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Abstract. Constraint solving technology for formal models has made
considerable progress in the last years, and has lead to many applications
such as animation of high-level specifications, test case generation, or
symbolic model checking. In this article we discuss the idea to use formal
models themselves to express constraint satisfaction problems and to
embed formal models as executable artefacts at runtime. As part of our
work, we have developed a document generation feature, whose output
is derived from such executable models. This present article has been
generated using this feature, and we use the feature to showcase the
suitability of formal modelling to express and solve various constraint
solving benchmark examples. We conclude with current limitations and
open challenges of formal model-based constraint solving.

1 Animation and Constraint Solving for B

The B-Method [2] is a formal method rooted in predicate logic and set theory,
supporting the generation of code “correct by construction” via successive re-
finement. Initially, the B-method was supported by two tools, BToolkit [4] and
Atelier B [7], which both provided automatic and interactive proving environ-
ments, as well as code generators. To be able to apply the code generators, one
has to refine an initial high-level specifications into lower-level B (called BO).
It is of course vital that the initial high-level specification correctly covers the
requirements of the application being developed. To some extent suitability of
the high-level specification can be ensured by stating and proving invariants and
assertions. In addition, the BToolkit provided an interactive animator, where the
user had to provide values for parameters and existentially quantified variables,
the validity of which was checked by the BToolkit prover. However, quite often
these techniques are far from satisfactory and sufficient. The PROB validation
tool [24, 25] was developed to satisfy this need in the tooling landscape, and pro-
vide a more convenient and extensive validation of high-level specifications. The
first problem that PROB set out to solve was to provide automatic animation,
freeing up the user from providing values for parameters and quantified vari-
ables. This was achieved by providing a constraint solver for the B language. On
top of the animator, a model checker was developed, in order to automatically
construct the state space of a formal B model and check temporal properties.



Constraint Solving, Execution and Proof

What distinguishes constraint solving from proof and execution (e.g., of gener-
ated code) in the context of B:

— the expression {2,3,5} N 4..6 can be executed, yielding the value {5}. The
characteristics of execution for B are: no non-determinism arises, no search
is required, and there is a clear procedure on how to obtain the result. An
example for execution is the running of code generated from B0.

— The sequent or proof obligation > 0 An > 0+ 2 4+ n > 0 can be proven.
The characteristics of proof for B are: usually a non-deterministic search for
a proof is required; human intervention is also often required. Proof can deal
with infinite values and infinitely many possibilities; e.g., the above sequent
holds for infinitely many values for z and n. A proof attempt either yields
a proof or it does not. In the latter case, we do not know the status of the
proof obligation and in either case no values are obtained.

— The predicate z > 0An > 0Axz+n € {2,3} can be solved yielding a solution
x = 0,n = 2. The characteristics of constraint solving are that, in contrast
to execution and just like for proof, a non deterministic search for possible
solutions is required. In contrast to proof, the process is fully automatic and
provides concrete values. On the downside, constraint solving usually can
only deal with a bounded number of finite values for the variables.

Challenge The major challenge of animating or validating B is the expressive-
ness of its underlying language. B is based on predicate logic, augmented with
arithmetic (over integers), (typed) set theory, as well as operators for relations,
functions and sequences. (A similar point can be made for other formal meth-
ods who share a similar foundation, such as TLA+ [21] or Z [38].) As such, B
provides a very expressive foundation which is familiar to many mathematicians
and computer scientists. For example, Fermat’s Last Theorem can be written in
B as follows:

Vn.(n > 2= =(3(a,b,c).(a” +b" = c™)))

In B’s ASCII syntax (AMN or Abstract Machine Notation) this is written as
follows:

'n. (n>2 => not(#(a,b,c).(ax*n + bxxn = c**n)))

A more typical example in an industrial formal specifications would be the
integer square root function, which can be expressed in B as follows:

isqrt = An.(n € Nmaz({i|i® < n}))

Here, the A operator allows us to construct an infinite function, whose domain
are the natural numbers and whose result is the largest integer whose square is
less or equal to the function parameter n.



