
Fast Offline Partial Evaluation of Logic ProgramsI

Michael Leuschela, Germán Vidalb,∗

aInstitut für Informatik, Universität Düsseldorf, D-40225, Düsseldorf, Germany
bMiST, DSIC, Universitat Politècnica de València, E-46022, Valencia, Spain

Abstract

One of the most important challenges in partial evaluation is the design of automatic
methods for ensuring the termination of the process. In this work, we introduce suf-
ficient conditions for the strong (i.e., independent of a computation rule) termination
and quasi-termination of logic programs which rely on the construction of size-change
graphs. We then present a fast binding-time analysis that takes the output of the termi-
nation analysis and annotates logic programs so that partial evaluation terminates. In
contrast to previous approaches, the new binding-time analysis is conceptually simpler
and considerably faster, scaling to medium-sized or even large examples.

Keywords: partial evaluation, termination analysis, logic programming

1. Introduction

Partial evaluation [29] is a well-known technique for program specialisation. Es-
sentially, given a program, pgm, and a partition of its input data into the static (i.e.,
known) and dynamic (i.e., possibly unknown) data, a partial evaluator returns a resid-
ual program pgms which is a specialised version of pgm for the static data s such that
pgm(s, d) = pgms(d) for all values d of the dynamic data. An essential component of
partial evaluation is a mechanism for symbolic execution so that statements are executed
when static data suffice to determine the control flow and residualized—to be executed
at run time—otherwise.

Partial evaluation techniques have been applied successfully to optimise a large num-
ber of software tasks, like pattern recognition, computer graphics, database query answer-
ing and integrity constraints checking, scientific computing, etc. [29]. Besides program
specialisation, partial evaluation is also a powerful tool to remove the interpretation over-
head of domain specific languages implemented as libraries of another well established
programming language. Moreover, as formalized by the so called Futamura projections
[18], partial evaluators constitute a promising approach to automatic compiler genera-
tion.

IThis work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under
grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant PROMETEO/2011/052.
∗Corresponding author
Email addresses: leuschel@cs.uni-duesseldorf.de (Michael Leuschel), gvidal@dsic.upv.es

(Germán Vidal)

Preprint submitted to Information and Computation May 22, 2013

A crucial issue in the design of a partial evaluator is the way in which the termination
of the specialisation process is ensured. Termination of partial evaluation can in principle
be guaranteed when the computations performed at specialisation time only contain
finitely many calls, i.e., when these computations are quasi-terminating [15]. Partial
evaluators usually include some kind of memoization, which means that, if the same
function call has already been evaluated, then this function call is not unfolded again.
This is why quasi-termination suffices to ensure the termination of partial evaluation.
This relation between quasi-termination and partial evaluation can be traced back to
Holst [28], where a finiteness analysis for first-order functional languages was introduced
in order to guarantee the termination of partial evaluation.

There are two main approaches to partial evaluation, depending on when termination
issues are addressed. Online partial evaluators basically include an augmented interpreter
that tries to evaluate the program constructs as much as possible—using the partially
known input data—while still ensuring the termination of the process. Offline partial
evaluators, on the other hand, require a binding-time analysis (BTA) to be run before
specialisation, which annotates the source code to be specialised. Roughly speaking, the
BTA annotates the various calls in the source program as either unfold (executed by the
partial evaluator) or memo (executed at run time, i.e., memoized), and annotates the
arguments of the calls themselves as static (known at specialisation time) or dynamic
(only definitely known at run time).

Online approaches tend to be more accurate but also computationally more expensive,
so that they do not scale up well to medium and large programs. In contrast, offline
partial evaluators usually deal with abstractions of the static data (rather than its actual
values) and, thus, they are often less accurate but much faster.

Glenstrup and Jones [23] have introduced a binding-time analysis that ensures ter-
mination of partial evaluation in the context of functional programming. The technique
is based on a quasi-termination analysis that relies on the construction of size-change
graphs, which were originally introduced by Lee et al. [31] to analyse the termination
of first-order functional programs. In this work, we follow a similar scheme in order to
define a fast offline partial evaluation scheme for logic programs [44]. In contrast to other
approaches, there is no need to introduce a new symbolic execution mechanism for per-
forming partial computations, since SLD resolution—the standard operational semantics
of logic programs—can naturally deal with missing information represented by means of
logic variables.

In the context of logic programming, a BTA should ensure that the annotations
of the arguments are correct, in the sense that an argument marked as static will be
ground in all possible specialisations. It should also ensure that the specialiser will
always terminate. This can be broadly classified into local and global termination [33].
The local termination of the process implies that no atom is infinitely unfolded. The
global termination ensures that only a finite number of atoms are unfolded. In previous
work, Craig et al [13] have presented a fully automatic BTA for logic programs, whose
output can be used for the offline partial evaluator logen [36]. Unfortunately, this BTA
still suffers from some serious practical limitations:

• The current implementation does not guarantee global termination.

• The technique and its implementation are quite complicated, consisting of a combi-
nation of various other analyses: model-based binding-time inference, binary clause

2

generation for left-termination analysis,1 and inter-argument size relation analysis
with polyhedra. To make matters more complicated, these analyses also run on
different Prolog systems. As a consequence, the current implementation is quite
fragile and hard to maintain.

• In addition to the implementation complexity, the technique is also very slow and
does not scale to medium-sized examples.

Basically, the main bottleneck of previous approaches based on a left-termination analysis
(like, e.g., the analysis based on the abstract binary unfoldings [11] as in [13]) is that
every time the annotation of an atom changes from unfold to memo during the BTA, the
termination analysis should be redone from scratch in order to take into account that this
atom will not be unfolded (which implies that some bindings might not be propagated
to the next atoms anymore).

In order to overcome these drawbacks, we introduce a (quasi-)termination analysis
for logic programs that is independent of the selection rule. This approach is clearly
less precise than other termination analyses that take into account a particular selec-
tion strategy—since no variable bindings are propagated between the body atoms of
a clause—but, as a counterpart, is also much faster—since the termination analysis is
only run once—and well suited for partial evaluation where flexible selection strategies
are often mandatory (see, e.g., [1, 33]). Our BTA for logic programs has the following
advantages:

• it is conceptually simpler and considerably faster, scaling to medium-sized or even
large examples (e.g., our BTA is able to deal with programs of more than 25,000
lines of code; see Section 7);

• the technique does ensure both local and global termination;

• its accuracy can be improved by making use of user-provided hints or partially
taking into account the selection strategy.

We have implemented the new approach, and we will show on experimental results that
the new technique is indeed much faster and much more scalable. On some examples,
the accuracy is still sub-optimal, and we present various ways to improve this. Still, this
is the first BTA for logic programs that can be applied to large programs, and as such is
an important step forward.

This work presents our recent advances in the research of offline partial evaluation of
logic programs. In particular, it includes and extends previous contributions originally
introduced in [53, 42, 40, 41].

The paper is organized as follows. After some preliminaries, Section 3 presents an
overview of an offline partial evaluator for logic programs. Then, Section 4 introduces
a termination analysis based on the size-change principle. An efficient algorithm for
size-change analysis is presented in Section 5, which is then used in the definition of
a fully automated binding-time analysis in Section 6. The usefulness and viability of
our approach is shown in Section 7, where the results of an experimental evaluation are

1We use the shorthand left-termination analysis to refer to a termination analysis which considers
the leftmost selection strategy.

3

discussed. Finally, Section 8 compares our approach to some related work and Section 9
concludes and presents some directions for further research.

2. Preliminaries

We assume some familiarity with the standard definitions and notations for logic pro-
grams [44]. Nevertheless, in order to make the paper as self-contained as possible, we
present in this section the main concepts which are needed to understand our develop-
ment.

In this work, we consider a first-order language with a fixed vocabulary of predicate
symbols, function symbols, and variables denoted by Π, Σ and V, respectively. We let
T (Σ,V) denote the set of terms constructed using symbols from Σ and variables from
V. An atom has the form p(t1, . . . , tn) with p/n ∈ Π and ti ∈ T (Σ,V) for i = 1, . . . , n.
A query is a finite sequence of atoms 〈A1, . . . , An〉, where the empty query is denoted
by true. A clause has the form H ← B1, . . . , Bn where H,B1, . . . , Bn, n > 0, are
atoms (thus we only consider definite programs). A logic program is a finite sequence of
clauses. Given a program P , the associated extended (non-ground) Herbrand Universe
and Base [16] are denoted by UEP and BEP , respectively (i.e., UEP = T (Σ,V) and BEP =
{p(t1, . . . , tn) | p/n ∈ Π ∧ t1, . . . , tn ∈ T (Σ,V)}). Var(s) denotes the set of variables in
the syntactic object s (i.e., s can be a term, an atom, a query, or a clause). A syntactic
object s is ground if Var(s) = ∅.

Substitutions—which are denoted by greek letters (e.g., σ, θ, ρ)—and their operations
are defined as usual. In particular, the set Dom(σ) = {x ∈ V | σ(x) 6= x} is called the
domain of a substitution σ. The application of a substitution θ to a syntactic object s is
usually denoted by juxtaposition, i.e., we write sθ rather than θ(s). A syntactic object
s1 is more general (equivalently, less instantiated) than a syntactic object s2, denoted
s1 6 s2, if there exists a substitution θ such that s1θ = s2. A variable renaming is a
substitution that is a bijection on V. Two syntactic objects t1 and t2 are variants (or
equal up to variable renaming), denoted t1 ≈ t2, if t1 = t2ρ for some variable renaming ρ.
A substitution θ is a unifier of two syntactic objects t1 and t2 iff t1θ = t2θ; furthermore,
θ is the most general unifier of t1 and t2, denoted by mgu(t1, t2) if, for every other unifier
σ of t1 and t2, we have that θ 6 σ.

The notion of computation rule R is used to select an atom within a query for its
evaluation. Given a program P , a query Q = 〈A1, . . . , An〉, and a computation rule R,
we say that Q ;P,R,σ Q

′ is an SLD resolution step for Q with P and R if

• R(Q) = Ai, 1 6 i 6 n, is the selected atom,2

• H ← B1, . . . , Bm is a renamed apart clause of P (in symbols H ← B1, . . . , Bm<<P),

• σ = mgu(Ai, H), and

• Q′ = (〈A1, . . . , Ai−1, B1, . . . , Bm, Ai+1, . . . , An〉)σ.

2Note that R may also take into account the computation history, which is common in partial
evaluation. We ignore this possibility since it is orthogonal to the topics of this work. We also ignore
the fact that technically speaking the atom Ai may occur twice or more in Q.

4

We often omit P , R and/or σ in the notation of an SLD resolution step when they
are clear from the context. An SLD derivation is a (possibly infinite) sequence of SLD
resolution steps. We often use Q0 ;∗θ Qn as a shorthand for Q0 ;θ1 Q1 ;θ2 . . . ;θn

Qn
with θ = θn•· · ·•θ1 (where θ = ∅ if n = 0).3 A finite SLD derivation Q ;∗θ Q

′ is successful
when Q′ = true; in this case, we say that θ restricted to Var(Q) is the computed answer
substitution. SLD derivations are represented by a (possibly infinite) finitely branching
tree.

As it is common practice in partial evaluation [45], we adopt the convention that SLD
derivations can be either infinite, successful, failed (e.g., Q ;∗θ Q

′ such that Q′ 6= true
and no SLD resolution step can be applied to Q′), or incomplete, in the sense that at any
point we are allowed to simply not select any query atom and terminate the derivation.4

3. Overview: Offline Partial Evaluation

In the context of logic programs, a partial evaluator typically specialises a given source
program P for a particular atom of interest A. The partial evaluator then produces a
specialised version of P , which can be called for instances of A. The information provided
to the partial evaluator is thus twofold: it knows the entry predicate p that is going to be
used (namely the predicate of A), as well as (possibly) the values of certain arguments of
p for all possible entry calls at runtime. For example, given A = p(1, X, [Y,Z]), possible
runtime instances are p(1, a, [1, 3]) or p(1, V, [b, V]), and the partial evaluator knows that
the entry predicate is going to be p (with arity 3) and it knows that the first argument
to p will always be 1 (at least for the initial, top-level call to P). The partial evaluator
also has partial information about the third argument, i.e., that it must always be a list
of length 2. The first argument to p is called static: we know the value of the argument
already at specialisation time. The second argument to p is called dynamic: we have
no information at all about the possible values that may occur at runtime. The third
argument is often called partially static: we have some information about the possible
values at runtime, but not enough to infer the exact value.

The partial evaluator exploits this information by propagating the entry point in-
formation using unfolding (which at the same time constructs specialised clauses) and
maintaining a set Q of potential calls at runtime.

As already mentioned, approaches to partial evaluation are categorized into online
and offline ones. Motivations for offline rather than online partial evaluation are manifold,
ranging from improved performance to easing self-application and generating compilers
from interpreters. In this paper, we focus on an offline approach that follows the scheme
shown in Figure 1. Intuitively speaking, the specialisation process is partitioned into two
phases as follows:

1. A binding-time analysis (BTA) which annotates the source program to be spe-
cialised. Basically, the BTA annotates every call of the source program as either un-
fold (executed by the partial evaluator) or memo (executed at runtime, i.e., memo-
ized). The BTA also annotates the arguments of the calls themselves with the values

3We use Aθ1θ2 · · · θn and θn • · · · • θ2 • θ1(A) interchangeably.
4Partial evaluation often require computing incomplete derivations in order to guarantee the termi-

nation of the process.

5

Original
Program

P

Annotated
Program

Pann

1.BTA 2. Partial
Evaluation

Specialised
Program

P'

A Aθ

3. Prolog
Runtime

Entry
Pattern(s)

Computed
Answers

instance

Figure 1: Offline Partial Evaluation Scheme

Input: an annotated program P and an atom A
Output: a partially evaluated program PA
Initialization: i := 0; Q := {A}
Repeat

Q′ := Q;
P ′ := unfold(Q,P);
Q := abstract(Q,P ′);

Until Q′ = Q (modulo variable renaming)
Return: P ′

Figure 2: Basic algorithm for partial evaluation

of a binding-time domain. For instance, for the simplest domain {static, dynamic},
the BTA annotates the arguments as either static (definitely known at speciali-
sation time) or dynamic (only definitely known at runtime). The BTA is given
an entry pattern, stating the entry predicate for specialisation as well as which of
its arguments will be static. In our example above, the pattern could look like
p(static, dynamic, dynamic).5 Observe that the BTA does not yet know the values
of the static arguments.

2. A partial evaluation phase, which mainly follows the annotations of the BTA, now
using and propagating the values of the static arguments. This phase basically
proceeds by following the algorithm of Figure 2 (see, e.g., [20]). Here, we take as
input an annotated program and an initial atom6 and proceed iteratively as follows:
• Each atom in the current set Q of atoms to be partially evaluated is unfolded

as much as possible following the unfold and memo annotations in P . This
process is usually referred to as the local control of partial evaluation

• For each non-failing root-to-leaf derivation A ;σ G, a residual clause—often
called resultant [45]—of the form Aσ ← G is returned, gradually giving rise
to the unfolded program P ′.

