Fast Offline Partial Evaluation
of Large Logic Programs™*

Michael Leuschel! and Germén Vidal?

! Institut fiir Informatik, Universitat Diisseldorf, D-40225, Diisseldorf, Germany
leuschel@cs.uni-duesseldorf.de
2 DSIC, Technical University of Valencia, E-46022, Valencia, Spain
gvidal@dsic.upv.es

1 Introduction

There are two main approaches to partial evaluation [6], a well-known technique
for program specialisation. Online partial evaluators basically include an aug-
mented interpreter that tries to evaluate the program constructs as much as
possible—using the partially known input data—while still ensuring the termi-
nation of the process. Offline partial evaluators, on the other hand, require a
binding-time analysis (BTA) to be run before specialisation, which annotates the
source code to be specialised. Roughly speaking, the BTA annotates the various
calls in the source program as either unfold (executed by the partial evaluator)
or memo (executed at run time, i.e., memoized), and annotates the arguments
of the calls themselves as static (known at specialisation time) or dynamic (only
definitely known at run time).

In the context of logic programming, a BTA should ensure that the anno-
tations of the arguments are correct, in the sense that an argument marked as
static will be ground in all possible specialisations. It should also ensure that the
specialiser will always terminate. This can be broadly classified into local and
global termination [7]. The local termination of the process implies that no atom
is infinitely unfolded. The global termination ensures that only a finite number
of atoms are unfolded. Basically, the program annotations are safe when

— all atoms marked as unfold can be unfolded as much as possible (as indicated
by the annotations) while still guaranteeing the local termination, and
— global termination is guaranteed by generalising the dynamic arguments
whenever a new atom is added to the set of (to be) partially evaluated
atoms; also, all arguments marked as static must indeed be ground.
In previous work, Craig et al [4] have presented a fully automatic BTA for logic
programs, whose output can be used for the offline partial evaluator LOGEN [9].
Unfortunately, this BTA still suffers from some serious practical limitations:
— The current implementation does not guarantee global termination.

* This work has been partially supported by the EU (FEDER) and the Spanish
MEC/MICINN under grants TIN2005-09207-C03-02, TIN2008-06622-C03-02, and
Accion Integrada HA2006-0008

— The technique and its implementation is quite complicated, consisting of a
combination of various other analyses: model-based binding-type inference,
binary clause generation, inter-argument size relation analysis with polyhe-
dra, etc., running on different Prolog systems. As a consequence, the current
implementation is quite fragile and hard to maintain.

— In addition to the implementation complexity, the technique is also very slow
and does not scale to medium-sized examples.

Recently, Vidal [13] has introduced a quasi-termination analysis for logic pro-
grams that is independent of the selection rule. This approach is less precise than
other termination analyses that take into account a particular selection strategy
but, as a counterpart, is also faster and well suited for partial evaluation (where
flexible selection strategies are often mandatory, see, e.g., [1,7]). In this paper,
we introduce a new BTA for logic programs with the following advantages:

— it is conceptually simpler and considerably faster, scaling to medium-sized
or even large examples;

— the technique does ensure both local and global termination;

— the technique can be used to infer annotations for semi-online specialisers
(e.g., LOGEN has semi-online features) combining the speed of the offline
approach with the power of the online one.

The main source of improvement comes from using a size-change analysis for
termination purposes rather than a termination analysis based on the abstract
binary unfoldings [3] as in [4]. Basically, the main difference between both ter-
mination analyses is that the binary unfoldings consider a particular selection
strategy (i.e., Prolog’s leftmost selection strategy). As a consequence, every time
the annotation of an atom changes from unfold to memo during the BTA of [4],
the termination analysis should be redone from scratch in order to take into
account that this atom would not be unfolded (thus avoiding the propagation of
some bindings). On the other hand, the size-change analysis is independent of a
particular selection strategy. As a consequence, it is less precise, since no variable
bindings are propagated between the body atoms of a clause, but it should be run
only once. In general the termination analysis is the most expensive component
of a BTA.

We have implemented the new approach, and we will show on experimental
results that the new technique is indeed much faster and much more scalable. On
some examples, the accuracy is still sub-optimal, and we present various ways to
improve this. Still, this is the first BTA for logic programs that can be applied
to larger programs, and as such is an important step forward.