Due to arithmetic and the inclusion of higher-order functions, the satisfia-
bility of B formulas is obviously undecidable. As such, animation is also unde-
cidable, as operation preconditions or guards in high-level models can be arbi-
trarily complex. We cannot expect to be able to determine the truth value of
Fermat’s Last Theorem automatically, but PROB is capable of computing with
the integer square root function above, e.g., determining that isqrt(101) = 10
or isqrt(1234567890) = 35136.1 The relational composition operator “;” can ac-
tually be used as the higher-order “map” function in functional programming,
and PROB can compute ([99,100,101];isqrt) = [9, 10, 10].

In essence, the challenge and ultimate goal of PROB is to solve constraints,
for an undecidable formal method with existential and universal quantification,
higher-order functions and relations, unbounded variables. Ideally, infinite func-
tions should be dealt with symbolically, while large finite relations should be
stored efficiently. Moreover, we generally need not just to find one solution for a
predicate, but all solutions. For example, when evaluating a set comprehension,
all solutions must be found. Similarly, when using model checking we need to
find all solutions for the guard predicates, to ensure that the complete state
space gets constructed.

Applications of Constraint Solving

Over the years the constraint solving kernel of PROB has been improved, e.g.,
making use of the CLP(FD) library of SICStus Prolog [6] or using CHR [12].
This opened up many additional applications:

— Constraint-based invariant or deadlock checking [14].
E.g., for deadlock checking, we ask the constraint solver to find a state of a
B model satisfying the invariant, such that no event or operation is enabled.

— Model-based testing [34, 16, 31].
Here we ask the constraint solver to find values for constants and operation
parameters to construct test cases.

— Disproving and proving [17].
Here we ask the constraint solver to find counter examples to proof obliga-
tions. Sometimes, when no counter example is found, the constraint solver
can return a proof, e.g., when only finite domain variables occur.

— Enabling analysis [10].
Here the constraint solver determines whether an event can disable or enable
other events. The result is used for model comprehension, inferring control
flow and for optimising the model checking process.

— Symbolic model checking [18].
Here the constraint solver is used to find counter example traces for invari-
ance properties.

! This is one of the specifications which is given as an example of a non-executable
specification in [15].



2 Model-Based Constraint Solving

We now want to turn our focus from constraint solving technology for validating
B models towards using B models to express constraint satisfaction problems.

The idea is to use the expressivity of the B language and logic to express
practical problems, and to use constraint solving technology on these high level
models. In other words, the B model is not refined in order to generate code but
is “executed” directly.

Data validation in the railway domain [26,27,5,22,1] was a first practical
application where B was used in this way, i.e., properties where expressed in B
and checked directly by a tool such as PROB, PredicateB or Ovado. Here the
B language was particularly well suited, e.g., to express reachability in railway
networks. The constraint solving requirements are typically relatively limited
and could still be solved by naive enumeration.

In the article [28] we later argued that B is well suited for expressing con-
straint satisfaction problems in other domains as well. This was illustrated on
the Jobs puzzle challenge [37] and we are now using this approach at the Uni-
versity of Diisseldorf to solve various time tabling problems [35], e.g., determine
whether a student can study a particular combination of course within a given
timeframe.

A question is of course, why not encode these constraint satisfaction problems
in a dedicated programming language such as CLP(FD) [6] or Zinc [29]. Some
possible answers to this question are:

— By using B we obtain constraint programming with proof support B. For
example, we can add assertions about our problem formulation and discharge
them using proof. We also hope that optimisation rules can be written in B
and proven for all possible values.

— B is a very expressive language, many problems can be encoded more ele-
gantly in B than in other languages [28]

— we want to use a formal model not just as a design artefact but also at
runtime; B can also be a very expressive query language, thereby enabling
introspection, monitoring and analysis capabilities at runtime.

— We also wanted to stress test the constraint solver of PROB, identify weak-
nesses and improve the tool in the process.

— Finally, we hope to use B in this way for teaching mathematics, theoretical
computer science and obviously B itself.

In the SlotTool project [35] we will compare the formal model based approach
with a traditional constraint programming implementation, but it is still to early
in the project to draw any conclusions.