• All atoms in the bodies of P ′ should be added to Q in order to guarantee
the closedness [45] of the specialised program (i.e., to ensure that every call

5Actually, it could be more accurate depending on the binding-time domain, e.g., it could have the
form p(static, dynamic, list), see Section 6.

6We present a simple scheme where only atomic queries are considered. Current partial evaluators
deal with conjunctions instead, giving rise to much more accurate results. Since this is orthogonal to
the topics of this paper, we keep the basic scheme for simplicity.

6

that might occur at runtime will be appropriately covered by some specialised
procedure). In order to guarantee the finiteness of the process, an abstraction
operator is usually applied. It basically generalizes those atom subterms which
are annotated as dynamic (i.e., replaces them with fresh variables) and discards
those atoms which are variants of the atoms which are already in Q. This part
of the process is usually called the global control of partial evaluation.

Therefore, a BTA should ensure termination at both the local and global control levels.
In other words, it should ensure local and global termination, which are defined as follows:

Local termination: by unfolding calls annotated as unfold and never selecting calls
annotated as memo at partial evaluation time, all SLD derivations are finite.

Global termination: by generalizing the dynamic parts of collected atoms and dis-
carding variants, the set of specialised atoms cannot grow infinitely.

As it is common practice, an essential component of our BTA is the termination analy-
sis. In particular, we analyze both termination and quasi-termination. While termination
results are useful to infer unfold/memo annotations, the quasi-termination analysis is es-
sential to determine which predicate arguments should definitely be annotated as dynamic
in order to ensure global termination.

4. Size-Change Termination Analysis

In this section, we present strong termination and quasi-termination analyses for logic
programs. For this purpose, we adapt the size-change termination analysis of Lee et al
[31] to the logic programming setting.

As mentioned before, we focus in strong termination in order to keep the analysis
independent of a particular selection strategy. Our notion of strong termination, which
is a slight generalization of the standard notion of Bezem [6], is defined as follows:

Definition 1 (strong termination). A query Q is strongly terminating w.r.t. a pro-
gram P if every SLD derivation for Q with P is finite. A program P is strongly termi-
nating w.r.t. a set of queries Q if every Q ∈ Q is strongly terminating w.r.t. P .

For conciseness, in the remainder of this paper, we just write “termination” to refer to
“strong termination”.

The following auxiliary definitions introduce the notions of calls and calls-to relation;
they are slight extensions of the same notions in [11] in order to consider an arbitrary
computation rule.

Definition 2 (calls). Let P be a program, R a computation rule, and Q0 a query. We
say that A is a call in a derivation of Q0 with P and R iff Q0 ;∗ Q and R(Q) = A. We
denote by callsRP (Q0) the set of calls in the computations of Q0 with P and R.

Definition 3 (calls-to relation ↪→). We say that there is a call from A to B in a
computation of the query Q0 with the program P and the computation rule R, in

symbols A
Q0
↪→P,R Bθ, if A ∈ callsRP (Q0), 〈A〉 ;σ 〈. . . , B, . . .〉 ;∗θ 〈. . . , Bθ, . . .〉 and

R(〈. . . , Bθ, . . .〉) = Bθ. When it is clear from the context, we write A ↪→ Bθ or A ↪→δ Bθ
to emphasise that δ is the substitution associated with a corresponding derivation from
〈A〉 to 〈. . . , Bθ, . . .〉 (i.e., δ = σθ above).

7

We note that, in contrast to [11], our calls-to relation only considers direct calls, i.e.,
A ↪→ B implies that B is an atom in the body of the clause used to unfold A (possibly
instantiated when other siblings are first selected and unfolded). The relation of [11] can
be seen as the transitive closure of our definition.

Trivially, if a program P is terminating w.r.t. a set of atoms A, then the set callsRP (A)
is finite for every atom A ∈ A and computation rule R. The inverse claim, however, does
not hold: given the program P = {p ← p.}, the set callsRP (〈p〉) = {p} is finite for any
computation rule R while P is clearly not terminating: 〈p〉; 〈p〉; . . .

The size-change principle [31] is a technique originally aimed at analysing the termi-
nation of functional programs. Intuitively speaking, it consists in tracing size changes
of function arguments when going from one function call to another by means of size-
change graphs. Then, assuming that the measure of size gives rise to a well-founded
order, the following principle applies [31]: If every infinite computation would give rise
to an infinitely decreasing value sequence (according to the size-change graphs), then no
infinite computation is possible.

Now, we adapt the definitions of size-change graph and idempotent multigraph to
logic programs; we mainly follow the presentation in [47] for rewrite systems, which in
turn originates from the original work of [31] for first-order functional programs. We do
not make any assumption on the orders to be partial or total in this work (which mainly
affects to the accuracy of the analysis but not its correctness).

In the following, a strict order � is an irreflexive and transitive binary relation on
terms. An order � is well-founded if there are no infinite sequences of the form t1 � t2 �
. . . An order % is a quasi-order if it is reflexive and transitive. We say that an order �
is closed under substitutions (or stable) if s � t implies sσ � tσ for all s, t ∈ T (Σ,V) and
every substitution σ. By abuse of notation, we say that a quasi-order is well-founded
whenever its strict part (i.e., > defined by s > t iff s % t ∧ t 6% s) is well-founded. An
interesting property of well-founded quasi-orders is that, in any infinite quasi-descending
sequence t0 % t1 % t2 % . . ., from some point on, all elements are equivalent under the
equivalence relation induced by % [15].

Our size-change graphs are parameterized by a reduction pair:

Definition 4 (reduction pair). We say that (%,�) is a reduction pair if % is a quasi-
order and � is a well-founded order where both % and � are closed under substitutions
and compatible (i.e., % • � ⊆ � and � • % ⊆ � but � ⊆ % is not necessary).

Observe that, as % is reflexive, we always have % • � ⊇ � and � • % ⊇ �. An example
of reduction pair can be found below.

In logic programming, however, termination analyses usually rely on the use of norms
which measure the size of terms. Now, we show how a reduction pair can easily be induced
by a given norm in some cases. For this purpose, we focus on this paper on symbolic
norms [43]:

Definition 5 (symbolic norm). A symbolic norm is a function || · || : T (Σ,V) →
T (IN ∪ {+},V) such that

||t|| =
{
m+

∑n
i=1 ki||ti|| if t = f(t1, . . . , tn), n > 0

t if t is a variable

8

||t||ts =
{
n+

∑n
i=1 ||ti||ts if t = f(t1, . . . , tn), n > 0

t if t is a variable

||t||ll =

 1 + ||Xs|| if t = [X|Xs]
t if t is a variable
0 otherwise

Figure 3: Term-size and list-length symbolic norms

where m and k1, . . . , kn are non-negative integer constants depending only on f/n. Note
that we associate a variable over integers to each logical variable (we use the same name
for both since the meaning of the variable is clear from the context).

Two popular instances of the above definition are the symbolic term-size norm || · ||ts
and the symbolic list-length norm || · ||ll, which are shown in Fig. 3.7 For instance, we
have

||f(X,Y)||ts = 2 +X + Y ||f(a, b)||ts = 2
||[a|Y]||ll = 1 + Y ||[a,X]||ll = 2

The introduction of variables in the range of the norm provides a simple mechanism to
express dependencies between the sizes of terms.

Definition 6. By abuse of notation, given two terms s and t, we say that ||s|| > ||t||
(respec. ||s|| > ||t||) if ||sσ|| > ||tσ|| (respec. ||sσ|| > ||tσ||) holds for all substitutions σ
that make ||sσ|| and ||tσ|| integer constants.

By definition, the relations > and > are stable (closed under substitutions):

Lemma 1. Given two terms s and t, we have that ||s|| > ||t|| (respec. ||s|| > ||t||) implies
||sσ|| > ||tσ|| (respec. ||sσ|| > ||tσ||) for all substitutions σ.

The next lemma shows a basic property of symbolic norms that will become useful to
prove the correctness of our termination analysis:

Lemma 2. Let s, t ∈ T (Σ,V) be terms. Then both ||s|| > ||t|| and ||s|| > ||t|| imply
Var(||s||) ⊇ Var(||t||).

Proof. By contradiction. Let us assume that ||s|| > ||t|| (the proof for ||s|| > ||t|| would
be perfectly analogous) but there exists a variable x ∈ Var(||t||) such that x 6∈ Var(||s||).
Therefore, we can construct a ground substitution σ that maps all variables but x to
constants and x to a sufficiently large term so that ||sσ|| > ||tσ|| does not hold, which
contradicts our initial assumption. 2

For example, ||[a, b|T]||ll > ||[H|T]||ll and var(||[a, b|T]||ll) = var(||[H|T]||ll) = T .
Now, a reduction pair can easily be defined from a given symbolic norm as follows:

7We use Prolog-like notation for lists, i.e., [] denotes the empty list and [X|Xs] denotes a list with
head X and tail Xs; furthermore, variables start with an uppercase letter.

9

Definition 7 (induced orders). The pair of orders (%,�) induced by a symbolic norm
|| · || are defined by s � t⇔ ||s|| > ||t|| and s % t⇔ ||s|| > ||t|| for all terms s and t.

For example, the reduction pair (%ts,�ts) induced by the term-size norm || ||ts is defined
as follows:

• s �ts t iff ||s||ts > ||t||ts and

• s %ts t iff ||s||ts > ||t||ts.

Therefore, we have s(X) �ts X, f(X) %ts f(X), f(X,Y) %ts f(X, a), etc.
The following result proves that the pair of orders induced by a symbolic norm is

actually a reduction pair:

Lemma 3. Let || · || be a symbolic norm on T (Σ,V). Then, the pair of orders (%,�)
induced by || · || is a reduction pair.

Proof. The fact that the pair (%,�) induced by the symbolic norm || · || is compatible
is straightforward since > and > over natural numbers are compatible.

Now we prove that (%,�) is also closed under substitutions. Consider two terms
s and t such that s � t. We want to prove that sθ � tθ for all substitution θ. We
proceed by contradiction. Assume that there exists a substitution δ such that sδ 6� tδ.
By definition of induced orders, there exists some substitution σ such that ||sδσ|| and
||tδσ|| are integer constants but ||sδσ|| 6> ||tδσ||. Since s � t, we have that ||sϑ|| > ||tϑ||
for all substitution ϑ that makes ||sϑ|| and ||tϑ|| integer constants. Therefore, we have a
contradiction when ϑ = δσ. A similar reasoning can be applied to %. Hence, (%,�) is a
reduction pair. 2

Now we use size-change graphs to trace the size relationship between the arguments of
the atom in the head of clause and the arguments in the body atoms of the same clause.
The graphs are parametric w.r.t. a reduction pair:

Definition 8 (size-change graphs [31]). Let P be a program and (%,�) a reduction
pair. We define a size-change graph for every clause p(s1, . . . , sn) ← Q of P and every
atom q(t1, . . . , tm) in Q (if any).

The graph has n output nodes marked with {1p, . . . , np} and m input nodes marked
with {1q, . . . ,mq}. If si � tj holds, then we have a directed edge from output node ip to
input node jq marked with �. If si 6� tj and si % tj holds, then we have an edge from
output node ip to input node jq marked with %.

A size-change graph is thus a bipartite labelled graph G = (V,W,E) where V =
{1p, . . . , np} and W = {1q, . . . ,mq} are the output and input nodes, respectively, and
E ⊆ V ×W × {%,�} are the edges.

Note that our notion of size-change graph is independent of any computation rule, which
makes it particularly appropriate for analysing strong (quasi-)termination.

The call graph of a program is often useful to identify the structure of its size-change
graphs. As it is common practice, the call graph of the program is a directed graph that
contains the predicate symbols as vertices and an edge from predicate p/n to predicate
q/m for each clause of the form p(t1, . . . , tn) ← B1, . . . , q(s1, . . . , sm), . . . , Bk, k ≥ 1, in
the program.

10

mlist

Gc2
4

**

Gc1
1

uujjjjjjjjjjjjjjjjjjjjjjjjjjj

Gc2
1

zzuuuuuuuuuuuuuu

Gc2
2

��
Gc2
3

!!CC
CC

CC
CC

CC
CC

C ml

Gc3
2

kk
Gc3
1 // mult

Gc5
1

QQ
Gc5
2 // add

Gc7
1

QQ

empty nonempty hd tl

Figure 4: Call graph for program MLIST

Example 1. Consider the following program MLIST :

(c1) mlist(L, I, [])← empty(L).
(c2) mlist(L, I, LI)← nonempty(L), hd(L,X), tl(L,R),ml(X,R, I, LI).

(c3) ml(X,R, I, [XI|RI])← mult(X, I,XI), mlist(R, I,RI).

(c4) mult(0, Y, 0). (c5) mult(s(X), Y, Z)← mult(X,Y, Z1), add(Z1, Y, Z).
(c6) add(X, 0, X). (c7) add(X, s(Y), s(Z))← add(X,Y, Z).

(c8) hd([X |],X). (c9) empty([]).

(c10) tl([|R],R). (c11) nonempty([|]).

which is used to multiply all the elements of a list by a given number. The program is
somewhat contrived in order to better illustrate the technique.

The call graph of program MLIST is shown in Figure 4 (the reader can ignore the
labels for the moment). The size-change graphs of the program, using a reduction pair
(%ts,�ts) induced by the term-size norm, are shown in Figure 5, where we denote by
Gci
n the n-th size-change graph associated to clause ci.8 Trivially, there is a size-change

graph for every edge of the call graph, as illustrated in Figure 4, where edges are labeled
with the names of the associated size-change graphs.

In order to identify the program loops, we should compute roughly a transitive closure
of the size-change graphs by composing them in all possible ways. For this purpose, the
notion of idempotent multigraph is introduced:

Definition 9 (composition, idempotent multigraphs [31, 47]). Let P a logic pro-
gram. A multigraph of P is inductively defined to be either a size-change graph of P or
the composition (see below) of two multigraphs of P . Given two multigraphs:

G = ({1p, . . . , np}, {1q, . . . ,mq}, E1)

and
H = ({1q, . . . ,mq}, {1r, . . . , lr}, E2)

w.r.t. the same reduction pair (%,�), then the composition is defined as follows:

G • H = ({1p, . . . , np}, {1r, . . . , lr}, E)

8In general, we denote with p/n a predicate symbol of arity n. However, in the examples, we simply
write p for predicate p/n when no confusion can arise.