2 Size-Change Termination Analysis

In the remainder we assume basic knowledge of the fundamentals of logic pro-
gramming [2,12]. In this section, we recall the basis of the size-change analysis
of [13], which is used to check the (quasi-)termination of a program.

We denote by calls®(Qo) the set of calls in the computations of a goal Qg
within a logic program P and a computation rule R. We say that a query @ is

strongly terminating w.r.t. a program P if every SLD derivation for @ with P is
finite. The query @ is strongly quasi-terminating if, for every computation rule
R, the set call}(Q) contains finitely many nonvariant atoms. A program P is
strongly (quasi-)terminating w.r.t. a set of queries Q if every @ € Q is strongly
(quasi-)terminating w.r.t. P. For conciseness, in the remainder of this paper, we
write “(quasi-)termination” to refer to “strong (quasi-)termination.”

Size-change analysis is based on constructing graphs that represent the de-
crease of the arguments of a predicate from one call to another. For this purpose,
some ordering on terms is required. In [13], reduction orders (2, >) induced from
symbolic norms || - || are used:

Definition 1 (symbolic norm [11]). Given a term t,

t]] = m+ > kit ift=f(tr,..), n =0
t if t is a variable

where m and kq,...,k, are non-negative integer constants depending only on
f/n. Note that we associate a variable over integers with each logical variable
(we use the same name for both since the meaning is clear from the context).

The introduction of variables in the range of the norm provides a simple mech-
anism to express dependencies between the sizes of terms.

The associated induced orders (7, >) are defined as follows: ¢; > to (respec.
t1 7 ta) if |[tio|] > ||t20]| (respec. ||tio]| = |t20]|) for all substitution o that
makes ||t;0]| and ||t2o|| ground (e.g., an integer constant). Two popular instances
of symbolic norms are the symbolic term-size norm || - ||¢+s (which counts the
arities of the term symbols) and the symbolic list-length norm || - ||y (which
counts the number of elements of a list), e.g.,

f(X,Y,a) ts f(X,a,b) since Hf(X)Yaa)Hts =X+Y+3>X+3= Hf(X’aab)HtS

[(X[R] Zu [s(X)|R] since [[[X[R][[n = R+ 1> R+ 1= [|[s(x)|R]l[u

Now, we produce a size-change graph G for every pair (H, B;) of every clause
H «— By,...,B, of the program, with edges between the arguments of H and
B; when the size of the corresponding terms decrease w.r.t. a given reduction
pair (7Z,>). Consider the following simple program:

(c1) incList([],[]).

(co) incList([X|R],I,L) «— iList(X,R,I,L).

(cs) iList(X,R,I,[XI|RI]) — add(I, X, X1I),incList(R, I, RI).
(ca) add(0,Y,Y).

(c5) add(s(X),Y,s(2)) « add(X,Y, Z).

Here, the size-change graphs associated to, e.g., clause c3 are as follows:

G:iList — add G’ :iList —— incList
LiList laaa lirist =is _ lincList

Zts
2iList s 2add 2iList =ts _ 2incList
BiList 3add BiList sy, _ SincList

ts
4iList 4iList

using a reduction pair (s, >¢s) induced from the symbolic term-size norm.
In order to identify the program loops, we should compute roughly a transi-
tive closure of the size-change graphs by composing them in all possible ways.

Basically, given two size-change graphs:
G={1p,....,np}, {1qg,...,mq}, En) H={1q....mg},{1r,..., 0}, E2)
w.r.t. the same reduction pair (27, >), their concatenation is defined by

GoH=={1p....np}{1r,.... L}, E)

where E contains an edge from i, to k, iff £y contains an edge from i, to some
Jjq and Ey contains an edge from j, to k,. Furthermore, if some of the edges are
labelled with >, then so is the edge in E; otherwise, it is labelled with 7.

In particular, we only need to consider the idempotent size-change graphs G
with G @ G = G, because they represent the (potential) program loops.