In Section 4 we will present a few more constraint satisfaction benchmarks
and problems which can be stated in the logic of the B notation. To this end, we
will use another new feature of PROB: being able to generate “executable” Latex
documentation. This feature was developed out of the necessity to understand
complex models and complex situations in [35], as well as out of the need to



generate validation reports and summaries for data validation. This new feature
is described in the following section.

3 Model-Based Document Generation

In this section we present a new feature of PROB, allowing one to generate
readable documents from formal models. PROB can be used to process Latex
[20] files, i.e., PROB scans a given “raw” Latex file and replaces certain PROB
Latex commands by processed results, yielding a “proper” Latex file with all
PROB commands replaced by evaluated results.

probcli FILE -init -latex RawlLatex.tex Finallatex.tex

The FILE and -init parameters are optional; they are required in case one
wants to process the commands in the context of a certain model. Currently the
PRrROB Latex commands mainly support B and Event-B models, TLA+ and Z
models can also be processed but all commands currently expect B syntax. You
can add more commands if you wish, e.g., set preferences using -p PREF VAL or
run model checking --model-check. The Latex processing will take place after
most other commands, such as model checking.

To some extent this feature was inspired by Z, where models are written in
Latex format from the start. The Z Word Tools [13] were later developed to
enable one to write Z models in Microsoft Word. A difference with our approach
is that the B model is still kept separate from the Latex document, and that the
Latex document may also contain commands to derive additional data, tables
or figures. Moreover, multiple Latex documents can be attached to a B model
and can also be re-used for the same model, with varying data inputs.

Applications We hope that some of the future applications of this Latex pack-
age are:

— Model documentation: generate an executable documentation for a for-
mal model, that shows how to operate on the model. Moreover, provided
PRrROB'’s Latex processing runs without errors, the documentation is guaran-
teed to be up-to-date with the current version of the model.

— Worksheets: for certain tasks the Latex document can replace a separate
formal B model, the model is built-up incrementally by Latex commands
and the are results shown in the final Latex output. This is probably most
appropriate for smaller, isolated mathematical problems in teaching.

— Validation reports: on can automatically construct a summary of a vali-
dation task such as model checking or assertion checking.

— Model debugging or information extraction: here the processing of the
executable document extracts and derives relevant information from a formal
model, and presents it in a user friendly way. We use this feature regularly
for our time tabling application [35] to depict conflicts either graphically or
in a tabular fashion.



— Finally, we also plan to use the Latex package to produce documentation
for some of PROB’s features (such as this latex package or PROB’s external
functions).

Some Commands The \probexpr command takes a B expression as argument
and evaluates it. By default it shows the B expression and the value of the
expression, for example:

— \probexpr{{1}\/{2**100}} in the raw Latex file will yield:
{1} U {2199} = {1,1267650600228229401496703205376 }

The \probrepl command takes a REPL command and executes it. By de-
fault it shows only the output of the execution, e.g., in case it is a predicate
TRUE or FALSE.

— \probrepl{2**10>1000} in the raw Latex file will yield:
TRUE

— \probrepl{let DOM = 1..3} outputs a value and will define the variable
DOM for the remainder of the Latex run:

{1,2,3}

— there is a special form for the let command: \problet{DOM}{1..3}, it has
the same effect as the command above, but also prints out the let predicate
itself:
let DOM =1..3~ {1,2,3}

The \probprint command takes an expression or predicate and pretty prints
it, for example:

— \probprint{bool ({1|->2,2|->3}|>>{4} : NATURAL+->INTEGER) } yields:
bool({(1+ 2), (2 — 3)} & {4} € N Z)

The \probif command takes an expression or predicate and two Latex texts.
If the expression evaluates to TRUE the first branch is processed, otherwise the
other one is processed. Here is an example:

— \probif{2**10>1000}{$\top$}{$\bot$} in the raw Latex file will yield:
T

The \probfor command takes an identifier, a set expression and a Latex text,
and processes the Latex text for every element of the set expression, setting the
identifier to a value of the set. For example, below we embed the command:
\probfor{i}{2..3}{\item square of $\probexpr{i}$: $\probexpr{i*i}$}
within an itemize environment to generate a list of entries:

— square of i =2: ixi =4
— square of i =3: ix7 =9



The \probtable command takes a B expression as argument, evaluates it
and shows it as a table. For example, the command:
\probtable{{i,cubeli:2..3 & cube=i*i*i}}{no-row-numbers} in the raw
Latex file will yield:

1 cube
28
327

Finally, the \probdot command takes a B expression or predicate as argu-
ment, evaluates it and translates it into a graph rendered by dot [3].

