checked by the follow-
ing LTL! formula: G ([Stop-A11] => X (e(Go_Moat)
& e(Go_Square))). This check can be done instanta-
neously. We have checked all the NEXT assertions from
[25] fully automatically and instantaneously.

We have also applied our LTLI¢) model checker to a
fully combined CSP and B model. The B model is the
generic dining philosophers example from [32] instanti-
ated for three philosophers and three forks, using sym-
metry reduction (cf. Section 7), and where the protocol
is specified by a CSP Controller.

datatype BPhils = p1 | p2 | p3
channel think,eat,TakeLeftFork,
TakeRightFork,DropFork :
MAIN = ||| p: BPhils @ PHIL(p)
PHIL(P) = think!P -> TakeLeftFork!P ->
TakeRightFork!P -> eat!P ->
DropFork!P -> DropFork!P -> PHIL(P)

We have validated the following LTL!® formula in
0.06 seconds:
— G (e(DropFork) U
([TakeLeftFork] or [TakeRightFork]))

BPhils

6.5 7 Ezamples: SAL Example and Workstation
Protocol

In [37], PROB was extended to deal with Z specifications.
We examined the example from [12], formalising the pro-
cess of joining an organisation. We were able to check the
three LTL formulas described there:

— ! F {card(member)>2} (PROB provides a counter-
example)

— ! F {card(waiting)>2} (PROB provides a counter-
example)

— G {card(waiting)+card(member)<=3} (the formula
is true)

Model checking time is 0.08 sec to construct the state
space plus less than 0.01 sec for each LTL check. This
is faster than the times reported in [12] (ranging from
3 seconds to 12 hours depending on the translation to
SAL). In addition, we were able to uncover an error in
the specification, namely that it is possible to reach a
quasi-deadlock state where only probing operations are
possible and no “real” operation can be performed, i.e.,
the following LTL!®! formula is false:

— G (e(Join) or e(JoinQ) or e(Remove))

Note that this error was not uncovered in [12].

We have also tested our tool on the workstation pro-
tocol industrial case study from [37]. Computation of the
state space for 2 workstations took 2.49 seconds, result-
ing in 68 states.

The formula G([Transfer]=>X(e(ReadRequestOK)
or e(ReadResponse))) was checked in 0.04 seconds, us-
ing 421 atoms.

6.6 Other Formalisms: StAC, Object Petri nets, dSL

PROB has also the ability to load specifications via cus-
tom Prolog interpreters following the style of [31], de-
scribing the initial states, the properties and the tran-
sition relation by using the Prolog predicates start/1,
prop/2, trans/3.

This directly opens up LTL model checking for three
further formalisms, for which we have such interpreters:
Compensating CSP (StAC) [17], Object Petri Nets, [16],
and dSL [50].

We have applied our LTL model checker to a door
control system specified in dSL. Computing the state
space with 9968 nodes and 37357 transitions took 13.25
seconds. Checking a safety property G e(action) took
39.21 seconds.

7 LTL Model Checking with Symmetry
Reduction

Combining full blown LTL model checking and symme-
try reduction is not always easy. If one is not careful,
the application of symmetry reduction can lead to un-
soundness for more complicated LTL formulas. Quite of-
ten, only safety properties or some other subset of LTL
is supported. E.g., murphi ([26]) only deals with safety
properties. An exception is, e.g., SMC ([45]), which does
deal with safety and liveness properties (expressed as an
automata).

It turns out that the presented LTLI® language is
the ideal companion to the existing symmetry reduc-
tion techniques developed for PROB [30,32,48], i.e., we
can apply the symmetry reduction techniques and need
to impose no restrictions whatsoever on the LTL!¢ for-
mulas. This meant that, in preliminary experiments, we
were actually able to model check some examples con-
siderably faster, than using SPIN with partial order re-
duction on hand-translated Promela models.

Let us recall some of the results from [30]. First, the
notion of a permutation is introduced, which can per-
mute elements of deferred sets. DS is the set of all de-
ferred sets of the B machine under consideration.

Definition 4. Let DS be a set of disjoint sets. A per-
mutation f over DS is a total bijection from UgepgS to
UsepsS such that VS € DS we have {f(s) | s € S} =
S.

The following results show that the deferred sets in-
duce a symmetry in the state space: if in a given state s
we permute the deferred set elements, the resulting state
will be symmetrical to s.