For the previous example, we compute the following idempotent size-change
graphs:

Gy 1 incList — incList Gy :ilist — iList Gs:add — add

~ts —ts ~ts
Lincrist — LincList Lirist = liList ladga — Ladd

t, ts ~ts its
2incList — ZincList 2iList —— 2iList 2add —> 2aad

>ts ~ts >ts
BincList — = 3incList 3iList — 3iList 3add —= 3add

>t,s
dirist — 4iList

that represent how the size of the arguments of the three potentially looping
predicates changes from one call to another.

3 A Fully Automatic Binding-Time Analysis

3.1 Logen and Overview of the Algorithm

The LOGEN system [9] is an offfine partial evaluator for Prolog, which works on an
annotated version of the source program. LOGEN uses two kinds of annotations:

— Filter declarations, which declare which arguments to which predicates are
static and which ones are dynamic. This influences the global control (only):
dynamic arguments are always replaced by fresh variables, while static ar-
guments are kept as they are. In this work, we consider a relatively simple
domain of binding-types for predicate arguments:

— static: the argument is definitely known at partial evaluation time;

— nonvar: the argument is not a variable at partial evaluation time, i.e.,
the top-level function symbol is known;

— list_nonvar: the argument is definitely bound to a finite list, whose ele-
ments are not variables;

— list: the argument is definitely bound to a finite list of possibly unknown

arguments at partial evaluation time;

— dynamic: the argument is possibly unknown at partial evaluation time.
In LOGEN, though, the user can define their own binding-types [4], and one
can use the pre-defined list-constructor to define additional types such as
list(dynamic) to denote a list of known length with dynamic elements, or
list(nonvar) to denote a list of known length with non-variable elements.

— Clause annotations, which indicate for every call in the body of a clause
how that call should be treated during unfolding. This thus influences the
local control only, which is effectively hard-wired. Calls to user predicates are
either annotated with memo — indicating that it should not be unfolded
— or with unfold — indicating that it should be unfolded. Calls to built-ins
are either annotated with rescall — indicating that it should not be called
— or with call — indicating that it should be called during specialisation.
Our algorithm works in two phases. In the first phase a goal-independent size-

change analysis is run to obtain selection-rule independent information about
terminating and quasi-terminating calls. In the second phase, an abstract in-
terpretation propagates abstract information about entry points thorough the
program, making decisions about how to annotate the program. These decisions
are based on the abstract patterns and the result of the size-change analysis.

3.2 Propagation of Binding-Types

Given a program and the specification of the input data for some initial predicate,
a binding-time analysis first propagates the known information through all the
program clauses. The propagation of binding-types works as follows:
— A call pattern is processed and the abstract information propagated through
the program;
— For every program point, one has to decide
— For built-ins, whether they should be called or not; this is decided solely
on the abstract information. E.g., functor (nonvar,dynamic,dynamic)
can be called, functor(dynamic,static,dynamic) cannot.
— For calls to user-defined predicates, whether to unfold or memoize them.
For this, the information of the size-change analysis is used. If the pred-
icate is marked as unfold, its clauses will be analysed. If a predicate is
marked as memo, then it is checked whether the current call is safe w.r.t.
global termination. If not, arguments are generalised (marked dynamic).
For this, again the size-change analysis results are used.
Note that in both cases these decisions influence the propagation of abstract
information to the right of the call under consideration. E.g., consider the
goal functor (X,F,N), p(F). If X is nonvar, then the functor call will be
evaluated and F becomes static within p(F) (no matter what F was before).
We consider that the user provides a program and the binding-types for some
predicate, and an iterative algorithm (like that of [4]) is used to propagate the
binding-types to all predicates, i.e., to compute a program division of the form

div = {p1 = (btll, .. .,btlml),. .oy Pn (btnl, .. -vbtnmn)}

where pi,...,p, are the predicates of the considered program and bt;; are
binding-types. We write div(p;) to denote the binding-types associated to p;
in div and div(p;,j) to denote the binding-type of the j-th argument of p; in
div. For simplicity, we consider a monovariant binding-time analysis where a
single sequence of binding-types is associated with each predicate.

3.3 Ensuring Local Termination

In this section, we consider the local termination of the specialisation process,
i.e., we analyse whether the unfolding of an atom terminates for any selection
strategy.