4 A Portfolio of Constraint Solving Examples in B

The following examples were generated (on 1/10/2016—11h383s) using the Latex
package described in Sect. 3 with PROB version 1.6.1 — beta4.

4.1 Graph Colouring

The graph colouring problem consists in assigning colours to nodes of a graph,
such that any two neighbours have different colours. Let us first define some
arbitrary directed graph gr = {(1 — 3),(2 — 4),(3 — 5),(5 +— 6)} (using
integers as nodes). Suppose we want to color this graph using the colours cols =
{red, green}. We now simply set up a total function from nodes to cols and
require that neighbours in gr have a different colour:

Feol.(col € 1..6 = cols AY(z,y).(x — y € gr = col(x) # col(y)))

The graph and the first solution found by PROB for col are shown in Fig. 1
using the \probdot command.

4.2 Graph Isomorphism

Let us define two directed graphs g1 = {(v1 — v2), (v1l — v3), (v2 — v3)} and
g2 = {(nl = n2),(n3 — nl), (n3 — n2)}. The nodes of g1 are V = {vl,v2,v3}
and of g2 are N = {nl,n2,n3}. These two graphs are isomorphic if we can find
a bijection between V' and N, such that the successor relation is preserved. We
can compute the successors of a node by using the relational image operator [.],
e.g., the successors of vl in gl are gI[{v1}] = {v2,v3}. In B we can thus check
gl and ¢2 for isomporhism by trying to find a solution for:

Jiso.(iso € V »» N AVv.(v € V = iso[gl[{v}]] = ¢g2[iso[{v}]]))

The graph and the first solution found by PROB for iso are shown in Fig. 2
using the \probdot command.

An industrial application of this constraint solving task — expressed in B —
for reverse engineering can be found in [8].



Fig. 1. A solution to a graph colouring problem

Fig. 2. A solution to a graph isomorphism problem



4.3 N-Queens and Bishops

The N-Queens puzzle is a famous benchmark within constraint programming.
The task is to place n queens on a n x n chessboard so that no two queens attack
each other. Initially, we solve the puzzle for n=6.

In a first step, we place one queen on each row and column by using a total
injection constraint:

Jqueens.(queens € 1..n — 1..n)

Here, queens is a function which for every queen stipulates the column it is
placed on. By stipulating that the function is injective, we ensure that no two
queens can be on the same column. By numbering queens from 1 to n, we have
implicitly placed one queen on each row.

We still need to ensure that queens cannot attack each other on the diagonals,
above we have actually described the N-Rook problem. The first solution found
by PROB is shown below \probfor command and the skak package.?

J={

J=¢

J={

J=¢

Dealing with the diagonals requires a more involved universal quantification:
queens € l.n— l.n AV(ql,q2).(qg1 € 1.n AN ¢g2 € 2.n A q2 > ql =

queens(ql) + (¢2 — q1) # queens(q2) A queens(ql) + (g1 — q2) # queens(¢2))
The first solution found by PROB is

queens = {(1+—5),(2—3),(3+—1),(4—6),(5— 4),(6 — 2)}

which can be depicted graphically as follows:

]

o

o

o

L]

For n=17 we obtain the following first solution (after about 20 ms):

2 See https://www.ctan.org/pkg/skak.
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Related to the N-Queens puzzle is the Bishops problem: how many bishops
can one place on an n by n chess board without any bishop attacking another

bishop. In this case one can place multiple bishops on the same row and col-
umn; hence our encoding in B must be slightly different. Below we represent the

placement of the bishops as a subset of (1..n) x (1..n) and solve the puzzle for
To find the optimal solution one can solve the above predicate with an ad-

ditional constraints about the cardinality of bshp, and continuously use the size

Fbshp.(bshp C (1..n) x (1.n) AV(i,7).({i,5} € 1.n = (i — j € bshp =
Vk(kei+l.n=(k— (j+k)—1i)&bshp A (k> (j —k)+1i) & bshp))))