11

Gc1
1 : mlist −→ empty Gc2

1 : mlist −→ nonempty Gc2
2 : mlist −→ hd

1mlist

%ts // 1empty

2mlist

3mlist

1mlist

%ts // 1nonempty

2mlist

3mlist

1mlist

%ts // 1hd

2mlist 2hd

3mlist

Gc2
3 : mlist −→ tl Gc2

4 : mlist −→ ml

1mlist

%ts // 1tl

2mlist 2tl

3mlist

1mlist 1ml

2mlist %ts

**UUUUU 2ml

3mlist %ts

**UUUUU 3ml

4ml

Gc3
1 : ml −→ mult Gc3

2 : ml −→ mlist Gc5
1 : mult −→ mult

1ml

%ts // 1mult

2ml 2mult

3ml

%ts 44iiiiiii
3mult

4ml

�ts 44iiiiiii

1ml 1mlist

2ml

%ts 44hhhhhhh
2mlist

3ml

%ts 44hhhhhhh
3mlist

4ml

�ts 44hhhhhhh

1mult
�ts // 1mult

2mult

%ts // 2mult

3mult 3mult

Gc5
2 : mult −→ add Gc7

1 : add −→ add

1mult
�ts // 1add

2mult

%ts // 2add

3mult 3add

1add

%ts // 1add

2add
�ts // 2add

3add
�ts // 3add

Figure 5: Size-change graphs for MLIST

with
E = {(ip, kr, L1 • L2) | ∃jq.(ip, jq, L1) ∈ E1 ∧ (jq, kr, L2) ∈ E2}

is also a multigraph, where we define L1•L2 = “%” if both L1 = L2 = “%” and L1•L2 =
“�” in all other cases.9

A multigraph G of P is called idempotent if G = G • G.

Roughly speaking, given the set of size-change graphs of a program, we first compute its
transitive closure under the composition operator, thus producing a finite set of multi-
graphs. Then, we only need to focus on the idempotent multigraphs of this set because
they represent the (potential) program loops.

Example 2. Consider the size-change graphs of program MLIST in Example 1 which are
shown in Figure 5. Intuitively, only the composition of the size-change graphs associated
to the loops of the call graph (Fig. 4) could give rise to idempotent multigraphs (since the
result of other compositions would never be idempotent). In particular, we can construct

9We note that, when there are multiple edges between the same nodes, we keep the edge with the
strongest relation in the examples, i.e., given two edges labeled with � and %, we just show the edge
labeled with �.

12

G42 : mlist −→ mlist G24 : ml −→ ml Gc5
1 : mult −→ mult Gc7

1 : add −→ add

1mlist 1mlist

2mlist

%ts // 2mlist

3mlist
�ts // 3mlist

1ml 1ml

2ml 2ml

3ml

%ts // 3ml

4ml
�ts // 4ml

1mult
�ts // 1mult

2mult

%ts // 2mult

3mult 3mult

1add

%ts // 1add

2add
�ts // 2add

3add
�ts // 3add

Figure 6: Idempotent multigraphs for MLIST

the following four idempotent multigraphs: G42 = Gc24 •G
c3
2 , G24 = Gc32 •G

c2
4 , Gc51 , and Gc71 ,

which are shown in Figure 6. Observe that multigraphs G42 and G24 actually represent
the same loop. We will introduce an efficient algorithm for computing the idempotent
multigraphs in Section 5.

In the following, similarly to [47], given two multigraphs G and H where G’s input nodes
have the same labels as H’s output nodes, we let the concatenation G ◦ H be the graph
resulting from identifying G’s input and H’s output nodes. Thus G ◦H only differs from
G •H in that these intermediate nodes are not dropped. For example, the graph Gc24 ◦G

c3
2

is as follows:
1mlist 1ml 1mlist

2mlist %ts

**UUUUUUU 2ml

%ts 44iiiiiii 2mlist

3mlist %ts

**UUUUUUU 3ml

%ts 44iiiiiii 3mlist

4ml

�ts 44iiiiiii

(compare this graph with G42 = Gc24 • G
c3
2 shown in Figure 6).

The relevance of idempotent multigraphs is shown in the following result from [47],
which in turn follows the same ideas as the proof of Theorem 4 in [31]. Basically, both
results are a consequence of Ramsey’s theorem [46].

Lemma 4. [31, 47] Let S be a finite set of size-change graphs. Then,

• every graph G1 ◦ G2 ◦ . . . with an infinite sequence G1,G2, . . . ∈ S has an infinite
path containing infinitely many edges labelled with “�”

iff

• every idempotent multigraph G1 • G2 • . . . • Gm with G1,G2, . . . ,Gm ∈ S has an edge
of the form ip

�−→ ip.

Following [31], we say that a program is size-change terminating if every idempotent
multigraph contains at least one strictly decreasing parameter:10

Definition 10 (size-change termination). A program P is size-change terminating
w.r.t. a reduction pair (%,�) iff every idempotent multigraph of P contains an edge of
the form ip

�−→ ip.

10A reformulation of this condition, where idempotence is not required, can be found in [10].

13

Example 3. Consider the program of Example 1. It is size-change terminating since
every idempotent multigraph (shown in Fig. 6) contains at least one edge labelled with
“�”.

We observe that, given a reduction pair with decidable orders (e.g., the reduction pair
induced by the symbolic term-size norm), size-change termination is decidable as well
since there exists a finite number of possible multigraphs. As illustrated in [31], there
is a worst case exponential growth factor associated to the computation of multigraphs.
There exist, though, a number of proposals to improve the efficiency of the size-change
analysis which are orthogonal to the topics of this paper (we refer the interested reader
to, e.g., the polynomial-time approximation of [30] or the constraint-based approach of
[9]).

4.1. Termination
In this section, we introduce a sufficient condition for the (strong) termination of

logic programs that is based on the notion of size-change termination defined above. In
the context of functional programming, the notion of size-change termination suffices to
ensure that the program is terminating. In the logic programming setting, this is only the
case for ground queries. In general, though, size-change termination does not generally
imply the termination of a program w.r.t. arbitrary (possibly non-ground) queries.

Example 4. Consider again the program of Example 1. Although this program is size-
change terminating, infinite SLD derivations exist, e.g.,

〈add(X,Y, Z)〉 ;{Y/s(Y ′),Z/s(Z′)} 〈add(X,Y ′, Z ′)〉 ;{Y ′/s(Y ′′),Z′/s(Z′′)} . . .

Therefore, some additional requirements are necessary to ensure termination. Let us first
recall the notion of instantiated enough w.r.t. a symbolic norm.11

Definition 11 (instantiated enough [43]). A term t is instantiated enough w.r.t. a
symbolic norm || · || if ||t|| is an integer constant.

The next auxiliary lemmas show some basic properties of symbolic norms that will be-
come useful to prove the main result of this section (cf. Theorem 1).

Lemma 5. Let || · || be a symbolic norm and t a term which is instantiated enough w.r.t.
|| · ||. Then, for every substitution σ, the term tσ is also instantiated enough w.r.t. || · ||
and moreover ||t|| = ||tσ||.

Proof. Trivial by definition of symbolic norm. 2

Lemma 6. Let || · || be a symbolic norm and s, t be terms such that ||s|| > ||t|| (resp.
||s|| > ||t||). If sθ is instantiated enough w.r.t || · || for some substitution θ, then tθ is
also instantiated enough w.r.t. || · || and moreover ||sθ|| > ||tθ|| (resp. ||sθ|| > ||tθ||).

11A closely related notion is that of rigidity [7], where a term t is rigid w.r.t. a norm || · || if, for any
substitution σ, ||tσ|| = ||t||.

14

Proof. Since ||s|| > ||t|| (resp. ||s|| > ||t||), by Lemma 1 (which states the stability of
> and >), we have ||sθ|| > ||tθ|| (resp. ||sθ|| > ||tθ||). Since sθ is instantiated enough
w.r.t. || · ||, i.e., ||sθ|| = k for some integer k, and ||sθ|| > ||tθ|| then ||tθ|| must also be
an integer and, thus, tθ is instantiated enough w.r.t. || · ||. 2

Lemma 7. Let P be a program and Q be a query. Then, there is an infinite SLD
derivation for Q with P if and only if there is an infinite chain in the calls-to relation.

Proof. The proof is perfectly analogous to the proof of Lemma 3.5 in [11], since the
only significant difference is that [11] considers a leftmost selection rule, while we consider
arbitrary SLD derivations. 2

Now, we present a sufficient condition for termination which is based on the notion of
size-change termination. Basically, we require the decreasing parameters of (potentially)
looping predicates to be instantiated enough w.r.t. a given symbolic norm in the consid-
ered computations.

Theorem 1 (termination). Let P be a program and let (%,�) be a reduction pair
induced by a symbolic norm || · ||. Let A be a set of atoms. If every idempotent multigraph
of P contains at least one edge ip

�−→ ip such that, for every atom A ∈ A, computation
rule R, and atom p(t1, . . . , tn) ∈ callsRP (A), ti is instantiated enough w.r.t. || · ||, then P
is terminating w.r.t. A.

Proof. We prove the claim by contradiction. Assume that P is not terminating w.r.t.A.
Then, by Lemma 7, we have an infinite chain in the associated calls-to relation for some
atom A ∈ A and computation rule R of the form A = A0 ↪→P,R A1 ↪→P,R A2 ↪→P,R . . .
For each step Aj ↪→σj Aj+1 in the calls-to relation, there is a (renamed apart) clause
Hj ← Bj1, . . . , B

j
mj
<<P which is used to perform an SLD resolution step with Aj , where

θj = mgu(Aj , Hj), Aj+1 = Bjkj
σj , 1 6 kj 6 mj , and θj 6 σj (θj is more general than σj

because some siblings in the body of the clause could have been selected before Bjkj
).

Informally speaking, now we have to prove that there is an infinite sequence of terms
s0, s1, . . . where each sj is an argument of the atom Aj and either sj � sj+1 or sj % sj+1

(though there are infinitely many �), which contradicts the well-foundedness of �.
First, we know that for each step Aj ↪→σj

Aj+1 there is a corresponding size-change
graph Gj . Therefore, we have an associated infinite graph12 of the form G0 ◦ G1 ◦ . . .
Since the conditions in the claim of the theorem are stronger, P is trivially size-change
terminating. Therefore, by Lemma 4, the graph G0 ◦ G1 ◦ · · · should contain an infinite
path where infinitely many edges are labeled with “�”. W.l.o.g., we assume that this
path already starts in node ip of G0 and that A0 = p(. . .) such that there is a maximal
multigraph for p/n including a strict edge for ip.13 For every j, let aj be the output
node in Gj which is on this path. In the following, we denote by B|l the l-th argument
of atom B. Then, we have Hj |aj

� Bjkj
|aj+1 for all j from an infinite set J ⊆ IN and

12Recall that G ◦ H differs from G • H in that intermediate nodes are not dropped.
13If this is not the case, one just needs to skip a finite prefix of the path in order to meet the required

conditions (see the proof of Lemma 6 in [47]).

15

Hj |aj % Bjkj
|aj+1 for j ∈ IN\J . Now, we should prove that Hj |aj � Bjkj

|aj+1 implies

Aj |aj
� Aj+1|aj+1 and that Hj |aj

% Bjkj
|aj+1 implies Aj |aj

% Aj+1|aj+1 .
For j = 0, we have A0 ↪→σ0 A1, where H0 ← B0

1 , . . . , B
0
m0
<<P is a (renamed apart)

clause, θ0 = mgu(A0, H0), A1 = B0
k0
σ0, 1 6 k0 6 m0, and θ0 6 σ0. Assume that

H0|a0 � B0
k0
|a1 holds (the case H0|a0 % B0

k0
|a1 is perfectly analogous) in the size-change

graph associated to the clause H0 ← B0
1 , . . . , B

0
m0

. By the stability of �, we have that
H0|a0θ0 � B0

k0
|a1θ0 holds; also, since A0|a0θ0 = H0|a0θ0 (because θ0 = mgu(A0, H0)),

we have that A0|a0θ0 � B0
k0
|a1θ0 also holds. Again by the stability of �, we have that

A0|a0σ0 � B0
k0
|a1σ0 holds and, thus, A0|a0σ0 � A1|a1 (since A1 = B0

k0
σ0). Now, since

A0|a0 is instantiated enough w.r.t. || · || (since there is an edge a0p
�−→ a0p with a0p = ip

as stated above), by Lemma 5, we have that A0|a0σ0 is also instantiated enough and
||A0|a0 || = ||A0|a0σ0||. Therefore, A0|a0 � A1|a1 also holds. Finally, by Lemma 6, since
A0|a0 is instantiated enough w.r.t. || · ||, so is A1|a1 .

By applying the same reasoning repeatedly, we have that Aj |aj
� Aj+1|aj+1 holds

for all j ∈ J and Aj |aj
% Aj+1|aj+1 for all j ∈ IN\J . This is a contradiction to the

well-foundedness of “�”. 2

Note that the strictly decreasing arguments should be instantiated enough in every pos-
sible derivation w.r.t. any computation rule. Although this condition is undecidable in
general (since the set of derivable calls is infinite in general), it can be approximated by
using the binding-times of the computed call patterns (cf. Section 6.2.1).

4.2. Quasi-Termination
Now, we focus on quasi-termination, a weaker notion than termination. As in the

previous section, we first introduce a notion called size-change quasi-termination which
is not enough for logic programs. Then, we show how (strong) quasi-termination of logic
programs can be ensured starting from size-change quasi-termination.

Consider, e.g., the program P = { p ← q., q ← p. }. Although this program is
clearly non-terminating: 〈p〉; 〈q〉; 〈p〉; . . ., it is quasi-terminating since only a finite
number of distinct atoms is computed. As mentioned before, ensuring the termination of
partial evaluation on quasi-terminating programs is rather simple (e.g., by using a form
of memoisation), which justifies our interest in this property.

Definition 12 (strong quasi-termination). A query Q is strongly quasi-terminating
w.r.t. a program P if, for every computation rule R, the set callRP (Q) contains finitely
many nonvariant atoms. A program P is strongly quasi-terminating w.r.t. a set of queries
Q if every Q ∈ Q is strongly quasi-terminating w.r.t. P .

Trivially, (strong) termination implies (strong) quasi-termination. Quasi-termination is
also relevant in logic programming for tabled evaluation since the quasi-termination of
SLD resolution implies the termination of the tabled mechanism (see, e.g., [52], where
quasi-termination w.r.t. Prolog’s leftmost computation rule is considered).

For conciseness, in the remainder of this paper we write “quasi-termination” to refer
to “strong quasi-termination”.

In order to be able to use size-change graphs to analyse quasi-termination, we need
an additional requirement on the reduction pair, as the following example illustrates:

16

Example 5. Consider the following program P :

p([X])← p([f(X)]).

and a reduction pair (%,�) induced by the symbolic list-length norm (see Fig. 3); note
that, according to this symbolic norm, all lists with the same number of elements are
considered “equal”.

The size-change analysis for this program returns a single idempotent multigraph

which contains an edge 1p
%−→ 1p for the argument of p. However, infinite non-quasi-

terminating SLD derivations exist, e.g.,

〈p([a])〉; 〈p([f(a)])〉; 〈p([f(f(a))])〉; . . .

where [a] % [f(a)] % [f(f(a))] % . . .