Let us first recall the notion of instantiated enough w.r.t. a symbolic norm
from [11]: a term ¢t is instantiated enough w.r.t. a symbolic norm ||-|| if ||¢]| is an
integer constant. We now present a sufficient condition for termination. Basi-
cally, we require the decreasing parameters of (potentially) looping predicates to
be instantiated enough w.r.t. a symbolic norm in the considered computations.

Theorem 1 (termination [13]). Let P be a program and let (7, >) be a re-
duction pair induced by a symbolic norm || - ||. Let A be a set of atoms. If every
idempotent size-change graph for P contains at least one edge i, el i, such that,
for every atom A € A, computation rule R, and atom p(ti,...,t,) € calls%(A),
t; is instantiated enough w.r.t. || - ||, then P is terminating w.r.t. A.

For instance, according to the idempotent graphs in Sect. 2, calls to predicate
incList terminate whenever its first or its last argument is instantiated enough

w.r.t. || - ||ss, either the second or the fourth argument of iList is instantiated
enough w.r.t. || - ||zs, and either the second or the third argument of add is
instantiated enough w.r.t. || - ||¢s.

Note that the strictly decreasing arguments should be instantiated enough in
every possible derivation w.r.t. any computation rule. Although this condition
is undecidable in general, it can be approximated by using the binding-types of
the computed division (cf. Section 3.2). From Theorem 1 above, one can design
a simple annotation strategy as follows:

Definition 2 (local annotations). Let P be a program and let (75,>) be a
reduction pair induced by a symbolic norm || - ||. Let G be the idempotent size-
change graphs from the size-change analysis and div be the computed division.
The calls in the bodies of the clauses of P are annotated as follows:

— a call p(t1,...,tn) is annotated with unfold if every idempotent size-change
graph for p/n in G contains at least one edge i, el ip, 1 <1 < n, such that
div(p, i) # dynamic;

— otherwise, the call is annotated with memo.

Consider, e.g., that the propagation of binding-types returns the following divi-
sion for the incList program of Sect. 2:
div = { incList — (dynamic, static, dynamic),
iList + (dynamic, dynamic, static, dynamic),
add — (static, dynamic, dynamic) }

Then, according to the idempotent size-change graphs of Sect. 2 and Theorem 1
above, only the call to add can be marked as unfold in the program.

3.4 Ensuring Global Termination

In order to ensure the global termination of the specialisation process, we should
ensure that only a finite number of non-variant atoms are added to the set
of (to be) partially evaluated atoms, i.e., that the sequence of atoms is quasi-
terminating.

For this purpose, [13] adds an additional condition, namely that the consid-
ered norms || - || should be bounded, i.e., the set {s | ||t|| = ||s||} should contain
a finite number of nonvariant terms for any term ¢. Note that this condition ex-
cludes the use of some norms. For instance, the list-length norm is not bounded,
a serious limitation of the results in [13]. Moreover, quasi-termination was only
ensured if all calls at partial evaluation time were linear, i.e., if no call contained
multiple occurrences of the same variable.

Basically, [13, Theorem 4.7] shows that quasi-termination is guaranteed when

all idempotent size-change graphs have an edge i, A, ip for every argument,
with R € {>, 7}, the considered norm is bounded, and all calls are linear.
According to this result, we could define a simple annotation strategy as follows:
— the reduction pair is induced by the term-size norm (since the list-length
norm is not bounded);
— for every call p(ty,...,t,), if there exists an idempotent size-change graph
with no edge to the input argument i,, then ¢; is annotated as dynamic;
— otherwise, it is annotated as static.
This approach, however, is too coarse to produce useful results. Now, we show
that arbitrary symbolic norms can still be used as long as a suitable generalisa-
tion is applied at the global level.

Let ||-|| be a symbolic norm. Given a term ¢, we denote by mgg!'ll () the most
general generalisation of ¢ such that ||t|| = ||mgg!I'l!(t)||. E.g., given the term
t = [s(N),b], we have mgg!l'lli(t) = [X,Y]. We also let mgg!l'll(p(t1,...,t,)) =
p(mgg!'l(t1), ..., mggIl(t,)) and mgg!MI(A) = {mgg/Il(4) | A € A}.