8. The following constraint encodes the proper placement of the bishops:
of the previous solution as a strict lower bound for the next solution. Below is
solution of the above with 14 bishops (found in about half a second); there is no

solution with 15 bishops.

n
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We can also try to solve these various puzzles together, e.g., place 8 queens,
8 rooks and 13 bishops on the same eight by eight board. For this, we simply
A solution found after about 0.4 seconds is shown below. Note, that while
PrROB can solve the problem quite efficiently for 13 bishops, solving time for

conjoin the four problems above and add constraints linking them, to ensure
(about 560 seconds). Here, a custom low-level encoding will probably be much

the optimal 14 bishops together with 8 queens and rooks is dramatically higher
more efficient than the B version (but also more tedious to write).

that a square is occupied by one piece at most. This is a simplified version of

the crowded chess board problem from [11].
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4.4 Golomb Ruler

Another well-known constraint solving benchmark is the Golomb ruler. The task
is to set marks on a ruler of a given length so that no two marks have the same
distance. The marks have to be put at integer positions and the ruler is also of
integer length.

We now solve this puzzle for n = 7 marks and a length len = 25.

The following expresses the problem in B:

Ja.(a € 1.n - 0..len AVi.(1 € 2.n = a(t — 1) < a(i)) AV(il,j1,i2,52).(i1 >
0Ai2 >0Aj1 <nAj2 < nAil <jlNi2 <j2A>G— j1)# (G2 — j2) =
a(j1) — a(il) # a(j2) — a(i2)))

The first solution found by PROB (in about 130 ms) is the following one:

a={1—0),2—2),0B8—6),4—9),(5—14),(6— 24),(7+— 25)}

The solution is depicted graphically below, using the \probfor command
within a Latex picture environment.

It takes 320 ms to compute all 10 solutions using a set comprehension. Note
that some of the rulers can be obtained from the other rules by reversing the
order of the marks.

We can filter out these rulers using the B function Ar.(r € seq(Z)|rev((r; Xi.(i €
Z)25 — i)))) yielding the table below:

a

[0,2,6,9, 14, 24, 25]
[0,1,4,10,18, 23, 25]
[0,2,3,10, 16,21, 25]
[0,1,7,11,20, 23, 25]
[0,3,4,12,18,23, 25]

b ) )




4.5 Sudoku and Latin Squares

Sudoku is a popular puzzle in constraint programming circles. We first define
the domain for our numbers: let D = 1..9. Let us first construct a 9 x 9 square
containing numbers in D, such that on all rows and columns we have different
numbers, i.e., we just construct a Latin square of order 9.

We first compute the pairs of positions on columns that need to be different:

let Diff1 = {x1,22,y1,y2|{zl,22,y1} C D Azl <22 ANyl =y2}

This gives rise to card(Diff1) = 324 pairs of positions. Now we do the the
same for rows:

let Diff2 = {x1,22,y1,y2|{zl,yl,y2} C D Azl =22 ANyl < y2}

A solution to the constraint 3Board.(Board € D—(D—D)AV(zl,x2,y1,y2).(z1 —
T2 — yl — y2 € Diff1 U Diff2 = Board(z1)(yl) # Board(z2)(y2))) is depicted be-
low, again using the \probfor command:

2|5|4(1{3|6|7(8|9
1|4]2|3|6]5|9|7|8
4(9|3]2|1(8|5(6|7
3|1|8|7(9|2|4(5|6
6(3|9(8(7|1|2(4|5
5|2|1]9(8|7|6(3|4
716/5(4(2|19(8(1|3
8|7|6|5(4|3|1(9|2
918|7|6]5|4|3|2|1

Now we take into account difference constraints on the nine relevant 3 x 3
sub squares. We define a set containing three sets of indices:

let Sub = {{1,2,3},{4,5,6},{7,8,9}}

Observe that this is a set of sets. We can now compute the pairs of positions
that need to be different within each sub square:

let Diff3 = {z1,22,y1, y2|z1 > 22N\(z1 — yl) # (22 — y2)AI(s1,s2).(sl €
Sub A s2 € Sub A{xl,22} C s1 A{yl,y2} C s2)}

Observe that above we have quantified over sets (for sl and s2). The con-
straint 1 > x2 is not strictly necessary; it just reduces the number of conflict
positions to be checked. As a further improvement, one could add the additional
symmetry breaking constraint that z1 = 22 = yl1 > y2.