To overcome this problem, we require the quasi-order to be well-founded (see page 8)
and finitely partitioning. The second requirement is introduced in the next definition:

Definition 13 (finitely partitioning quasi-order). We say that a quasi-order % is
finitely partitioning14 iff for all ground t, the set {s | t % s ∧ Var(s) = ∅} is finite.

A quasi-order % is thus finitely partitioning if there are not infinitely many “equal”
or “smaller” ground terms under %. We only consider ground terms since our notion
of quasi-termination requires a finite number of nonvariant atoms. In other words, all
variables are seen as a single fresh constant (i.e., p(X), p(X ′), p(X ′′), . . . , are the same
atom from the point of view of quasi-termination), so we can safely ignore variables in
the definition of finitely partitioning quasi-orders.

Nevertheless, we note that, given a a finitely partitioning quasi-order induced by a
norm, the terms which are instantiated enough w.r.t. such a norm are necessarily ground:

Lemma 8. Let (%,�) be a reduction pair induced by a symbolic norm || · ||. If % is
finitely partitioning, then a term t is instantiated enough w.r.t. || · || iff t is ground.

Proof. We only prove the “only if” part since the “if” claim is trivial. We proceed by
contradiction. Let t be a non-ground term which is instantiated enough w.r.t. || · ||. By
Lemma 5, ||tσ|| = ||t|| for all substitution σ. Therefore, assuming a non-trivial signa-
ture,15 we have an infinite number of non-variant ground terms (i.e., we only consider
those σ such that tσ is ground) which are equivalent under || · || and, thus, under %,
which contradicts the fact that % is finitely partitioning. 2

Thanks to the above result, we will just require ground arguments instead of instantiated
enough arguments (as in Theorem 1) when a finitely partitioning quasi-order is considered
(see the claim of Theorem 2 below).

14We follow the terminology of [14, 52]. In contrast to our definition, they apply this notion to level
mappings on atoms so that a finitely partitioning level mapping does not map an infinite set of atoms
to the same number.

15In the following, we assume that the considered program signature is always non trivial, i.e., it
contains at least one function symbol of arity greater than zero.

17

Observe that, if the reduction pair includes a finitely partitioning well-founded quasi-
order, the situation of Example 5 is no longer possible. Trivially, the quasi-order of the
reduction pair induced by the term-size norm is well-founded and finitely partitioning.
This condition, however, excludes the use of reduction pairs induced by some symbolic
norms. For instance, the quasi-order of a reduction pair induced by the list-length norm
is not finitely partitioning since we can construct an infinite number of lists with the
same length (see the extension in Section 6.2.2 though).

Now, we introduce the counterpart of size-change termination for analysing the quasi-
termination of logic programs:

Definition 14 (size-change quasi-termination). Let P be a program and let (%,�)
be a reduction pair, where “ %” is a finitely partitioning well-founded quasi-order. We
say that P is size-change quasi-terminating w.r.t. (%,�) iff every idempotent multigraph
of P associated to a predicate p/n fulfils at least one of the following two conditions:

(i) there is at least one edge ip
�−→ ip for some i ∈ {1, . . . , n}, or

(ii) for all i = 1, . . . , n, there exists an edge jp
R−→ ip for some j ∈ {1, . . . , n}, with

R ∈ {�,%}.

Intuitively, a program is size-change quasi-terminating if, for every (potentially) looping
predicate, at least one argument strictly decreases from one call to another, or all argu-
ments are bounded by some argument of the previous call and the associated quasi-order
is well-founded and finitely partitioning.

Similarly to the case of size-change termination, our characterisation of size-change
quasi-termination would be appropriate in a functional context but does not generally
imply the quasi-termination of logic programs. In this case, however, the reason is more
subtle and related to non-linearity,16 as the following example illustrates:

Example 6. Consider, for instance, the non-linear query 〈p(A,A)〉 and the following
simple program:

p(f(X), Y)← p(X,Y).

Although we have ||f(X)||ts > ||X||ts and ||Y ||ts > ||Y ||ts, non-quasi-terminating SLD
derivations exist, e.g.,

〈p(A,A)〉 ;{A/f(X),Y/f(X)} 〈p(X, f(X))〉
;{X/f(X′),Y ′/f(f(X′))} 〈p(X ′, f(f(X ′)))〉
; . . .

Intuitively speaking, the problem comes from the propagation of bindings between pred-
icate arguments due to unification.

Before we proceed with the main result of this section, we need some preparatory results.
Basically, we need a result relating idempotent multigraphs and the paths in the infinite
composition of size-change graphs, analogously to Lemma 4. This is a key result to state
the correctness of the characterization of size-change quasi-termination. In the following,
we write jp −→ iq as a shorthand for jp

R−→ iq with R ∈ {�,%}.

16An atom is called linear if there are no multiple occurrences of the same variable.

18

Lemma 9. Let S be a finite set of size-change graphs. Then, the following statements
are equivalent:

1. For every infinite graph G1 ◦ G2 ◦ . . . with G1,G2, . . . ∈ S, there is a natural number
k > 0 such that, for every node v in every size-change graph Gr with r > k, there
is a path from some node in Gk to node v in Gr.

2. In every idempotent multigraph G1 • G2 • . . . • Gm, m > 1, for a predicate symbol
p/n with G1,G2, . . . ,Gm ∈ S, there exists, for all i = 1, . . . , n, some j ∈ {1, . . . , n}
such that G1 • G2 • . . . • Gm contains an edge jp −→ ip.

Proof. The proof follows a similar scheme as that of the proof of Lemma 4 (in particular,
we follow the proof scheme of Lemma 6 in [47]).

We first prove “(1)⇒ (2)” by contradiction. Assume that there exists an idempotent
multigraph G = G1 • G2 • . . . • Gm for some predicate symbol p/n which has no edge
jp −→ ip for some i ∈ {1, . . . , n}, where G = ({1p, . . . , np}, {1p, . . . , np}, E). By claim
(1), we have that the infinite graph G1 ◦ G2 ◦ . . . ◦ Gm ◦ G1 ◦ G2 ◦ . . . ◦ Gm ◦ . . . must have a
path from some node in Gk to every node v in every graph Gr with k > 0 and k < r 6 m.
By construction, we can assume that k = 1. Therefore, there is a path to every node ip
of Gm starting from some node jp of G1. Hence, the edge jp −→ ip belongs to G and we
get a contradiction.

Now we prove “(2) ⇒ (1)” (by contradiction too). Assume that there exists an
infinite graph G1 ◦ G2 ◦ . . . with G1,G2, . . . ∈ S such that there exists some node v in a
graph Gr such that there is no path from any node of graph Gk to v in Gr, 0 < k < r.
First, for all pair of numbers (a, b) with a < b we let Ga,b be the multigraph resulting
from the composition of Ga,Ga+1, . . . ,Gb−1, i.e., Ga • Ga+1, • · · · • Gb−1. As there are
finitely many possible multigraphs, by Ramsey’s theorem, there is an infinite I ⊆ IN
such that Ga,b is always the same graph for all a, b ∈ I with a < b. We call this graph
G. Note that G is an idempotent multigraph: for n1 < n2 < n3 with ni ∈ I, we have
Gn1,n3 = Gn1 • · · · • Gn2−1 • Gn2 • · · · • Gn3−1 = Gn1,n2 • Gn2,n3 and, thus, G = G •G. Thus,
for our original infinite graph, we have

G1 ◦ G2 ◦ . . . = G1 ◦ · · · ◦ Gn1−1 ◦ Gn1 ◦ · · · ◦ Gn2−1 ◦ Gn2 ◦ · · ·

Now, let us assume that node v belongs to a graph Gnt−1 for some t > 1 and let us fix
k = n1. By assumption, there is no path to node v from any node of graph Gn1 . Then,
this must also be true for the graph

Gn1 • · · · • Gn2−1 ◦ Gn2 • · · · • Gn3−1 ◦ · · · = Gn1,n2 ◦ Gn2,n3 ◦ · · · = G ◦ G ◦ · · ·

However, since G is an idempotent multigraph then for all i = 1, . . . , n, there exists some
j ∈ {1, . . . , n} with jp −→ ip, so we get a contradiction. The proof when v belongs to
another graph, say Gnt−2, proceeds analogously by considering the graph

Gn2−1 • Gn2 • · · · • Gn3−2 ◦ Gn3−1 • Gn3 • · · · • Gn4−2 ◦ · · · = G′ ◦ G′ ◦ · · ·

with k = n2 − 1 since the graphs Gni−1 • Gni+1 • · · · • Gni+1−2 are also idempotent. 2

Finally, the next result is essential to infer quasi-termination from our notion of size-
change quasi-termination. In the following, we say that a (possibly infinite) sequence of
ground terms t0, t1, . . . is quasi-terminating if the set {t0, t1, . . .} is finite.

19

Lemma 10. Let (%,�) be a reduction pair such that % is well founded and finitely
partitioning. Let s0 % s1 % s2 % . . . be a (possibly infinite) sequence of ground terms and
let t0, t1, t2, . . . be a (possibly infinite) sequence of ground terms such that there exists
k > 0 where si % ti+1 for all i > k. Then, both sequences s0, s1, s2, . . . and t0, t1, t2, . . .
are quasi-terminating.

Proof. Since % is well founded, there exists some n > 0 such that all the terms in the
(possibly infinite) set {sn, sn+1, sn+2, . . .} are equivalent under the equivalence relation
induced by % [15], i.e., sn ∼ sn+1 ∼ . . . where ∼ is the associated equivalence relation
(i.e., t1 ∼ t2 iff t1 % t2 and t2 % t1). Therefore, the sequence s0, s1, s2, . . . is quasi-
terminating. Moreover, given m = max(n, k), we have sn % ti+1 for all i > m. Hence,
since % is finitely partitioning, the set {tm+1, tm+2, . . .} is finite and, thus, the sequence
t0, t1, t2, . . . is quasi-terminating too. 2

We can now state and prove a sufficient condition for quasi-termination. Observe that
the assumptions of the next theorem correspond to the conditions for size-change quasi-
termination (cf. Definition 14).

Theorem 2 (quasi-termination). Let P be a program and let (%,�) be a reduction
pair induced by a symbolic norm || · ||, where “ %” is a finitely partitioning well-founded
quasi-order. Let A be a finite set of atoms. If every idempotent multigraph of P associated
to a predicate p/n fulfils one of the following conditions:

(i) there is at least one edge ip
�−→ ip for some i ∈ {1, . . . , n} such that, for every atom

A ∈ A, computation rule R and atom p(t1, . . . , tn) ∈ callsRP (A), ti is instantiated
enough w.r.t. || · ||, or

(ii) for every atom A ∈ A, computation rule R and atom p(t1, . . . , tn) ∈ callsPR(A), we
have that, for all i = 1, . . . , n, there exists an edge jp −→ ip for some j ∈ {1, . . . , n}
such that t1, . . . , tn are ground,

then P is quasi-terminating w.r.t. A.

Proof. We prove the claim by contradiction. Let us assume that P is not quasi-
terminating. Therefore, the set callsPR(A) contains an infinite number of nonvariant
atoms for some atom A ∈ A and computation rule R. Hence, there exists an infinite
chain in the associated calls-to relation of the form A = A0 ↪→P,R A1 ↪→P,R A2 ↪→P,R . . .
with infinitely many nonvariant atoms. For each step Aj ↪→σj

Aj+1 in the calls-to rela-
tion, there is a (renamed apart) clause Hj ← Bj1, . . . , B

j
mj
<<P which is used to perform

an SLD resolution step with Aj , where θj = mgu(Aj , Hj), Aj+1 = Bjkj
σj , 1 6 kj 6 mj ,

and θj 6 σj (θj is more general than σj because some siblings in the body of the clause
could have been solved before selecting Bjkj

).
For each step Aj ↪→σj Aj+1 there is a corresponding size-change graph Gj . Then, we

have an associated infinite graph G0◦G1◦. . . If there is an infinite sequence I = {i0, i1, . . .}
such that G0◦G1◦· · · = G0◦· · ·◦Gi0 ◦· · ·◦Gi1−1◦Gi1 ◦· · ·◦Gi2−1◦· · · and every composition
Gis • Gis+1 · · · • Gis+1−1, s ∈ I, yields the same idempotent multigraph G and G satisfies
(i), then we have size-change termination and the proof proceeds analogously to that of
Theorem 1 by applying Lema 4.

20

Otherwise, by Lemma 9, there exists some k > 0 such that, for all node v of Gr, r > k,
there exists a path that starts in Gk and reaches v. Since the considered derivation is not
quasi-terminating and there is finitely many predicate symbols, we can choose a predicate
symbol p/n such that the nodes associated to its arguments occur infinitely often in this
graph. Let us denote by p(t11, . . . , t

1
n), p(t21, . . . , t

2
n), p(t31, . . . , t

3
n), . . . the infinite sequence

of calls to p/n associated to the graphs Gr, r > k, labelled with {1p, . . . , np}. Therefore,
there must be at least one infinite path that always traverses the same argument, say
the i-th argument, so that

t1i % t2i % t3i % . . .

By Lemma 10, this sequence is quasi-terminating and, thus, this argument cannot give
rise to infinitely many non-variant terms. For the remaining arguments j ∈ {1, . . . , n},
j 6= i, either there is also an infinite path that always traverses this argument and we
proceed as before, or we have

t1i % t2j , t
2
i % t3j , t

3
i % t4j , . . .

and, again by Lemma 10, this sequence cannot give rise to infinitely many non-variant
terms. Therefore, only finitely many non-variant calls to p/n exist and we get a contra-
diction. 2

The relevance of this result for ensuring global termination will be shown in Section 6.2.2.
In the next section, we focus on the efficient implementation of size-change analysis.

5. An Efficient Algorithm for Size-Change Analysis

As we have seen in the previous section, the size-change analysis involves computing
the composition closure of the size-change graphs of the program. In this section, we
introduce an efficient algorithm for computing this closure based on the insight that many
size-change graphs are irrelevant for inferring strong termination and quasi-termination
conditions in our setting.

In principle, a naive procedure for computing the set of idempotent multigraphs of a
program may proceed as follows:

1. First, the size-change graphs of the program are built according to Def. 8.
2. Then, after initialising a setM with the computed size-change graphs, one proceeds

iteratively as follows:
(a) compute the composition of every pair of (not necessarily different) multi-

graphs of M;
(b) update M with the new multigraphs.

This process is repeated until no new multigraphs are added to M.

Unfortunately, such a naive algorithm is too expensive and does not scale up to large
programs. Therefore, in the following, we introduce a more efficient procedure. Our
algorithm does not compute all size-change graphs, but only a subset of them which is
sufficient to produce correct annotations for partial evaluation. Intuitively speaking, it
improves the naive procedure by taking into account the following observations:

21

• Firstly, only the size-change graphs in the path of a (potential) loop need to be
constructed. For instance, in Example 1, the size-change graph from mlist to empty
cannot contribute to the construction of any idempotent multigraph.