Theorem 1. For any expression E, predicate P, state
[V := C] and permutation function f:

fE[V :=C)) = E[V := f(C)]

PV :=C] & PV := f(O)]
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File Animate Werify Analyse Preferences Debug Files About

“documentclass [adpaper] {article}
‘wusepackage {fuzz}

LTL FORMULAS

%

%

% ! F {card(member)>2} <-— FALSE

% | F {card(waiting)>2} <-- FALSE
% G {card(waiting)tcard (member) <=3}
% G (=(Join) | ={Remove) )
% G not(sink)

| e{JoinQ)

“begin{documsnt }

<-- TEUE
<—- Provid
<—- Prowvid

model checking

Enter an LTL formula
use {...} for B predicates,
G,F.¢ U W.Rtrue false not,&,or and == are part of the supported LTL syntax,
use elop) to check if an operation op is enabled,
use sink to check if no operation is enabled that leads to another state,
use brackets to check what is the next operation, e.g. [reset] == X{db={}}.
Past-LTL is supported: ¥,H,0,5.T are the duals to X, G.F.UR

F {elloin) | elloing) | e(Remove))

“begin{zed} Max no. of new states: |1000
[MAME] ® Start search in initialisation
Report ::= yes | no
vend{zed} " Start search in current state
" Start in initialisation, but check formula in current state
“begin{axdef}
total : ‘wnat_1 oK Cancel
“where
total = 4096
“wend{axdef}
State Properties EnabledOperations | History

invariant_ok —Query(NAMEL)--=(no) —oinQ(NAMEL)

total=4096 Query(NAMEZ2)--=(no) Remove(NAMEL)

capacity=2 Query(NAME3)--=(no) oinQ(MAMEZ)

member={} BACKTRACK oin{NAMEL)

waiting={NAMEL MAMEZ,MAME3} Remove(NAMEZ)
0iNQ(NAMEL)
Remowve(NAMEL)
oin{NAME3)
0iNQ({NAME3)
oin(NAMEZ)
0iNQ({NAME2)
oin(MAMEL)
0inQ(NAMEL)
initialise_machine({}, {})
setup_constants(4096,2)

[ ¥ A ¥

Fig. 1. Counter-example found for the Z model

Corollary 1. FEwvery state permutation [ for a B ma-
chine M satisfies

—-VseS:sEITiff(s)ET
— Vs € S, Vsy € S:
s1 =00 a2 S f(51) =0 ra i F(s2).

From these theoretical results in [30] we can deduce
a new result for LTLI¢):

Proposition 1. Let f be a permutation function, s a
state of B machine M and ¢ a LTL! formula. Then

M,s = ¢ iff M, f(s) = ¢.
Proof. (Sketch)

— By Theorem 1, if a predicate { Pred } is true in a
state then it is true in all permutation states.

— By Corollary 1, if a sequence of operations is possible
in s then a permuted sequence is possible in the state
7(s). As the permutation does not affect the enabled
operations nor the operation label itself (just the ar-
guments): we can deduce that a LTL[ formula is
true in s iff it is true in 7(s).

In other words, there exists a LTL!¢! counter-example
for a B machine iff there exists one with symmetry reduc-
tion. As Z specifications are translated internally into B
machines ([37]), all of the above also applies when model
checking Z specifications.

8 Related and Future Work, Discussion and
Conclusion

8.1 More Related Work

There are variety of relatively generic CTL model check-
ers, such as [31,35,11]. Both [35] and [11] are based on
constraint logic programming. [35] requires constructive
negation, and as such only a prototype implementation
seems to exist. [11] is tailored towards verification of in-
finite state systems.® The CTL model checker in [31] is

6 Unfortunately, the corresponding DMC prototype available at
http://www.disi.unige.it/person/DelzannoG/DMC/dmc.html no
longer runs on current SICStus Prolog versions and the code is
no longer maintained.
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generic, and can be applied to any specification language
that can be encoded in Prolog. Unfortunately, the model
checker relies on tabling, and as such it can only run on
XSB Prolog [43], which does not support co-routines and
hence the system can not be applied to our interpreters
for CSP and B (and hence also Z). The same can be said
for the pure LTL model checker from [38] or the XMC sys-
tem [10,40] for the modal mu-calculus and value-passing

CCS.

8.2 Future Work

Adding fairness constraints to an LTL! formula leads
to an exponential growth of the search graph. We plan
to incorporate support for fairness directly into the algo-
rithm by validating if a found SCC satisfies the fairness
constraints or not.

We think that expressive transition propositions have
many useful applications. We want to extend the model
checker in a way that combined pre- and post-conditions
can be checked, optionally with access to the parameters
of the executed operations.

Currently, a counter-example is presented to the user
by moving the animation into the final state of the path
and having the complete path in the history of the an-
imation (in Fig. 1, the box in the right bottom corner
shows the history). This is unsatisfactory, as it is not
always easy to see why the presented path is a counter-
example. We plan to improve the presentation and in-
vestigate how the length of the counter-example can be
minimised.

8.3 Conclusion

In summary, we have presented LTL[¢ to conveniently
express temporal properties of formal models. Indeed,
LTLE can be used, e.g., to express pre- and post-con-
ditions of operations, fairness constraints as of [8], the
NEXT control annotations from [25], as well as a large
class of interesting properties which cannot be directly
expressed in pure LTL. We have shown an algorithm for
LTL[!, proven it correct with and without symmetry
reduction, and have integrated it into the PROB tool set.
In the empirical section, we have shown that LTLI is
expressive enough and that our tool is fast enough for a
variety of practical applications.
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