To conclude, we simply combine all position pairs into a single set:

let Diff = Diff1 U Diff2 U Diff3

To generate a valid Sudoku solution we now need to solve the following
constraint:



3Board.(Board € D — (D — D) AV(z1,22,yl,y2).(x1 — 22 — yl — y2 €
Diff = Board(z1)(yl) # Board(x2)(y2)))

The first solution found in about 50 ms is shown below:

2|7|5(1(4|3|8(6|9
1|316/7]9(8/|2|4|5
814/9(5(6|2|7(1|3
711|2|8]3|5]4|9|6
416(3|2(1(9|5|7|8
5(9|8(4(7|6(1(3|2
6(5(4(3|2|1]98|7
3|2|1]9(8|7|6(5|4
9(8|7|6(5|4|3|2|1

4.6 Coins Puzzle

This is a puzzle from chapter 7 of [32]. One interesting aspect is the use of an
aggregate constraint (X) and the fact that decision variables are in principle
unbounded.

The puzzle is as follows. A bank has various bags of money, each containing
differing number of coins coins = {16,17,23,24,39,40}. In total 100 coins are
stolen; how many bags are stolen for each type of bag?

We can express this puzzle in B as the solution to the following predicate:

Jstolen.(stolen € coins — N A X(z).(x € coins|z * stolen(z)) = 100)

A solution found by PROB is: stolen = {(16 — 2), (17 — 4), (23 — 0), (24 —
0), (39 — 0), (40 — 0)}, also depicted as a table as follows:

coins |16|17(23(24(39|40
stolen|2{4[0[0[0(0

All solutions can be found by computing the following set comprehension:

{s]s € coins - N A X(x).(x € coins|z * s(z)) = 100}

The solution computed by PROB contains just the single solution already
shown above: {{(16 — 2), (17 — 4),(23 — 0), (24 — 0),(39 — 0), (40 — 0)}}.
Observe that here the constraint solver needs to find all solutions the predicate
inside the set comprehension. This is made more difficult by the fact that the
range of the coins variable is not bounded explicitly, and only bounded implicitly
by the summation constraint. The bounds on coins can only be inferred during
the constraint solving process itself.



5 External Data Sources and Data Validation

The core B language does not provide any features for input and output. More-
over, the operations for data types such as strings are quite limited (only equality
and inequality are provided). This has lead us to extend the B language via so-
called external functions. Basically, these are B DEFINITIONS which get
mapped to code in the PROB kernel. Some of these functions have been taken
over and implemented by ClearSy in their PredicateB secondary toolchain. Here
we briefly showcase these features, in particular in the context of data validation.

5.1 External Data Sources

PrROB can read in XML and CSV files using various external functions. In this
section we read in a CSV file called “elementdata.csv” containing data about
chemical elements:

let data = READ_CSV _STRINGS(“elementdata.csv”)

The read in data is of type seq(STRING-+STRING) and contains size(data)
118 entries.

The first entry has card(data(1)) = 20 fields in total, for example the fields
(“Atomic_Number” — “17), (“Atomic_-Weight” — “1.00794”), as well as the
fields (“Name” — “Hydrogen”) or (“Symbol” — “H”).

Note that the external read function is generic: it works for any CSV file
where the field names are stored in the first row; empty cells lead to undefined
fields in the B data.

5.2 Data Validation Example

Data validation is one area where B’s expressivity is very useful, and we illustrate
this on the data we have read in above. We can check that the index in the data
sequence correspond to the atomic number using the following predicate:

Vi.(i € dom(data) = i = STRING_TO_INT(data(i)(“Atomic_ Number”)))

This property is TRUE. STRING_TO_INT is another external function, con-
verting strings to integer. DEC_STRING_TO_INT is a variation thereof, also dealing
with decimal numbers and expects a precision as argument. It is often useful
for a user to define other auxiliary functions. In that respect, B is almost like a
functional programming language:

let aw = Mi.(i € dom(data)|DEC_STRING-TO_INT(data(i)(“Atomic_Weight”), 4))

The above function can now be applied, e.g., aw(1) = 10079.