• Secondly, in many cases, computing the idempotent multigraphs for a single pred-
icate for each loop suffices to compute correct annotations for partial evaluation.
For instance, for program MLIST , the idempotent multigraphs for both mlist and
ml actually refer to the same loop. This is somehow redundant since we have that
the two multigraphs will point out that both predicates terminate or that both of
them may loop. Actually, in the context of partial evaluation, it suffices to anno-
tate one predicate in every loop as memo (i.e., non unfoldable) in order to avoid
non-termination at partial evaluation time.

Some of these observations are actually well-known given the ubiquity of closure-type
computations in program analysis. Similar opimisations can be found in, e.g., [5, 17, 22]
(see also references herein).

These observations allow us to design a faster procedure for size-change analysis. It
proceeds in a stepwise manner as follows:

5.1. Identifying the program loops
In order to identify the (potential) program loops, we use the call graph of the program

(cf. Section 4). Then, we compute the strongly connected components (SCC) of the call
graph and delete both trivial SCCs (i.e., SCCs with a single predicate symbol which is
not self-recursive) and edges between SCCs. We denote the resulting graph with scc(P)
for any program P .

For instance, for program MLIST , the strongly connected components scc(MLIST)
of the call graph shown in Figure 4 is as follows:

mlist
**
mlll multRR addRR

5.2. Determining the initial set of size-change graphs
We denote by sc graphs(P) the subset of the size-change graphs of a program P that

fulfils the following condition: there is a size-change graph ({1p, . . . , np}, {1q, . . . ,mq}, E)
in sc graphs(P) iff there is an associated edge p/n −→ q/m in scc(P).

Example 7. Given the program MLIST of Example 1, while the naive approach would
have constructed ten size-change graphs (depicted in Figure 5), sc graphs(MLIST) con-
tains only four size-change graphs: Gc24 , Gc32 , Gc51 , and Gc71 .

In principle, only the size-change graphs in sc graphs(P) need to be considered in the
size-change analysis. This refinement is trivially correct since idempotent multigraphs
can only be built from the composition of a sequence of size-change graphs that follows
the path of a cycle in the call graph (i.e., a path of scc(P)).

Lemma 11. Let P be a program and let S be the associated set of size-change graphs. For
all idempotent multigraph G0•. . .•Gk, with G0, . . . ,Gk ∈ S, we have that Gi ∈ sc graphs(P)
for all i = 1, . . . , k.

22

Furthermore, not all compositions between these size-change graphs are actually required.
As mentioned before, computing a single idempotent multigraph for each (potential)
program loop suffices. In the following, we say that S is a cover set for scc(P) if S
contains at least one predicate symbol for each loop in scc(P). We denote by CS(P) the
set of all cover sets for scc(P).17

Definition 15 (initial size-change graphs). Let P be a program and S ∈ CS(P)
be a cover set for scc(P). We denote by i sc graphs(P, S) the size-change graphs from
sc graphs(P) whose output nodes correspond to the arguments of a predicate in S.

Intuitively, the size-change graphs in i sc graphs(P, S) will act as the seeds of our iterative
process for computing idempotent multigraphs.

Example 8. Given the program MLIST of Example 1, we have that both

S1 = {mlist/3,mult/3, add/3} and S2 = {ml/4,mult/3, add/3}

are cover sets for scc(MLIST). For instance, the set i sc graphs(P, S1) contains only the
three size-change graphs starting from mlist/3, mult/3 and add/3 (i.e., the size-change
graphs Gc24 , Gc51 and Gc71 , as depicted in Figure 5). In contrast, the set i sc graphs(P, S2)
contains the size-change graphs Gc32 , Gc51 and Gc71 of Figure 5. Therefore, with S1 we
choose mlist/3 as the representative node of the loop, and with S2 we choose ml/4
instead.

The correctness of our approach is stated in the following lemma:

Lemma 12. Let P be a program and S ∈ CS(P) be a cover set for scc(P). Let M
be the set of idempotent multigraphs of P computed using the naive algorithm shown at
the beginning of this section and let M′ be the set of idempotent multigraphs computed
starting only with the size-change graphs in i sc graphs(P, S). Then, every idempotent
multigraph G of M fulfills the following conditions:

• there is at least one edge ip
�−→ ip or

• there are edges jp −→ ip for all nodes ip of G

iff every idempotent multigraph of M′ does.

Proof. In the traditional approach, we get an idempotent multigraph for each node
of each SCC of scc(P). Trivially, every of this idempotent graphs are obtained from
compositions of the form G0 • . . . • Gn such that the output nodes of G0 and the input
nodes of Gn refer to the arguments of the same predicate in scc(P). Moreover, given
an SCC, all the computed idempotent multigraphs must be clearly coherent, i.e., all of
them: G0 • . . . • Gn, G1 • . . . • Gn • G0, G2 • . . . • Gn • G0 • G1, etc., contain an edge ip

�−→ ip
(not necessarily for the same argument) or none, and similarly for the second condition.
Therefore, limiting ourselves to obtaining just one idempotent multigraph per SCC gives
the same information and the claim follows. 2

23

1. Input: a program P and a cover set S ∈ CS(P)
2. Initialisation:
i := 0; Mi := i sc graphs(P, S); SC := sc graphs(P)

3. repeat

• Mi+1 := Mi

• for all G1 ∈Mi and G2 ∈ SC such that G1 • G2 is defined

Mi+1 :=Mi+1 ∪ (G1 • G2)

• i := i+ 1

until Mi =Mi+1

4. Return {G ∈ Mi | G is idempotent}

Figure 7: An improved algorithm for size-change analysis (closure computation)

5.3. Computing the idempotent multigraphs
The core of our improved procedure for size-change analysis is shown in Fig. 7. Note

that, in every iteration, we only consider compositions of the form G1 • G2 where G1

belongs to the current set of multigraphs Mi and G2 is one of the original size-change
graphs in sc graphs(P). Once a fixpoint is reached, we select the idempotent multigraphs.

Example 9. Consider the following four clauses extracted from the regular expression
matcher of [32]:

generate(or(X,), H, T)← generate(X,H, T).
generate(or(, Y), H, T)← generate(Y,H, T).
generate(star(), T, T).
generate(star(X), H, T)← generate(X,H, T1), generate(star(X), T1, T).

Here, we have the following three size-change graphs:18

1gen
�ts // 1gen

2gen
%ts // 2gen

3gen
%ts // 3gen

1gen
�ts // 1gen

2gen
%ts // 2gen

3gen 3gen

1gen
%ts // 1gen

2gen 2gen

3gen
%ts // 3gen

using a reduction pair based on the term-size norm, where generate is abbreviated to gen
in the graphs. Following the algorithm of Figure 7, we first compute a fixpoint, which

17Our implementation uses a greedy algorithm to determine a valid cover set for scc(P). Note, however,
that it does not necessarily find a minimum cover set.

18Note that the first two clauses produce the same size-change graph, otherwise we would have four
size-change graphs, one for each body atom in the program.

24

contains the above three graphs, and also the following two new multigraphs:

1gen
�ts // 1gen

2gen 2gen

3gen
%ts // 3gen

1gen
�ts // 1gen

2gen 2gen

3gen 3gen

In this case, all five graphs are idempotent and, thus, all of them are returned by the
algorithm.

6. A Binding-Time Analysis for Logic Programs

In this section, we present a fully automatic BTA for (definite) logic programs. Our
algorithm is parametric w.r.t.

• a domain D of binding-times and

• the associated function for propagating binding-times through the atoms of clause
bodies.

For instance, one can consider a simple domain with the basic binding-times static (defi-
nitely known at partial evaluation time) and dynamic (possibly unknown at partial eval-
uation time). We assume that all binding-time domains contain these two binding times,
but they could also include, e.g., the elements such as:

• nonvar: the argument is not a variable at partial evaluation time, i.e., the top-level
function symbol is known;

• list: the argument is definitely bound to a finite list of possibly unknown arguments
at partial evaluation time.

• list nonvar: the argument is definitely bound to a finite list, whose elements are not
variables;

In the logen system [36], an offline partial evaluator for Prolog, the user can also define
their own binding-times [13] (called binding-types in this context), and one can use the
pre-defined list-constructor to define additional types such as list(dynamic) to denote a
list of known length with dynamic elements, or list(nonvar) to denote a list of known
length with non-variable elements.

A binding-time domain is a setD of binding-times along with a concretisation function
γ : D → ℘(T (Σ,V)). We assume the existence of a bottom element ⊥ with γ(⊥) = ∅
and a top element > with γ(>) = T (Σ,V). The top element is usually called dynamic.

The concretisation function for the binding-times mentioned above are defined as
follows: γ(static) is the set of all ground terms, γ(nonvar) is the set of all non-variable
terms, γ(list) is the set of all terms representing a list of known length, γ(list nonvar) is
the set of all terms representing a list of known length whose elements are non-variable
terms.

The concretisation function γ induces an order on D: b1 v b2 iff γ(b1) ⊆ γ(b2). I.e.,
b1 v b2 denotes that b1 is less dynamic than b2. Given this order, we denote the least

25

upper bound of binding-times b1 and b2 by b1tb2 and the greatest lower bound by b1ub2.
We have that for all x ∈ D:

⊥ v x v dynamic

From this follows that for all x ∈ D we have:

⊥ t x = x t ⊥ = x
dynamic t x = x t dynamic = dynamic
⊥ u x = x u ⊥ = ⊥
dynamic u x = x u dynamic = x

For the particular binding-times mentioned above, we have for example ⊥ v static v
nonvar v dynamic and static t list = dynamic.

Given a set of binding-times W , we define tW as follows (uW is defined in a similar
way):

tW =

 ⊥ if W = ∅
b if W = {b}
b1 t (b2 t (. . . t (bn−1 t bn))) if W = {b1, . . . , bn}, n > 0

In the following, a pattern is defined as an expression of the form p(b1, . . . , bn) where p/n
is a predicate symbol and b1, . . . , bn are binding-times. The concretisation function γ and
the induced order v and operators t and u are extended to patterns in the natural way.
Also, given a pattern p(b1, . . . , bn), the function ⊥(p(b1, . . . , bn)) returns a new pattern
p(⊥, . . . ,⊥) where all arguments are set to the bottom element ⊥.19

Given a binding-time domain, we consider an associated domain of abstract substi-
tutions that map variables to binding-times. An abstract substitution can be viewed
as representing a set of concrete substitutions. More formally, we extend γ to abstract
substitutions as follows:

γ({v1/b1, . . . , vk/bk}) =def {{v1/t1, . . . , vk/tk} | such that ti ∈ γ(bi)}

We now introduce the auxiliary functions asub and pat to produce abstract substitu-
tions from patterns and vice versa. Their role within the call and success pattern analysis
will be clarified below in Section 6.1.

Given an atom A and a pattern π with pred(A) = pred(π),20 the partial function
asub(A, π) returns an abstract substitution σ for the variables of A so that Aσ matches
the pattern π. More formally, asub(p(t1, . . . , tn), p(b1, . . . , bn)) = σ means that for all
concrete substitutions σ′ with p(t1, . . . , tn)σ′ ∈ γ(p(b1, . . . , bn)) we have that σ′ ∈ γ(σ).

For instance, for a simple binding-time domain D = {static, dynamic}, a valid function
asub can be defined as follows:

asub(p(t1, . . . , tn), p(b1, . . . , bn))
=def {x/b | x ∈ Var(p(t1, . . . , tn)) ∧ b = u{bi | x ∈ Var(ti), i = 1, . . . , n}}

19A technical difficulty arises if the arity of n is 0. The implementation in Section 7 actually uses a
special pattern ⊥ rather than a binding time ⊥: indeed, either all arguments are ⊥ or none are ⊥. Many
binding-time analysis actually forego the ⊥ element and as such do not detect failing predicates.

20Auxiliary function pred returns the predicate name and arity of an atom or pattern.

26

1. Input: a program P and an entry pattern πentry
2. Initialisation: µ := ∅; addentry(πentry)
3. repeat

for all patterns πcall ∈ dom(µ):

for all clauses H ← B1, . . . , Bn ∈ P , n > 0, with pred(H) = pred(πcall):
(a) σ0 := asub(H,πcall) // determine binding-times for variables in clause head

(b) σ0 := σ0 ∪ {v/dynamic | v ∈ Var(B1, . . . , Bn) \ Var(H)} // mark existential

variables as dynamic

(c) for i = 1 to n:
σi := get(Bi, σi−1) // get success substitution of Bi and compose with σi−1

(d) µ(πcall) := µ(πcall) t pat(H,σn) // update success information

until µ doesn’t change

Figure 8: Call and success pattern analysis

Roughly speaking, a variable that appears only in one argument ti will be mapped to the
corresponding binding time bi; if the same variable appears in several arguments, then
it is mapped to the greatest lower bound of the corresponding binding-times of these
arguments. For instance, we have

asub(p(X,X), p(static, dynamic)) = {X/static}

Observe that the greatest lower bound is used to compute the less dynamic binding-time
of a variable when it is bound to different values.

Given an atom A = p(t1, . . . , tn) and an abstract substitution σ, function pat(A, σ)
returns a pattern p(b1, . . . , bn) in which the binding-time of every argument is determined
by the abstract substitution. More formally, for all σ′ ∈ γ(σ) we must have that Aσ′ ∈
γ(pat(A, σ)). For example, when ti contains no variables pat computes an element bi ∈ D
(usually the most precise one) which represents the term (in this case pat corresponds to
the abstraction function α of abstract interpretation).

For the binding-time domain D = {static, dynamic}, this function can be formally
defined as follows:

pat(p(t1, . . . , tn), σ) =def p(b1, . . . , bn) where bi = t{xσ | x ∈ Var(ti)}, i = 1, . . . , n

E.g., we have
pat(p(X,X), {X/static}) = p(static, static)

and
pat(q(f(X,Y)), {X/static, Y/dynamic}) = q(dynamic)

Now, we present our BTA algorithm in a stepwise manner.

6.1. Call and Success Pattern Analysis
The first step towards a BTA is basically a simple call and success pattern analysis

parameterized by the considered binding-time domain (D,v). The algorithm is shown in
27

Fig. 8. Here, we keep a memo table µ with the call and success patterns already found in
the analysis, i.e., if µ(πcall) = πsuccess then we have a call pattern πcall with associated
success pattern πsuccess; initially, all success patterns have static arguments. In order to
add new entries to the memo table, we use the following function addentry:

addentry(pattern) =def if pattern 6∈ dom(µ) then µ(pattern) := ⊥(pattern) fi

where the notation µ(pattern) := ⊥(pattern) is used to denote an update of µ.
Basically, the algorithm takes a logic program P and an entry pattern πentry and,

after initializing the memo table, enters a loop until the memo table reaches a fixed point.
Every iteration of the main loop proceeds as follows:

• for every call pattern πcall with a matching clause H ← B1, . . . , Bn, we first com-
pute the entry abstract substitution asub(H,πcall);

• then, we use function get to propagate binding-times through the atoms of the
body, thus updating correspondingly the memo table (a global parameter of get)
with the call and (initial) success patterns for every atom:

get(B, σ) =def addentry(pat(B, σ)); return override(asub(B,µ(pat(B, σ))), σ)

The auxiliary override function is defined as follows:

override(σ1, σ2) =def σ1 ∪ {x/d | x/d ∈ σ2 ∧ x 6∈ dom(σ1)}

i.e., it overrides the bindings of σ2 with those of σ1.

