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Abstract. The B-method, as well as its offspring Event-B, are both
tool-supported formal methods used for the development of computer
systems whose correctness is formally proven. However, the more com-
plex the specification becomes, the more proof obligations need to be
discharged. While many proof obligations can be discharged automati-
cally by recent tools such as the RODIN platform, a considerable number
still have to be proven interactively. This can be either because the re-
quired proof is too complicated or because the B model is erroneous.
In this paper we describe a disprover plugin for RODIN that utilizes
the ProB animator and model checker to automatically find counterex-
amples for a given problematic proof obligation. In case the disprover
finds a counterexample, the user can directly investigate the source of
the problem (as pinpointed by the counterexample) and she should not
attempt to prove the proof obligation. We also discuss under which cir-
cumstances our plug-in can be used as a prover, i.e., when the absence
of a counterexample actually is a proof of the proof obligation.
Keywords: RODIN, ProB, Event-B, B-Method, Autoprover.

1 Introduction

The B-method introduced by J.-R. Abrial [1] is a theory and methodology for
formal development of computer systems which is based on the notion of ab-
stract machines and refinement. B is used in industry, mainly for safety critical
applications. It is supported by several industrial strength tools such as AtelierB
[21], the B Toolkit [5] or B4Free for proving correctness and code generation and
tools for animation, modelchecking and model based testing such as ProB [12]
or the BZTT [4].

However, classical B is lacking certain dynamic constraints (temporal logic
constraints, liveness constraints) that can be used to model how a system can
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evolve. This shortcoming was one of the reasons to extend B to Event-B [2,
3] which enables the specification of reactive systems without abandoning the
notion of refinement.

An Event-B specification is written as an abstract machine that consists of
variables which define its state and some events. An event decomposes into a
predicate, the guard, that specifies under which circumstances it might occur
and some generalized substitutions called actions. For instance, if the state s of
an abstract machine is (x = 2, y = 7) and there is an event e with the guard
true and the action x := y, then a successor state of s might be (x = 7, y = 7).

A notable recent development is the EU funded research project IST 511599
RODIN, which aims to develop an open tool platform based on Eclipse that
supports Event-B. The objective of RODIN is to create a unified methodology
and supporting tools for cost-effective, rigorous development of software systems.

A rigorous software development requires to reason about the correctness of
the formal specification. For example, one should verify that an Event-B model
does not violate its invariant. Other correctness conditions are related to refine-
ment or the properties associated with constants. The proof obligations that need
to be discharged in order to establish correctness can be mechanically extracted
from an Event-B model. For instance, one proof obligation will stipulate that
the initialisation of an Event-B model must establish the invariant. The RODIN
platform comes with a tool, the proof obligation generator, that extracts proof
obligations from a model (see Figure 1).
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Fig. 1. Overview of proof activities and the role of the disprover

The RODIN platform also comes with some automatic provers, which can
discharge a considerable number proof obligations automatically. Obviously, due
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to incompleteness, not all proofs can be done automatically. In that circumstance
the user is left wondering:

– Is the proof obligation valid and the proof simply too complicated for the
automated prover? In other words, should I start up the interactive prover
and try to prove the goal manually?

– Or is there a problem within the specification and should I spend time looking
for the error and then correct it?

Pursuing either path can lead to considerable wasted effort. In this paper we
present a tool which helps the user in this common situation: a disprover which
tries to find a counterexample for the particular problematic proof obligation
(see also Figure 1).

– If the disprover finds a counterexample we know that it is futile to spend
time with the interactive prover. Also, the counterexample will give us a
handle on the problem and help us find the error in the specification more
quickly.

– If the disprover finds no counterexample, we know that—in certain circum-
stances at least—the proof obligation seems to be valid. Of course, we are
still not sure whether the proof obligation is true in all circumstances; but
we have at least gained some additional confidence about its validity.

As an example, suppose we want to prove the theorem, that every finite undi-
rected graph has at least two nodes of the same degree.3 Our Event-B model
will contain the basic set NODES and a graph consists of a set V ⊆ NODES
of vertices as well as a symmetric binary relation E representing the edges. The
degree of a vertex v is simply card({v} ! E) = card(E[{v}]). A sequent repre-
senting our theorem might be something like the following:

V ⊆ NODES ∧ E ∈ NODES ↔ NODES ∧ E = E−1 ∧ card(V ) ∈ IN
⇒

∃x∃y : x ∈ V ∧ y ∈ V ∧ x '= y ∧
card({x} ! E) = card({y} ! E)

However, this theorem is not provable since we made two mistakes in the
definition. While it might not be obvious which mistakes we made, the disprover
plug-in finds counterexamples that will help us to identify the problems and to
correct the theorem. A trivial counterexample the tool finds is the empty graph,
another counterexample found by our tool with 5 vertices that contains self loops
is shown in Fig. 2. As can be seen, all vertices have a different degree. So we
need to strengthen the left side of our implication to disallow self loops and
graphs with less than two nodes, after which the disprover can no longer find a
counterexample:

3 This example is inspired by a talk given by Leslie Lamport at B’2007.
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V ⊆ NODES ∧ E ∈ NODES ↔ NODES ∧ E = E−1 ∧ card(V ) ∈ IN∧
card(V ) > 1 ∧ id(NODES) ∩ E = ∅

⇒
∃x∃y : x ∈ V ∧ y ∈ V ∧ x '= y ∧
card({x} ! E) = card({y} ! E)
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Fig. 2. Counterexample found by the disprover

RODIN can be extended by third parties, in particular it is possible to add
external proving tools. We have thus developed a prover plug-in, which works
as a disprover. Our plug-in is based on the Prolog based animator and model
checker ProB [12]. The ProB animator is fully automatic and does not require
the user to guess the right values for the operation arguments or choice variables.
The undecidability of animating B is overcome by restricting animation to finite
sets and integer ranges, while efficiency is achieved by delaying the enumeration
of variables as long as possible. The main idea of our work is to translate an indi-
vidual proof obligation into a B machine such that the animator can be used to
find counterexamples. Of course, one could have used the ProB model checker
itself on the whole Event-B model. This is an alternate validation option, but
this will “only” find sequences of operations which violate the invariant starting
from some valid initialisation; i.e., it will not detect problems if the invariant is
too weak (see [12]). Furthermore, by restricting our attention to a single, prob-
lematic proof obligation we can increase the likelihood of the disprover finding
counterexamples.

The rest of the paper is structured as follows. First we provide some back-
ground on proof in Event-B in Section 2. Then we present the underlying method-
ology of our disprover plug-in in Section 3, before discussing the actual imple-
mentation in Section 4. We conclude with remarks on how to use the disprover
as a prover and other future work in Section 5.
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2 The Event-B proving subsystem

This section gives an introduction to proofs in Event-B. We will also discuss
the architecture of the RODIN proving subsystem, its Kernel prover and how
external reasoners work.

Proving correctness A proof in Event-B is constructed using (a slight varia-
tion of the) sequent calculus [18]. A sequent in Event-B is of the form Γ ) Σ
where Γ is a finite set of predicates called hypotheses and Σ is a single predicate
called goal. A sequent basically means that the goal should be a logical conse-
quence of the hypotheses Γ . Proofs of sequents are carried out using an inference
rule. An inference rule contains a finite set of sequents A — the antecedent —
and a single sequent C — the consequent. An inference rule means: if we can
prove all sequents within A, then C has also been proven. It is also possible that
a rule has the empty set as antecedent, this means that C has been proven. A
proof for a sequent can thus be viewed as a finite tree. Each node of this proof
tree contains a sequent s as well as an inference rule r whose consequent is s.
The children of a node are the sequents in the antecedent of its rule r. Leaf
nodes are those nodes where the associated inference rule has the empty set as
antecedent. To actually discharge a proof obligation po, we need to find a finite
proof tree whose root node is labelled with po.

Note that the antecedent of sequents might contain a subset called type en-
vironment, where the predicates only carry type information such as x is an
integer (x ∈ ZZ) or y is a member of a basic set Y (y ∈ Y ). Sequents of the
type environment can be statically checked by a type checker and thus have the
empty set as antecedent (unless there is a typing error). We call a sequence of
inference rules that discharge a certain type of sequents a proof tactic. It can be
seen as a kind of pattern for proving.

The RODIN proving subsystem In RODIN, a considerable number of proofs
can be done automatically by the proving subsystem that consists, as shown in
Fig. 3, of the proof obligation generator and the Event-B Kernel Prover [17].
The proof obligation generator extracts all proof obligations from the Event-B
model that need to be discharged in order to prove correctness of the model
and stores them in a XML database file. After all POs have been generated, the
kernel prover tries to discharge valid POs automatically.

As shown in Fig. 3, the Event-B kernel decomposes into the proof manager
and a set of prover plugins. While the proof manager is responsible for storage,
traversal, composition and reusage of proofs, the prover plugins try to generate
valid inferences in order to discharge the proof obligations. The proof manager
also maintains the state of current proofs for all proof obligations and decides if
they have to be discharged and calls external provers if they are non-interactive.
There are also interactive reasoners that require the user to apply them, the
ProB disprover plug-in is such an interactive plug-in. In the next section we
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show the underlying principles of our plug-in, before showing in Section 4 how
it was integrated into the RODIN platform.

Prover file
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Generator
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Proof User
Interface

Proof Obligation 

Proof obligation Proof Manager

ProB plug−inProver plug−ins

Fig. 3. Architecture of the RODIN proving subsystem

3 The principle of disproving using ProB

In the following, we will explain, how a sequent can be translated into a B
machine that can be used with ProB.