We can check if the atomic weights are ordered by atomic number:

V(i,7).(i € dom(aw) Nj € dom(aw) Ni < j = aw(i) < aw(j)) ~ FALSE

Maybe surprisingly, this property has been evaluated to false. One counter
example is ¢ = 18 Aj = 19 A awi = 399480 A awj = 390983 A namei = “Argon” A

namej = “Potassium”. All counter examples are shown in the table below:
Elementl  awl Element2 aw?2
“Argon” “39.948”  “Potassium” “39.0983”
“Cobalt” “58.9332” “Nickel” “58.6934”
“Plutonium” “244.0642” “Americium”  “243.0614”
“Tellurium” “127.6” “lodine” “126.90447”

“Thorium”  “232.0381” “Protactinium” “231.03588”
“Uranium”  “238.0289” “Neptunium”  “237.048”

In summary, in this section we have shown how to read in and manipulate
data in B, how to validate properties in the data and how validation reports
with counter example tables can be generated.

6 Discussion

Above we have shown the promises of using the B language to express constraint
satisfaction problems. In practice, there are of course still limitations to this ap-
proach. The B approach will often engender a computational overhead compared
to a direct encoding in a lower-level constraint programming language. Future
research will try to minimise this overhead.

A crucial aspect of the constraint solving is the treatment of quantifiers
and (nested) set comprehensions. PROB has techniques to expand quantifiers
of bounded scope, or some special forms such as Vz.(x € S = ..).> When
these cannot be applied, the quantifiers will delay until all relevant variables are
known: this can lead to performance degradations.

Debugging is another issue, which is problematic for constraint programming
in general and B is no exception here. We have added external functions for
debugging, e.g., to print values or observe how values are instantiated. PROB
can now also provide performance warning messages, e.g., when universal or
existential quantifiers cannot be dealt with efficiently.

Below we discuss some related approaches (and repeat some of the points
made in the not easily accessible article [23]).

Comparison with non-constraint solving tools We have already discussed
the proof-based BToolkit animator. A variety of other tools have been developed

3 See, https://www3.hhu.de/stups/prob/index.php/Tips: Writing Models_for ProB
for more details.



for animating or model checking high-level specifications: Brama [36] and AnimB
[30] for Event-B or TLC [40] for TLA™. These tools rely on naive enumeration
and can be used if the models are relatively concrete. However, there is little
chance in using such tools for more challenging constraint solving tasks. For
example, TLC takes hours to find an isomorphism for two graphs with 9 nodes
(see [27]). TLC on the other hand can be very efficient for concrete models,
where the overhead of constraint solving provides no practical advantage.

Comparison with other technologies In the past years we have also in-
vestigated a variety of alternative technologies to replace or complement the
constraint solver of PROB: BDD-Datalog based approaches, SAT- and SMT-
solving techniques. For SAT, we have implemented an alternative backend for
first-order B in [33] using the Kodkod interface [39]. For certain complicated con-
straints, in particular those involving relational operators, this approach fared
very well. The power of clause learning and intelligent backtracking are a dis-
tinct advantage here over classical constraint solvers. However, for arithmetic
the SAT approach usually has problems scaling to larger integers.

Quite often, the SAT approach is better for inconsistent predicates, while the
PROB constraint solver fared better when the predicates were satisfiable. Also,
the SAT approach typically has problems dealing with large data and cannot
deal with unbounded values or with infinite or higher-order functions. Here, an
SMT-based approach could be more promising. We have also experimented with
SMT-solvers, in particular a SMT-plugin for Event-B [9] and now also provide a
Z3 backend for PROBJ19]. For proof, SMT solving has proven very useful for B.
In [18] have also used SMT to complement PROB for symbolic model checking.
But for constraint solving, the results are thus far still rather disappointing.

In conclusion, constraint solving has provided the foundation for many novel
tools and techniques to validate formal models. While SAT and SMT-based
techniques also have played an increasingly important role in this area, constraint
solving approaches have advantages when dealing with large data. In future, we
are striving for an approach which can reconcile the advantages of all of these
approaches.
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