• finally, we update in the memo table the success pattern associated to the call
pattern πcall using the exit abstract substitution of the clause.

The role of functions asub and pat when analyzing a clause H ← B1, . . . , Bn can be
graphically represented as follows:

µ

asub

))

. . .

asub
%%

µ

asub

++
H ← σ0

pat 44

B1, σ1

pat
44

. . . , σn−1

pat 33

Bn σn
pat

��
πcall

asub

OO

πsuccess

In the next section, we present a BTA that slightly extends this algorithm.

6.2. A BTA Ensuring Local and Global Termination
In contrast to the call and success pattern analysis of Fig. 8, a BTA should annotate

every call with either unfold or memo so that

• all atoms marked as unfold can be unfolded as much as possible (as indicated by
the annotations) while still guaranteeing the local termination, and

• global termination is guaranteed by generalising the dynamic arguments whenever
a new atom is added to the set of (to be) partially evaluated atoms; also, all
arguments marked as static must indeed be ground.

28

1. Input: a program P and an entry pattern πentry

2. Initialisation: µ := ∅; addentry(πentry); memo := ∅
3. repeat

for all patterns πcall ∈ dom(µ):

for all clauses H ← B1, . . . , Bn ∈ P , n > 0, with pred(H) = pred(πcall):
(a) σ0 := asub(H,πcall) // determine binding-times for variables in clause head

(b) σ0 := σ0 ∪ {v/dynamic | v ∈ Var(B1, . . . , Bn) \ Var(H)} // mark existential

variables as dynamic

(c) for i = 1 to n:

σi := cond get(Bi, σi−1, ppoint(Bi))

(d) µ(πcall) := µ(πcall) t pat(H,σn) // update success information

until µ doesn’t change

Figure 9: A BTA ensuring local and global termination

Figure 9 shows a BTA that slightly extends the call and success pattern analysis of Fig. 8
(differences appear in a box). The main changes are as follows:

• We consider that each call B is uniquely identified by a program point ppoint(B).
The algorithm keeps track of the considered program points using the set memo
(initially empty).

• The function for propagating binding-times, now called cond get , takes an addi-
tional parameter: the program point of the considered atom; function cond get is
defined in terms of get as follows:

cond get(B, σ, pp) =def if unfold(pat(B, σ)) ∧ pp 6∈ memo then
return get(B, σ)

else
addentry(gen(pat(B, σ))); memo := memo ∪ {pp};
return σ

fi

If the atom at the program point pp is unfolded then cond get calls the get function
from Fig. 8) to obtain and apply the success information for the call B. In the other
case, the call B is memoized and hence cond get returns σ unchanged. In addition,
the call B is generalized using gen described below and registered as a separate
entry point for the analysis.

The introduction of this if-then-else construct highlights one of the major differ-
ences between abstract interpretation and binding-time analysis (see also [8]): the
result of the analysis influences the “program” to be analysed.

• Auxiliary functions gen and unfold are defined as follows:

29

– Given a pattern π, function unfold(π) returns true if π is safe for unfolding,
i.e., if it guarantees local termination.

– Given a pattern π, function gen(π) returns a generalization of π (i.e., π v
gen(π)) that ensures global termination.

Precise definitions for gen and unfold will be presented in the next sections.

6.2.1. Local Control and Termination
First, we extend the notion of “instantiated enough” to binding-times as follows: a

binding-time b is instantiated enough w.r.t. a symbolic norm || · || if, for all terms t
approximated by the binding-time b, t is instantiated enough w.r.t. || · ||.

Now, we introduce an appropriate definition of unfold that approximates the condi-
tions of Theorem 1:

Definition 16 (local termination). Let P be a program and let (%,�) be a reduction
pair induced by a symbolic norm || · ||. Let G be the idempotent multigraphs from the
size-change analysis and π = p(b1, . . . , bn) be a pattern. Function unfold(π) returns
true if every idempotent multigraph for p/n in G contains at least one edge ip

�−→ ip,
1 6 i 6 n, such that bi is instantiated enough w.r.t. || · ||.

For instance, given the idempotent size-change graphs of Figure 6 and the binding-time
domain D = {static, dynamic}, we have

unfold(mlist(dynamic, dynamic, static)) = true

since there is an edge 3mlist
�−→ 3mlist and the binding-time static (representing only

ground terms) is clearly instantiated enough w.r.t. any norm. In contrast, we have

unfold(mlist(static, static, dynamic)) = false

since the only edge labeled with “�” is 3mlist
�−→ 3mlist and the binding-time dynamic is

not instantiated enough w.r.t. any norm.

6.2.2. Global Control and Quasi-Termination
In order to ensure the global termination of the specialisation process, we should

ensure that only a finite number of non-variant atoms are added to the set of (to be)
partially evaluated atoms, i.e., that the sequence of atoms is quasi-terminating. This is
a weaker requirement than termination.

Now, we introduce an appropriate definition of gen that approximates the conditions
of Theorem 2:

Definition 17 (global termination). Let P be a program and let (%,�) be a re-
duction pair where “ %” is a finitely partitioning well-founded quasi-order. Let G be
the idempotent multigraphs computed by the size-change analysis. Given a pattern
π = p(b1, . . . , bn), function gen(π) returns p(b′1, . . . , b

′
n) where b′i = bi if every idempotent

multigraph for p/n in G either

1. contains an edge jp
�−→ jp such that bj is instantiated enough w.r.t. || · ||

30

2. or contains an edge jp
R−→ ip, R ∈ {�,%}, for some j ∈ {1, . . . , n}, such that bi is

static,

and b′i = dynamic otherwise.

For example, given the idempotent multigraphs of Figure 6, we have

gen(mlist(static, static, static)) = mlist(dynamic, static, static)

since there is no edge jmlist
R−→ 1mlist , which means that the first argument must be

generalized at the global level in order to guarantee the (global) termination of the
partial evaluation process.

As mentioned before, requiring quasi-orders induced by finitely partitioning norms is
often too restrictive (e.g., the list-length norm is not finitely partitioning). In the context
of partial evaluation, however, symbolic norms need not be finitely partitioning as long
as the problematic parts of the terms are generalized at the global level. For instance,
we can safely use the symbolic list-length norm as long as the list elements are replaced
by fresh variables in the global level. This idea can be formalized by means of the most
general generalization operator:

Definition 18 (mgg). Let || · || be a symbolic norm. Given a term t, we denote by
mgg ||·||(t) the most general generalization of t such that ||t|| = ||mgg ||·||(t)||. We also let
mgg ||·||(p(t1, . . . , tn)) = p(mgg ||·||(t1), . . . ,mgg ||·||(tn)).

For instance, given the term t = [s(N), b], we have mgg ||·||ll(t) = [X,Y] but mgg ||·||ts(t) =
[s(N), b].

Therefore, one can ensure the global termination of partial evaluation when using
arbitrary symbolic norms in the size-change analysis as long as

• dynamic parts of arguments are replaced by fresh variables in the global level (this
is already done by current offline partial evaluators) and

• every atom A is replaced by mgg||·||(A) in the global level, where ||·|| is the symbolic
norm used in the size-change analysis.

7. Implementation and Empirical Evaluation

In this section we want to examine the scalability of our approach, and also examine
how accurate it is compared to an online partial evaluation system.

Our new binding-time analysis is still being continuously extended and improved.
The implementation was done in SICStus Prolog and provides a command-line interface
which is available at http://www.stups.uni-duesseldorf.de/w/Size-Change-BTA. The BTA is by
default polyvariant21 (but can be forced to be monovariant) and uses a domain with the
following values: static, list nonvar (for lists of non-variable terms), list, nonvar (for non-
variable terms), and dynamic. The user can also provide “hints” to the BTA (see below).

21A BTA is called polyvariant when an atom may give rise to multiple specialised version, and mono-
variant when only a single specialised version is produced.

31

The implemented size-change analysis uses a reduction pair induced by the symbolic
term-size norm. The list-length norm can be enabled using a command-line option.22

The implementation also supports programs with negation: the BTA ensures that no
success substitutions are propagated for negated calls; apart from this a negated call is
treated like an ordinary call.

We provide some preliminary experimental results below. The experiments were run
on a MacBook Air with a 1.8 GHz i7 Processor and 4 GB of RAM. Our BTA was run
using SICStus Prolog 4.2.3, and logen and its generated specialisers were run using Ciao
Prolog 1.14.2. We compared the results against the online specialiser ecce [37], which
was compiled using SICStus Prolog 3.12.8. This system also ensures local and global
termination, using the online approach. Other systems to ensure termination for offline
partial evaluation of Prolog were not available to us (or in the case of [13] cannot be run
on current hardware; we return to this in Section 7.2.1 below).

7.1. Results in Fully Automatic Mode
We first present some experiments using our BTA in fully automatic mode. Figure 10

contains an overview of our empirical results, where all times are in seconds. A value of
0.00 means that the timing was below our measuring threshold. Note that the granularity
of the SICStus Prolog run time statistics is 10 ms.

The columns sca and bta contain the time required for the size-change analysis and
the ensuing binding-time analysis respectively. The logen column contains the time to
specialise the original source program using the annotations provided by the BTA. For
comparison, the ecce column contains the time to perform an online specialisation using
ecce. The quality of the specialised code is then analyzed in the “Runtime” columns:
the runtime of the original code is presented in the orig column, while the runtime of
the specialised code generated using our BTA together with logen is shown in the logen
column. The speedup obtained by logen is computed in the next column. The last
two columns contain the runtime and speedup for the specialised program generated by
ecce.

Note that we did not measure the time to start up either SICStus Prolog or Ciao
Prolog for any of the columns.

7.1.1. DPPD
The first six benchmarks in Fig. 10 come from the original DPPD [32] library. As can

be seen, the runtime of both the size-change analysis and the BTA was almost always
below the measuring threshold. Good speedups were obtained for ssuply and regexp.r3.
For the other benchmarks, the speedup is somewhat disappointing, especially when com-
pared with ecce. For liftsolve (an interpreter for the ground representation specialised
for append as object program) we obtain a reasonable speedup, but the specialised pro-
gram generated by ecce is considerably faster. The most disappointing benchmark is
probably imperative-power, where we even get a slight slow-down.

In summary, while the BTA is indeed very fast, the speed of the resulting specialised
programs is reasonable, but still slightly disappointing. We will show later in Section 7.3
how we can substantially improve this picture by the selective use of hints.

22Maybe surprisingly, enabling the list-length norm turns out to have very little practical benefit at
all (the reasons for which are beyond the scope of this paper).

32

Benchmark Specialisation Runtime
sca bta logen ecce orig logen ×logen ecce ×ecce

contains.kmp 0.00 0.00 0.001 0.10 0.040 0.037 1.09 0.007 6.00
imperative power 0.03 0.01 0.004 0.68 0.063 0.077 0.83 0.037 1.73
liftsolve 0.01 0.00 0.004 0.08 0.083 0.050 1.67 0.003 27.77
match 0.00 0.00 0.001 0.02 0.950 0.700 1.36 0.470 2.02
regexp.r3 0.00 0.01 0.002 0.04 0.950 0.400 2.38 0.310 3.06
ssuply 0.00 0.01 0.000 0.02 0.057 0.003 17.00 0.003 17.00
vanilla 0.00 0.01 0.001 0.03 0.040 0.013 3.00 0.007 6.00
ctl 0.00 0.00 0.002 0.24 3.120 5.510 0.57 0.350 8.91
lambdaint 0.01 0.01 0.003 0.22 0.450 0.420 1.07 0.020 22.50
dbaccess 0.00 0.02 0.001 0.12 0.380 0.020 19.00 0.050 7.60
javabc 0.01 0.01 0.002 0.48 1.320 0.400 3.30 0.090 14.67
picemul 0.01 0.10 2.185 426.00 - - - - -
goedel 1.55 0.09 - - - - - - -

Figure 10: Empirical Results in Fully Automatic Mode

7.2. Interpreters
Next, we examine the performance of our BTA on a few interpreters (which are also

available from [32]):

• vanilla is a variation of the vanilla metainterpreter specialised for double-append
as object program from [34],

• lambdaint is an interpreter for a simple functional language from [34],

• ctl is the CTL model checker from [39], specialised for the formula ef(p(unsafe))
and a parametric Petri net (see also [36]),

• dbaccess is an interpreter for role-based access control from [2],

• javabc is a Java Bytecode interpreter from [25] with roughly 100 clauses.

Again, the runtime of the size-change analysis and the BTA is very fast and almost
negligible. Apart from ctl and lambdaint we also get reasonable speedups. For javabc,
we were able to reproduce the decompilation from Java bytecode to CLP from [25] using
our BTA together with logen.

The lambdaint interpreter contains some side-effects and non-declarative features. It
can still be run through ecce, but there is actually no guarantee that ecce will preserve
the side-effects and their order. Our BTA is again very fast, but unfortunately resulting
in little speedup over the original. Still, the BTA from [13] could not cope with the
program at all and we at least obtain a correct starting point.

For the ctl interpreter, the slow down is caused by non-leftmost unfolding. We could
prohibit non-leftmost unfolding in the BTA.

Again, we will show in Section 7.3 how we can substantially improve this picture by
the selective use of hints.

33

7.2.1. Scalability: PIC Emulator and Gödel System
To validate the scalability of our BTA we have also tried our new BTA on a larger

example, the PIC processor emulator from [26]. It consists of 137 clauses and 855 lines of
code. The purpose here was to specialise the PIC emulator for a particular PIC machine
program, in order to run various static analyses on it.23 The old BTA from [13] took 1 m
39 s (on a Linux server which should correspond roughly to 57 seconds on the MacBook
Air used here).24 Furthermore the generated annotation file is erroneous and could not
be used for specialisation. With our new BTA a correct annotation is generated in less
than half a second; the ensuing specialisation by logen took 2.4 s. The generated code
is very similar to the one obtained using a manually constructed annotation in Section 3
of [26] or in [35]. In fact, it is slightly more precise and with a simple hint (see Sect. 7.3),
we were able to reduce specialisation so as to obtain the exact same code as [35] for the
main interpreter loop. With ecce it took over 7 minutes to construct a (very large)
specialised program.

goedel is the source code of the Gödel system [27] consisting of 27,354 lines of
Prolog.25 Unfortunately, the code does not run on the current version of SICStus
Prolog, hence we were only able to generate an annotation. We used the pattern
parse language1(s,d,d,d,d,d) as entry point for the BTA. A small part of the in-
ferred termination conditions are as follows:

is_not_terminating(parse_language1, 6, [d,_,_,_,_,_]).
global_binding_times(parse_language1, 6, [s,d,s,s,d,s]).
is_not_terminating(build_delay_condition, 4, [d,d,_,_]).
global_binding_times(build_delay_condition, 4, [s,s,d,d]).