Definition 3 (quasi-termination up to a symbolic norm). Let P be a
program and A be a set of atoms. Given a symbolic norm ||- ||, we say that P is
quasi-terminating w.r.t. A up to || - || if, for every computation rule R, the set
mgg!l'l (call%(Q)) contains finitely many nonvariant atoms.

This notion of quasi-termination up to a symbolic norm is particularly useful
in the context of partial evaluation since it takes into account that some gen-
eralisation is often performed in the global level. Consider, e.g., the program
{p(X]) < p([s(X)]).}. This program cannot be proved quasi-terminating ac-
cording to [13] because the symbolic list-length norm cannot be used; actually,
the program is not quasi-terminating:

p([a]) ~ p([s(a)]) ~ p([s(s(a))]) ~ ...

However, if we consider the sequence of calls in which every atom A is replaced
by mgg!l'lli(A), then the computation is indeed quasi-terminating:

mgg!1 (p([a])) = mgg" M (p([s(@)])) = ... = p(X) (up to renaming)

Therefore, non-bounded norms can be used as long as all symbols that are not
taken into account by this norm are generalised in the global level.

In the following, we assume that the specialisation algorithm proceeds in this
way, which allows us to exploit a stronger quasi-termination result and annotate
less terms as dynamic.

Definition 4 (global annotations). Let P be a program and let (77,>) be a
reduction pair induced by a symbolic norm || - ||. Let G be the idempotent size-
change graphs of the size-change analysis. For each predicate p/n and argument
i, 1 <1i < n, we compute an initial division div such that:

— div(p, i) = static if, for every idempotent size-change graph of P associated

to p/n, there is an edge jpi ip, Re {~,2};
— otherwise, div(p,i) = dynamic.

Furthermore, if an argument is marked as static but the list-length norm was
used, then it is changed to list(dynamic) to ensure that mag!l'llt is applied to this
argument in the global level.

For instance, for the incList example, given the idempotent size-change graphs
of Sect. 2, all arguments of all predicates can be safely marked as static. This
initial division is then used in the propagation of binding-types discussed in
Sect. 3.2.

4 The BTA in Practice

Our new binding-time analysis is still being continuously extended and improved.
We provide some preliminary experimental results below. The experiments were
run on a MacBook Pro with a 2.33 GHz Core2 Duo Processor and 3 GB of RAM.
Our BTA was using SICStus Prolog 4.02.

First, a simple example is the match-kmp from DPPD [10]. The original run
time for 100,000 executions of the queries from [10] took 1.85 s. The run time of
our BTA was below the measuring threshold and running LOGEN on the result
also took very little time (0.00175 s). The specialised program took only 1.57
s (i.e., a speedup of 1.18). For comparison, ECCE took 0.02 s to specialise the
program; the resulting specialised program is faster still (0.9 s), as the online
specialiser was able to construct a KMP-like specialised pattern matcher. A
better example is the regular expression interpreter from [10]. Here, the original
took 1.82 s for 100,000 executions of the queries (r3 in [10]). Our BTA took 0.01
s, LOGEN took 0.004 s to specialise the program, which then took 0.97 s to run
the queries (i.e., a speedup of 1.88). ECCE took 0.04 s to specialise the program;
the specialised program only runs marginally faster (0.96 s).

To validate the scalability of our BTA we have tried our new BTA on a
larger example, the PIC processor emulator from [5]. It consists of 137 clauses
and 855 lines of code. The purpose is here was to specialise the PIC emulator for
a particular PIC machine program, in order to run various static analyses on it.
The old BTA from [4] took 1 m 39 s (on a Linux server which corresponds roughly
to 67 seconds on the MacBook Pro).? Furthermore the generated annotation file
is erroneous and could not be used for specialisation. With our new BTA a
correct annotation is generated in 2 s; the ensuing specialisation by LOGEN took
4.26 s. Also, with ECCE it took 9 m 30 s to construct a (very large) specialised
program.