Finding counterexamples Let G(x1, ..., xk) be the goal of a sequent s and let
H1(x1, . . . , xk), . . . ,Hn(x1, . . . , xk) be the hypotheses. To find a counterexample
for s, we need to check if the predicate

∃x1, ..., xk : (H1(x1, ..., xk) ∧ ... ∧Hn(x1, ..., xk)) =⇒ ¬G(x1, ..., xk) (1)

holds. If it does, then we can extract a concrete counterexample by finding a
valuation for x1, ..., xk which makes the implication true. Finding values that
satisfy a propositional boolean formula is NP complete, and for the first order
logic formulas that can occur within sequents, the problem is undecidable. To
overcome this difficulty, we have to restrict sets to relatively small, finite domains.
As a consequence, we know that in principle it is not possible to guarantee that
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a disproving algorithm can automatically find a counterexample if one exists. In
other words, the absence of a counterexample does not mean in general, that a
proof obligation is valid. (There are, however, certain cases where the absence of
a counterexample discharges a proof obligation. We discuss these cases in section
5.)

Transforming sequents into B machines ProB can be used to find a coun-
terexample for a given sequent, but it needs a classical B machine that encodes
the sequent as its input. Fortunately this encoding is — at least in principle
— not difficult to obtain. We create a B machine, that contains an operation
disproveHypotheses with the predicate from equation (1) as its guard. The op-
eration is enabled, if and only if ProB can find a counterexample.

In order to construct this stand-alone machine, we need to extract some in-
formation from the original Event-B specification such as axioms4, carrier sets,
parameters, variables (including type information) and constants. Furthermore,
we need information about the sequent to be (dis-)proved, such as the hypotheses
and the goal. The translation of these information is in most cases straightfor-
ward, for example we construct the SETS clause of the machine by enumerating
the set definitions from the original Event-B specification. In some cases the
translation is less obvious. For instance, we translate the axioms together with
the type information of the constants into the PROPERTIES clause. We generate
new definitions called TypeEnvironment and Hypotheses inside the DEFINI-
TIONS clause. The TypeEnvironment is a subset of the hypotheses that only
contains predicates dealing with type information. A schema of the B machine
constructed from a given sequent H1,H2, . . . Hn ) G is shown in Listing 1.1.

Selecting Hypotheses The RODIN proving subsystem allows the user to select
a subset of hypotheses that are in the database, these hypotheses are either
directly derived from the specification or previously proven. Obviously if a subset
of H proves G, then H also proves G.

H ′ ⊆ H ∧H ′ ) G ⇒ H ) G

Thus a user can restrict the hypotheses in a sequent to an arbitrary subset of
so-called selected hypotheses, by removing hypotheses that are of not relevant for
the proof. By default, a particular set of hypotheses which deals with the involved
variables are automatically selected by RODIN. The user can also decide to hide
a particular subset of hypotheses, this subset are called hidden hypotheses. In
fact, there are thus two alternatives:

– run the external disprover with the selected hypotheses or
– run it with all hypotheses except the hidden ones.

In any case, the user can choose which alternative to apply (our plug-in
provides two buttons) and change his mind later.
4 An axiom is treated like a sequent true ! A
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Listing 1.1. Schema of an abstract machine constructed from a sequent
1 MACHINE Disprove
2 DEFINITIONS
3 TypeEnvironment == H1(x1, ..., xk) & ... & Hi(x1, ..., xk) ;
4 Hypotheses == TypeEnvironment &

Hi+1(x1, ..., xk) & ... & Hn(x1, ..., xk) ;
5 Goal == G(x1, ..., xk)
6 OPERATIONS
7 d i sprove (x1, ..., xk ) =
8 PRE Hypotheses & not ( Goal )
9 THEN sk ip

10 END
11 END

4 Implementation of the ProB disprover plug-in

In previous work [6], we have developed a version of ProB that integrates with
Eclipse. Its main component is the Eclipse ProB plug-in as shown in Fig. 4. It
allows third party tools to use ProB for several tasks, thus it can be seen as
a Java abstraction layer for the Prolog part of ProB. The disprover uses this
core plug-in to find counterexamples. Therefore it creates — when applied to
a node of the proof tree — a B machine as described in Section 3 and starts
animating this machine. If the operation disprove is enabled, we have found a
counterexample.

Fig. 4. Architecture of the ProB Eclipse Version
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Our disprover plug-in consists of a user interface (UI) that displays the results
of a proof and a core component that encapsulates the proof logic. The UI is
an extension to the RODIN proving user interface. It allows the user to select
a node in the proof tree, that he wants to check with ProB. The core plug-in
provides a way to apply the ProB disprover. Its role is to:

– Translate the sequent into a B machine.
– Call ProB through the Eclipse ProB core plug-in.
– Return results to the user interface.
– Handle failures, time outs and user cancel requests.