In particular, this means that the analysis has been able to infer that the predicate
parse language1 can be unfolded if the first argument is static, and that the first, third,
fourth and last argument do not need to be generalised to ensure quasi-termination. The
size change analysis runs in less than two seconds, and the BTA is again extremely fast.

In summary, these examples clearly show that we have attained our goal of being
able to successfully analyse medium-sized and even large examples with our BTA. Our
size change analysis is two orders of magnitude faster than our initial implementation
reported in [42] for goedel and twice as fast for picemul. Compared to the BTA from [13]
using binary clauses rather than size-change analysis, the difference is even more striking:
the BTA from [13] is in turn, e.g., 200 times slower than [42] for the picemul example;
see [42]. We have also tried to use the latest version of Terminweb,26 based upon [11].
However, the online version failed to terminate successfully on, e.g., the picemul example
(for which our size-change analysis takes 0.01 s). We have also tried to use TermiLog,27

but it timed out after 4 minutes (the maximum time that can be set in the online version).

23The emulator cannot be run as is using an existing Prolog system, as the built-in arithmetic opera-
tions have to be treated like constraints.

24We were unable to get [13] working on the MacBook Air and had to resort to using our webserver
(with 26 MLIPS compared to the MacBook Air’s 45 MLIPS).

25Downloaded from http://www.cs.bris.ac.uk/Research/LanguagesArchitecture/goedel/ and put
into a single file, removing module declarations and adapting some of the code for SICStus 4.

26http://www.cs.bgu.ac.il/∼mcodish/TerminWeb/
27http://www.cs.huji.ac.il/∼naomil/termilog.php

34

One cannot really draw clear-cut conclusions about the performance of Terminweb and
TermiLog; but the experiments at least seem to confirm that the tackled programs are
not trivial from the perspective of termination analysis.

7.3. Improving the Results with Hints
While the above experiments show that we have basically succeeded in obtaining a

fast BTA, the specialisation results are still unsatisfactory for many examples. There are
several causes for this:

1. One cause regards the particular binding-time domain used. For example, the lamb-
daint interpreter contains an environment which is a list of bindings from variables
to values, such as [x/2, y/3]. During specialisation, the length of the list as well
as the variable names are known, and the values are unknown. However, the clos-
est binding-time value is list nv, meaning that the BTA and the specialiser would
throw away the variable names (i.e., the specialiser will work with [A/B,C/D] rather
than with [x/B,y/D]). One solution is to improve our BTA to work with more so-
phisticated binding-time domains, possibly inferring the interesting abstract values
using a type inference. Another solution is a so called “binding-time improvement”
(bti) [29], whereby we rewrite the interpreter to work with two lists (i.e., [x,y]
and [2,3]) rather than one. The first list (i.e., [x,y]) can now be classified as
static, thereby keeping the desired information and allowing the specialiser to re-
move the overhead of variable lookups. We have performed this transformation for
lambdaint and liftsolve. The results can be found in Fig. 11.

2. Another reason is an inherent limitation of using size-change analysis, namely the
fact that the selection rule is ignored. This both gives our BTA its speed and
scalability, but it also induces a precision loss. One way to solve this issue is for
the user to be able to selectively insert “hints” into the source code, overriding the
BTA. For the moment we support hints that force unfolding (resp. memoisation) of
certain calls or predicates, as well as ways to prevent generalisation of arguments
of memoised predicates.

The main idea of using hints is to have just a few of them, in the original source code in
a format that a user can comprehend. Compared to editing the annotation file generated
by our BTA, the advantage of hints is that the source file can still be freely edited; there
is no need to synchronise annotations with edited code as in earlier work (such as the
Pylogen interface [12]). Also, the propagation of binding-times is still fully performed
by the BTA (and no binding-time errors can be introduced). Moreover, unfolding and
generalisation decisions for predicates without hints are also fully taken care of by our
algorithm. There is obviously the potential for a user to override the BTA in such a way
that the specialisation process will no longer terminate. Note, however, that one can still
use the watchdog mode [35] to pinpoint such errors.

Figure 11 contains a selection of benchmarks from Fig. 10, where we have applied
hints and sometimes also binding-time improvements.

contains. For the contains example, the following hint (together with enabling the list-
length norm) was sufficient to improve the speed more than four-fold:

’$MEMOANN’(con,2,[d,s]).
35

Benchmark Specialisation Runtime
sca bta logen ecce orig logen ×logen ecce ×ecce

contains.kmp 0.00 0.00 0.001 0.10 0.040 0.037 1.09 0.007 6.00
+ hints + ll + scc 0.00 0.01 0.001 ” ” 0.007 6.00 ” ”
imperative power 0.03 0.01 0.004 0.68 0.063 0.077 0.83 0.037 1.73
+ hints + scc 0.03 0.01 0.003 ” ” 0.043 1.46 ” ”
liftsolve 0.01 0.00 0.004 0.08 0.083 0.050 1.67 0.003 27.77
+ bti + scc 0.01 0.00 0.001 ” ” 0.007 12.50 ” ”
ctl 0.00 0.00 0.002 0.24 3.120 5.510 0.57 0.350 8.91
+ bti 0.02 0.00 0.001 ” ” 0.830 3.76 ” ”
+ bti + hints + scc 0.01 0.01 0.003 ” ” 0.320 9.75 ” ”
lambdaint 0.01 0.01 0.003 0.22 0.450 0.420 1.07 0.020 22.50
+ hints + scc 0.00 0.01 0.003 ” ” 0.220 2.04 ” ”
+ bti + hints + scc 0.01 0.01 0.003 ” ” 0.080 5.62 ” ”

Figure 11: Empirical results with scc (the algorithm of Fig. 7), hints and binding-time improvements

This hint tells the BTA not to generalise the second argument to con away during
memoisation. Indeed, the contains program includes the following clause:

con([H|T],P) :- new(H,P,NP), con(T,NP).

Here, the size-change analysis assumes that the second argument of con can grow (as
it does not know whether new(H,P,NP) will be unfolded or not).

Note that the above hint actually ensures that the BTA will exactly use the pattern
con(d,s). This means that the BTA will always generalise the first argument to con and
will throw an error if the second argument is not static. More formally, in the context of
’$MEMOANN’ annotations the following auxiliary function gen ′ replaces the function gen
in Figure 9:

gen ′(p(b1, . . . , bn)) =def if ∃ a fact ’$MEMOANN’(p, n, [a1, . . . , an]) then
if p(b1, . . . , bn) v p(a1, . . . , an) then

return p(a1, . . . , an)
else throw error fi

else
return gen(p(b1, . . . , bn))

fi

liftsolve. For the liftsolve interpreter for ground representation, we have performed a
binding-time improvement, after which the BTA obtains a near optimal result fully au-
tomatically. Indeed, as mentioned above, we have split a list of bindings containing terms
of the form sub(Var,T) into two lists (see Figure 12). As you can see in Figure 11, this
rewriting was sufficient to improve the performance of the specialised program by one
order of magnitude; no hints were required in this case.

lambdaint. For the lambdaint interpreter, we again performed a binding-time improve-
ment, separating a list into two lists. As can be seen in Figure 11, this already improves

36

Original:

mkng(var(N),X,[],[sub(N,X)]).

mkng(var(N),X,[sub(N,X)|T],[sub(N,X)|T]).

mkng(var(N),X,[sub(M,Y)|T],[sub(M,Y)|T1]) :-

N \== M,mkng(var(N),X,T,T1).

mkng(term(F,Args),term(F,IArgs),InSub,OutSub) :-

l_mkng(Args,IArgs,InSub,OutSub).

Binding-Time Improved Version:

mkng(var(N),X,[],[],[N],[X]).

mkng(var(N),X,[N|T1],[X|T2],[N|T1],[X|T2]).

mkng(var(N),X,[M|T1],[Y|T2],[M|TT1],[Y|TT2]) :-

N \== M,mkng(var(N),X,T1,T2,TT1,TT2).

mkng(term(F,Args),term(F,IArgs),InSub1,InSub2,OutSub1,OutSub2) :-

l_mkng(Args,IArgs,InSub1,InSub2,OutSub1,OutSub2).

Figure 12: Binding-time improvement for lambdaint

the performance somewhat. By further adding two hints, however, we get specialised
programs which correspond almost exactly to the results obtained in [34], when hand-
crafting the annotations with custom binding-times. The hints for lambdaint are the
following ones:

’$MEMOANN’(eval,4,[s,s,list,d]).
’$MEMOANN’(l_eval,4,[s,s,list,d]).

We tell the BTA, that we consider calls eval(s,s,list,d) and l eval(s,s,list,d)
to be quasi-terminating. As described earlier, the BTA also checks that at every program
point we obtain calls that are at least as precise.

As we can see, by using hints and some binding-time improvements, we are now able
to specialise larger interpreters predictably and effectively, obtaining very good speedups.

8. Related Work

The first attempts at ensuring (local) termination for offline partial evaluation were
developed in [24] in the context of functional programming; the core ideas later evolved
into the size-change principle. Regarding offline partial evaluation of logic programs, the
closest previous work is that of Craig et al [13], which itself is a further development
of Section 6 of [36]. A very similar approach is also described in [50]. [13] develops
a fully automatic BTA for logic programs. As in our case, the output of this BTA is
an annotated program that can be used as input to the offline partial evaluator logen
[36]. The BTA of [13], however, suffered from some drawbacks: it did not ensure global
termination and it was computationally very expensive (due to the interleaving between
the left-termination analysis and the propagation of binding-times, as witnessed by the
experimental results shown in the previous section). Our BTA is also fully automatic but
guarantees both local and global termination. Furthermore, it is much faster, so that it
scales up well to medium and even large Prolog programs.

37

To the best of our knowledge, the first binding-time analysis for logic programming
was [8]. The approach of [8] obtains the required annotations by analysing the behaviour
of an online specialiser on the subject program. Unfortunately, the approach was overly
conservative. Indeed, [8] decides whether or not to unfold a call based on the original
program without taking the current annotations into account. This means that a call
can either be completely unfolded or not at all. Also, the approach was never fully
implemented and integrated into a partial evaluator. The papers [49, 48, 51] describe
various BTAs for the logic programming language Mercury, even addressing issues such
as modularity and higher-order predicates. An essential part of these approaches is the
classification of unifications into tests, assignments, constructions and deconstructions.
Hence, these works cannot be easily ported to a Prolog setting, although some ideas can
be found in [51].

Regarding the strong termination analysis, the closest approaches to our work are
the following. First, Bezem [6] introduced the notion of strong termination by defining
a sound and complete characterisation (the recurrent programs). We extend Bezem’s
results by introducing a sufficient condition for strong termination (actually, size-change
termination, as defined in Definition 10 is a sufficient condition for Bezem’s strong ter-
mination which only considers ground atoms).

As for the size-change analysis, it was originally introduced in [31] in the context of
functional programming and later improved in a number of ways (see a detailed account
in [3]). Size-change graphs are also closely related to the weighted rule graphs for logic
programs of [43]. However, the weighted rule graphs are built for a specific (leftmost)
computation rule and, thus, strong termination cannot be analysed. Furthermore, the
weighted rule graphs are used as an intermediate step to build the so called query-mapping
pairs. In contrast, from the size-change graphs, we proceed analogously to the binary
unfoldings approach [11]: we compute the transitive closure of the size-change graphs in
order to identify the program loops. Indeed, the binary unfoldings approach is likely the
closest approach to our work. The main difference, as mentioned in the introduction, is
that the binary unfoldings approach is defined for the leftmost computation rule [11] or
for a local computation rule [19]. Adapting it for considering strong termination would
imply redoing almost everything from scratch (and would likely produce a technique
almost identical to our developments based on size-change graphs).

As for quasi-termination, we find relatively few works devoted to quasi-termination
analysis of logic programs. One of the first approaches is [14], where the authors in-
troduce the notion of quasi-acceptability, a sufficient and necessary condition for quasi-
termination. This work has been extended in [52]. Another related approach is [38],
where the authors analyse the effects of an unfolding-based program transformation on
the termination behaviour of tabled programs. However, these works consider a fixed
leftmost computation rule and, thus, their results are not as useful as ours for ensuring
termination of partial evaluation, where strong quasi-termination is often required.

Finally, regarding the use of quasi-termination analysis for ensuring termination of
offline partial evaluation, there are several related approaches. In particular, we share
many similarities with [23], where a quasi-termination analysis based on size-change
graphs is used to ensure the termination of an offline partial evaluator for first-order
functional programs. However, transferring Glenstrup and Jones’ scheme to logic pro-
gramming is far from trivial (and, indeed, many requirements like having instantiated
enough arguments, finitely partitioning norms, etc, have no counterpart in [23]). Besides

38

the paradigm shift, there are some other differences between our approach and that of
Glenstrup and Jones. In particular, their notion of quasi-termination is based on the
concept of “bounded static variation” (extended to so called “bounded anchoring”), i.e.,
identifying parameters that can only take a finite number of different values and, thus,
make the computation stop. In contrast, our approach relies on a natural extension of the
notion of size-change termination using a (well-founded and finitely partitioning) quasi-
order. Another difference is the underlying partial evaluation algorithm considered. In
[23], a simpler one-step unfolding strategy is mostly considered (nevertheless, the paper
also shows how this limitation can be overcome) and, hence, only global termination
must be ensured. In our approach, we deal both with local and global termination since
our local level is not trivial.

Finally, let us briefly compare to our previous work on this topic. As mentioned in the
introduction, this paper includes and extends previous contributions originally introduced
in [53, 42, 40, 41]. To be more precise, the following contributions are original from this
paper:

• We formally prove the correctness of both the termination and quasi-termination
analyses based on the size-change principle. [53] did not include correctness results
and, moreover, the requirements for quasi-termination for non-ground terms were
not feasible in practice.

• We provide correctness results for the algorithm that performs size-change analysis.
In particular, we extend the developments in [40, 41] where no technical results were
proved.

• The definition of a refined (w.r.t. that presented in [42]) BTA for logic programs that
uses the results of the termination and quasi-termination analyses. In particular,
the analysis is now independent of the considered binding-time domain. Moreover,
an implementation of the BTA is now publicly available through a web interface.

To the best of our knowledge, our work presents the first fully automatic BTA for logic
programs that guarantees both local and global termination by using strong termination
and quasi-termination analyses based on the construction of size-change graphs.