Another example, is the lambda interpreter for a small functional language
from [8]. This interpreter contains some side-effects and could not be run through
ECCE. Our BTA took 1.28 s to generate an annotation. Specialisation with LOGEN
then took 7 ms, but unfortunately resulting in no speedup over the original.

In conclusion, our BTA is well suited to be applied to larger programs. The
accuracy of the annotations is not yet optimal, but note that at least we do
obtain correct annotations which provide a good starting point for hand-tuning.

5 Future Work

In conclusion, we have presented a very fast BTA, able to cope with larger pro-
grams and for the first time ensuring both local and global termination. Com-
pared to [13] we have a stronger quasi-termination result, allow non-bounded
norms and have a new more precise annotation procedure. While the accuracy
of our BTA is reasonable, there is still much room for improvement.

One way to improve the accuracy of the BTA is to generate not offline,
but semi-online annotations. In other words, instead of generating rescall we
produce semicall (which tries to call the built-in if enough static information
is available), online instead of memo (which tries to unfold, if this is safe given
the unfolding history), and marking arguments as online rather than dynamic.
This should yield a fast but still precise partial evaluator: most of the decisions
will hopefully already have been taken offline, the online overhead is only applied
to those places in the source code where the BTA was imprecise.

Another source of improvement will come from refining the size-change anal-
ysis so that not all size-change graphs are composable but only those in which the
considered atoms unify. Furthermore, we plan to label every call in the program
so that different loops for the same predicate can be distinguished. Preliminary
experiments in these directions are promising.

3 Tt took us considerable time to get [4] working on a newer machine (due to the
various components requiring differing — sometimes outdated — Prolog systems).
Even there, this BTA sometimes ran out of memory on our MacBook Pro, and we
had to resort to running the BTA on our webserver (this Linux server has 26 MLIPS,
whereas our Mac has 38 MLIPS).

References

1.

10.

11.

12.
13.

E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in Partial Deduc-
tion of Logic Programs with Impure Predicates. In Proc. of LOPSTR’05, pages
115-132. Springer LNCS 3901, 2006.

Krzysztof R. Apt. Introduction to logic programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 10, pages 495-574. North-
Holland Amsterdam, 1990.

M. Codish and C. Taboch. A Semantic Basis for the Termination Analysis of Logic
Programs. Journal of Logic Programming, 41(1):103-123, 1999.

S.-J. Craig, J. Gallagher, M. Leuschel, and K.S. Henriksen. Fully Automatic Bind-
ing Time Analysis for Prolog. In Proc. of the Int’l Symposium on Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’04), pages 53-68. Springer LNCS
3573, 2005.

Kim S. Henriksen and John P. Gallagher. Analysis and specialisation of a PIC
processor. In Proceedings of the IEEE International Conference on Systems, Man
& Cybernetics (2), pages 1131-1135, The Hague, The Netherlands, 2004.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

M. Leuschel and M. Bruynooghe. Logic Program Specialisation through Partial
Deduction: Control Issues. Theory and Practice of Logic Programming, 2(4-5):461—
515, 2002.

M. Leuschel, S.-J. Craig, M. Bruynooghe, and W. Vanhoof. Specialising Inter-
preters Using Offline Partial Deduction. In Program Development in Computa-
tional Logic, pages 340-375. Springer LNCS 3049, 2004.

M. Leuschel, J. Jorgensen, W. Vanhoof, and M. Bruynooghe. Offline Specialisation
in Prolog using a Hand-Written Compiler Generator. Theory and Practice of Logic
Programming, 4(1-2):139-191, 2004.

Michael Leuschel. The ECCE partial deduction system and the DPPD library of
benchmarks. Obtainable via http://www.ecs.soton.ac.uk/ mal, 1996-2002.

N. Lindenstrauss and Y. Sagiv. Automatic Termination Analysis of Logic Pro-
grams. In Proc. of Int’l Conf. on Logic Programming (ICLP’97), pages 63-77. The
MIT Press, 1997.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

G. Vidal. Quasi-Terminating Logic Programs for Ensuring the Termination of
Partial Evaluation. In Proc. of the ACM SIGPLAN 2007 Workshop on Partial
Evaluation and Program Manipulation (PEPM’07), pages 51-60. ACM Press, 2007.