Displaying counterexamples A first approach was to display counterexam-
ples in a separate window. This solution was however not very useful because
there is no connection between the counterexample and the proof obligations.
We thus take another approach to resolve this problem by applying a case dis-
tinction [1] to the node in the proof tree.5 As seen in the previous section, a
counterexample can be described by a predicate

Cp ≡ x1 = e1, ..., xk = ek

Now we apply a case distinction to the node. This results in two child nodes
with the sequents

1. H,Cp ) G
2. H,¬Cp ) G

The first sequent is the case where the counterexample was found (Cp makes
G false). The second one is the remaining case, where the counterexample is not
considered. The user can then repeat the step of applying the disprover plugin
to the second predicate to try to find a further counterexample.

Figure 5 shows the tool displaying a counterexample. To launch the external
disprover, one has to push the green button.6 The advantages of this approach
are the flexibility of the exploration – by exploring the proof deeper if one wants
to find other counterexamples – and the connection with the proof itself.

5 Original idea by Farhad Mehta.
6 The red button is for all hypotheses, the green for selected hypotheses.
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Fig. 5. Screenshot showing the display of a counterexample

5 Future Work and Conclusion

Using ProB as a prover If the ProB disprover fails to find a counterexample
for a particular proof obligation, we cannot infer that the proof obligation is
true. This is due to two reasons:

– deferred sets: If a B machine uses deferred sets (i.e., sets which are not
explicitly enumerated in the SETS clause), then the cardinality of those sets
is not a priori fixed; the set could even be infinite. ProB, however, will check
the proof obligation only for some finite cardinalities of the deferred sets, and
thus may fail to find existing counterexamples. For example, ProB will fail
to find a counterexample for the formula ∃n.(n : IN ∧ card(S) < n), where
S is a deferred set without further restrictions.

– integers: If an integer variable occurs inside a proof obligation, whose value
is not determined by the rest of the proof obligation, ProB will enumerate
the variable only within a finite interval (between user determined MININT
and MAXINT). Again, ProB may thus fail to find counterexamples for
integer values which lie outside of MININT..MAXINT.

However, if a B machine contains neither deferred sets nor integer variables,
the ProB disprover can actually also be used as a prover. This condition can

10



be easily checked statically, in which case our disprover can inform the Rodin
platform that the PO has actually been proven. Some practical B specifications
fall into this category. For example, the Volvo vehicle function used in [12].
Another example is a Hamming encoder [8], for which Dominique Cansell has
used ProB to prove some essential theorems (which would have been extremely
tedious to prove by hand).7

In future work, we are planning to implement a static analysis which safely
infers intervals for the integer variables. If all variables can be proven to lie
within a finite range, ProB could be used as a prover on this larger class of
specifications (provided MININT and MAXINT cover all those ranges).

More future work An empiric evaluation of the use of ProB as a disprover is
required if one wants to see if the plug-in is efficient or can be more optimized.
A number of tests have already be done but more benchmark tests on several
operating systems would be welcome.

When using relations or functions in the Event-B, the possible values for the
variables of a sequent grows extremely large. For example, given r : A ↔ A,
where A has a cardinality of 4, we have 24∗4 = 65536 possibilities for r. Given
x : P(A ↔ A) we even have 224∗4

= 265536 possibilities for x. ProB has to
investigate these possibilities in order to search for a counterexample. Symmetry
reduction is one way to ease this task, and we plan to check whether we can make
use of ProB’s recent developments [13, 14] in that area for our disprover plug-in.
Another option is to partion the configuration space into several areas, and let
different instances of ProB running in parallel take care of the corresponding
exploration.

Related work A very popular tool for validating models and finding coun-
terexamples is Alloy [11], which makes use SAT solvers (rather than constraint
solving). However, the specification language of Alloy is first-order and thus
cannot be applied “out of the box” to Event-B models.

Earlier related work are the model generators FINDER [19] and MACE [15]
which can also be used to find counterexamples. The prover Isabelle now also
has a quick check function [7], looking randomly for counterexamples. There
are many more related works, such as the more recent [20], and even several
CADE and IJCAR workshops on disproving have been organized. There is also
considerable work on combining model checking [9] with theorem proving in
general (e.g., [16, 10]).

Conclusion In summary, we have presented a method to use the existing model
checker ProB as a tool for proof support, by trying to find counterexamples for
individual proof obligations. We have also discussed under which circumstances
the model checker can be used as a prover. We have presented the implemen-
tation within Eclipse, using the Rodin Event-B platform and have shown how
7 Private communication by Dominique Cansell.
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this has enabled to use the model checker in a very targeted and convenient
way. We believe that a model checker can provide a very valuable support for
the B developer, avoiding unnecessary time spent trying to prove a false proof
obligation.
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