9. Discussion and Future Work

We have presented a very fast BTA, which is able to cope with larger programs than
previous approaches and, for the first time, ensures both local and global termination.
For this purpose, we have introduced an algorithm to perform strong termination and
quasi-termination inference using size-change analysis. The experiments have shown
that we can analyse the full 25K lines of source code of the Gödel system in under two
seconds. In the experimental evaluation we have shown that our BTA can now deal with
realistic interpreters. Together with the selective use of hints [42], we have obtained both
a scalable and an effective partial evaluation procedure.

In conclusion, our BTA is well suited to be applied to larger programs. The accuracy
of the annotations is not yet optimal, but in conjunction with hints we have obtained
a fast BTA with very good specialisation results. Nevertheless, there is still room for
improvement.

39

As a future work, we mainly consider different possibilities to make the analysis more
accurate. For this purpose, we would like to infer which arguments are of bounded static
variation [23], i.e., arguments whose size may increase from one call to another, but that
can only take a finite number of different values (consider, e.g., the value of a program
counter) since these arguments need not be marked as dynamic. Another way to improve
the accuracy of the BTA consists in also running a standard left-termination analysis
(such as, e.g., the termination analysis based on the abstract binary unfoldings [11]), so
that left-terminating atoms are marked with a new annotation call (besides unfold and
memo, which keep the same meaning). Basically, while atoms annotated with unfold
allow us to perform an unfolding step and then the annotations of the derived goal
must be followed, atoms annotated with call could be fully unfolded. In principle, this
extension may allow us to avoid some of the loss of accuracy due to considering a strong
termination analysis during the BTA.

As an alternative approach, we would like to explore the definition of a BTA using
SAT solving techniques. In particular, one could define a SAT problem involving both
the constraints from the left-termination analysis (e.g., as in [4]) with the constraints
associated to the propagation of binding times. This approach will be more accurate
than the one presented in this paper since a fixed selection rule would be considered in
the termination analysis. Moreover, an advantage of such an approach is that one can
perform the analysis without fixing a priori a symbolic norm but rather leaving the SAT
solver to find the right norm for proving termination (as it is done, e.g., in the termination
prover AProVE [21]). Finally, we also plan to investigate the extension of this analysis
to deal with quasi-termination and, more importantly, whether non-quasi-terminating
arguments could be identifed (as we do in Definition 17 by inspecting the idempotent
multigraphs produced by the size-change termination analysis), since this is essential to
produce static/dynamic annotations that guarantee global termination.

One major challenge is to make our technique in particular, and partial evaluation
in general, available to programmers for real-life source code. For this, we need to safely
deal with all aspects of Prolog (higher-order predicates such as call or maplist, the cut,
assert and retract, input/output), with minimal user-annotations and also enabling the
source code to be changed with minimal amount of effort. Our new technique goes a long
way towards minimising the number of required user annotations, but further research
and development work is required to build a tool that can be used reliably on arbitrary
source code with predictable outcome.

Acknowledgments.
Firstly, we would like to thank the anonymous reviewers for their constructive com-

ments that helped us to significantly improve and clarify this paper. We would also like
to thank Maurice Bruynooghe for suggesting the introduction of the new annotation call,
as discussed above, and Michael Codish for suggesting us to use SAT based techniques to
improve the efficiency of the BTA while keeping its original accuracy. Finally, we thank
Jens Bendisposto for setting up a web version of our tool.

References

[1] E. Albert, G. Puebla, J. Gallagher, Non-Leftmost Unfolding in Partial Deduction of Logic Programs
with Impure Predicates, in: Proc. of LOPSTR’05, Springer LNCS 3901, 2006, pp. 115–132.

40

[2] S. Barker, M. Leuschel, M. Varea, Efficient and flexible access control via Jones-optimal logic
program specialisation, Higher-Order and Symbolic Computation 21 (1-2) (2008) 5–35.

[3] A. Ben-Amram, Size-change termination and constraint transition systems (2012).
URL http://www2.mta.ac.il/∼amirben/sct.html

[4] A. Ben-Amram, M. Codish, A SAT-Based Approach to Size Change Termination with Global
Ranking Functions, in: C. Ramakrishnan, J. Rehof (eds.), Proc. of the 14th Int’l Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’07), Springer LNCS 5028,
2008, pp. 46–55.

[5] A. M. Ben-Amram, C. S. Lee, Program termination analysis in polynomial time, ACM Trans.
Program. Lang. Syst. 29 (1).

[6] M. Bezem, Strong Termination of Logic Programs, Journal of Logic Programming 15 (1&2) (1993)
79–97.

[7] A. Bossi, N. Cocco, M. Fabris, Proving Termination of Logic Programs by Exploiting Term Prop-
erties, in: S. Abramsky, T. Maibaum (eds.), Proc. of TAPSOFT’91, Springer LNCS 494, 1991, pp.
153–180.

[8] M. Bruynooghe, M. Leuschel, K. Sagonas, A polyvariant binding-time analysis for off-line par-
tial deduction, in: C. Hankin (ed.), Proceedings of the European Symposium on Programming
(ESOP’98), LNCS 1381, Springer-Verlag, 1998, pp. 27–41.

[9] M. Codish, V. Lagoon, P. Schachte, P. Stuckey, Size-Change Termination Analysis in k-Bits, in:
Proc. of the 15th European Symposium on Programming (ESOP 2006), Springer LNCS 3924, 2006,
pp. 230–245.

[10] M. Codish, V. Lagoon, P. Stuckey, Testing for Termination with Monotonicity Constraints, in:
Proc. of the 21st Int’l Conf. on Logic Programming (ICLP’05), Springer LNCS 3668, 2005, pp.
326–340.

[11] M. Codish, C. Taboch, A Semantic Basis for the Termination Analysis of Logic Programs., Journal
of Logic Programming 41 (1) (1999) 103–123.

[12] S. Craig, Practicable Prolog Specialisation, Ph.D. thesis, University of Southampton, U.K. (June
2005).

[13] S.-J. Craig, J. Gallagher, M. Leuschel, K. Henriksen, Fully Automatic Binding Time Analysis for
Prolog, in: Proc. of the Int’l Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’04), Springer LNCS 3573, 2005, pp. 53–68.

[14] S. Decorte, D. De Schreye, M. Leuschel, B. Martens, K. Sagonas, Termination Analysis for Tabled
Logic Programming, in: Proc. of LOPSTR’97, Springer LNCS 1463, 1998, pp. 111–127.

[15] N. Dershowitz, Termination of rewriting, Journal of Symbolic Computation 3 (1&2) (1987) 69–115.
[16] M. Falaschi, G. Levi, M. Martelli, C. Palamidessi, Declarative Modeling of the Operational Behavior

of Logic Languages, Theoretical Computer Science 69 (3) (1989) 289–318.
[17] S. Fogarty, M. Y. Vardi, Efficient Büchi universality checking, in: J. Esparza, R. Majumdar (eds.),

Proc. of the 16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2010), vol. 6015 of Lecture Notes in Computer Science, Springer,
2010, pp. 205–220.

[18] Y. Futamura, Partial Evaluation of Computation Process—An Approach to a Compiler-Compiler,
Higher-Order and Symbolic Computation 12 (4) (1999) 381–391, reprint of article in Systems,
Computers, Controls 1971.

[19] M. Gabbrielli, R. Giacobazzi, Goal Independency and Call Patterns in the Analysis of Logic Pro-
grams, in: Proc. of the 1994 ACM Symposium on Applied Computing, ACM Press, 1994, pp.
394–399.

[20] J. Gallagher, Tutorial on Specialisation of Logic Programs, in: Proc. of the ACM Symp. on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM’93), ACM, New York, 1993, pp.
88–98.

[21] J. Giesl, P. Schneider-Kamp, R. Thiemann, AProVE 1.2: Automatic Termination Proofs in the
Dependency Pair Framework, in: Proc. of Int’l Joint Conf. on Automated Reasoning (IJCAR’06),
Springer LNCS 4130, 2006, pp. 281–286.

[22] J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke, Mechanizing and Improving Dependency Pairs,
Journal of Automated Reasoning 37 (3) (2006) 155–203.

[23] A. Glenstrup, N. Jones, Termination analysis and specialization-point insertion in offline partial
evaluation, ACM TOPLAS 27 (6) (2005) 1147–1215.

[24] A. J. Glenstrup, N. D. Jones, BTA algorithms to ensure termination of off-line partial evaluation,
in: Perspectives of System Informatics: Proceedings of the Andrei Ershov Second International
Memorial Conference, LNCS 1181, Springer-Verlag, 1996, pp. 273–284.

41

[25] M. Gómez-Zamalloa, E. Albert, G. Puebla, Improving the Decompilation of Java Bytecode to
Prolog by Partial Evaluation, Electr. Notes Theor. Comput. Sci. 190 (1) (2007) 85–101.

[26] K. S. Henriksen, J. P. Gallagher, Abstract interpretation of PIC programs through logic program-
ming, in: SCAM, IEEE Computer Society, 2006, pp. 184–196.

[27] P. Hill, J. W. Lloyd, The Gödel Programming Language, MIT Press, 1994.
[28] C. Holst, Finiteness Analysis, in: Proc. of Functional Programming Languages and Computer

Architecture, Springer LNCS 523, 1991, pp. 473–495.
[29] N. Jones, C. Gomard, P. Sestoft, Partial Evaluation and Automatic Program Generation, Prentice-

Hall, Englewood Cliffs, NJ, 1993.
[30] C. Lee, Finiteness Analysis in Polynomial Time, in: Proc. of the 9th Int’l Symposium on Static

Analysis (SAS’02), Springer LNCS 2477, 2002, pp. 493–508.
[31] C. Lee, N. Jones, A. Ben-Amram, The Size-Change Principle for Program Termination, SIGPLAN

Notices (Proc. of POPL’01) 28 (2001) 81–92.
[32] M. Leuschel, The dppd library of benchmarks, obtainable via

http://www.stups.uni-duesseldorf.de/systems/dppd.html (1996-2012).
[33] M. Leuschel, M. Bruynooghe, Logic Program Specialisation through Partial Deduction: Control

Issues, Theory and Practice of Logic Programming 2 (4-5) (2002) 461–515.
[34] M. Leuschel, S.-J. Craig, M. Bruynooghe, W. Vanhoof, Specialising Interpreters Using Offline Par-

tial Deduction, in: Program Development in Computational Logic, Springer LNCS 3049, 2004, pp.
340–375.

[35] M. Leuschel, S.-J. Craig, D. Elphick, Supervising offline partial evaluation of logic programs using
online techniques, in: G. Puebla (ed.), LOPSTR, vol. 4407 of Lecture Notes in Computer Science,
Springer-Verlag, 2006, pp. 43–59.

[36] M. Leuschel, J. Jørgensen, W. Vanhoof, M. Bruynooghe, Offline Specialisation in Prolog using
a Hand-Written Compiler Generator, Theory and Practice of Logic Programming 4 (1-2) (2004)
139–191.

[37] M. Leuschel, B. Martens, D. De Schreye, Controlling generalisation and polyvariance in partial
deduction of normal logic programs, ACM Transactions on Programming Languages and Systems
20 (1) (1998) 208–258.

[38] M. Leuschel, B. Martens, K. Sagonas, Preserving Termination of Tabled Logic Programs while
Unfolding, in: Proc. of the 7th Int’l Workshop on Logic Programming Synthesis and Transformation
(LOPSTR’97), Springer LNCS 1463, 1998, pp. 189–205.

[39] M. Leuschel, T. Massart, Infinite state model checking by abstract interpretation and program
specialisation, in: A. Bossi (ed.), Proceedings LOPSTR’99, LNCS 1817, Venice, Italy, 2000, pp.
63–82.

[40] M. Leuschel, S. Tamarit, G. Vidal, Improving Size-Change Analysis in Offline Partial Evaluation, in:
P. Arenas, D. Zanardini (eds.), Proc. of the 18th Workshop on Logic-based methods in Programming
Environments, 2008.

[41] M. Leuschel, S. Tamarit, G. Vidal, Fast and Accurate Size-Change Strong Termination Analysis
with an Application to Partial Evaluation, in: S. Escobar (ed.), Proc. of the 18th Int’l Workshop
on Functional and (Constraint) Logic Programming (WFLP’09), Springer LNCS 5979, 2009, pp.
111–127.

[42] M. Leuschel, G. Vidal, Fast Offline Partial Evaluation of Large Logic Programs, in: Logic-based
Program Synthesis and Transformation (revised and selected papers from LOPSTR’08), Springer
LNCS 5438, 2009, pp. 119–134.

[43] N. Lindenstrauss, Y. Sagiv, Automatic Termination Analysis of Logic Programs, in: Proc. of Int’l
Conf. on Logic Programming (ICLP’97), The MIT Press, 1997, pp. 63–77.

[44] J. Lloyd, Foundations of Logic Programming, Springer-Verlag, Berlin, 1987, second edition.
[45] J. Lloyd, J. Shepherdson, Partial Evaluation in Logic Programming, Journal of Logic Programming

11 (1991) 217–242.
[46] F. Ramsey, On a problem of formal logic, in: Proc. of the London Mathematical Society, vol. 30,

1930, pp. 264–286.
[47] R. Thiemann, J. Giesl, The Size-Change Principle and Dependency Pairs for Termination of Term

Rewriting, Applicable Algebra in Engineering, Communication and Computing 16 (4) (2005) 229–
270.

[48] W. Vanhoof, Binding-Time Analysis by Constraint Solving: a modular and higher-order approach
for Mercury, in: M. Parigot, A. Voronkov (eds.), Proceedings of LPAR’2000, LNAI 1955, Springer-
Verlag, 2000, pp. 399–416.

[49] W. Vanhoof, M. Bruynooghe, Binding-time analysis for Mercury, in: D. De Schreye (ed.), Pro-

42

ceedings of the International Conference on Logic Programming ICLP’99, MIT Press, 1999, pp.
500–514.

[50] W. Vanhoof, M. Bruynooghe, Binding-time annotations without binding-time analysis, in:
R. Nieuwenhuis, A. Voronkov (eds.), Logic for Programming, Artificial Intelligence, and Reasoning,
8th International Conference, LNCS 2250, Springer-Verlag, 2001, pp. 707–722.

[51] W. Vanhoof, M. Bruynooghe, M. Leuschel, Binding-time analysis for Mercury, in: M. Bruynooghe,
K.-K. Lau (eds.), Program Development in Computational Logic, LNCS 3049, Springer-Verlag,
2004, pp. 189–232.

[52] S. Verbaeten, K. Sagonas, D. De Schreye, Termination Proofs for Logic Programs with Tabling,
ACM Transactions on Computational Logic 2 (1) (2001) 57–92.

[53] G. Vidal, Quasi-Terminating Logic Programs for Ensuring the Termination of Partial Evaluation,
in: Proc. of the ACM SIGPLAN 2007 Workshop on Partial Evaluation and Program Manipulation
(PEPM’07), ACM Press, 2007, pp. 51–60.

43

