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Abstract. Program slicing is a well-known methodology that aims at
identifying the program statements that (potentially) affect the values
computed at some point of interest. Within imperative programming,
this technique has been successfully applied to debugging, specialization,
reuse, maintenance, etc. Due to its declarative nature, adapting the slic-
ing notions and techniques to a logic programming setting is not an easy
task. In this work, we define the first, semantics-preserving, forward slic-
ing technique for logic programs. Our approach relies on the application
of a conjunctive partial deduction algorithm for a precise propagation of
information between calls. We do not distinguish between static and dy-
namic slicing since partial deduction can naturally deal with both static
and dynamic data. A slicing tool has been implemented in ecce, where
a post-processing transformation to remove redundant arguments has
been added. Experiments conducted on a wide variety of programs are
encouraging and demonstrate the usefulness of our approach, both as a
classical slicing method and as a technique for code size reduction.

1 Introduction

Program slicing is a fundamental operation that has been successfully applied to
solve many software engineering tasks, like, e.g., program understanding, mainte-
nance, specialization, debugging, reuse, etc. Slicing was originally introduced by
Weiser [32]—in the context of imperative programs—as a debugging technique.
Despite its potential applications, we found very few approaches to slicing in
logic programming (some notable exceptions are, e.g., [10, 27, 28, 30, 33]).

Informally, a program slice consists of those program statements which are
(potentially) related with the values computed at some program point and/or
variable, referred to as a slicing criterion. Program slices are usually computed
from a program dependence graph [5] that makes explicit both the data and
control dependences for each operation in a program. Program dependences can
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be traversed backwards and forwards—from the slicing criterion—giving rise
to so-called backward and forward slicing. Additionally, slices can be static or
dynamic, depending on whether a concrete program’s input is provided or not.
More detailed information on program slicing can be found in [12, 29].

Recently, Vidal [31] introduced a novel approach to forward slicing of lazy
functional logic programs. This work exploits the similarities between slicing and
partial evaluation—already noticed in [25]—to compute forward slices by a slight
modification of an existing partial evaluation scheme [2]. The main requirement
of [31] is that the underlying partial evaluation algorithm should be—in the
terminology of [26]—both monovariant and monogenetic in order to preserve the
structure of the original program. Unfortunately, this requirement also restricts
the precision of the computed slices.

In this work, we extend the approach of [31] in several ways. First, we adapt
it to the logic programming setting. Second, we consider a polyvariant and poly-
genetic partial evaluation scheme: the conjunctive partial deduction algorithm
of [3] with control based on characteristic trees [9, 18, 19]. Therefore, the com-
puted slices are significantly more precise than those of the previous approach.
Furthermore, since the basic partial deduction algorithm is kept unmodified, it
can easily be implemented on top of an existing partial deduction system (in
our case, ecce [19]). Finally, we use the redundant argument filtering transfor-
mation of [21] to slice out unnecessary arguments of predicates (in addition to
slicing out entire clauses).

The combination of these two approaches, [31] and [21], together with a
special-purpose slicing code generator, gives rise to a simple but powerful forward
slicing technique. We also pay special attention to using slicing for code size
reduction. Indeed, within the ASAP project [1], we are looking at resource-aware
specialization techniques, with the aim of adapting software for pervasive devices
with limited resources. We hence also analyze to what extent our approach can
be used as an effective code size reduction technique, to reduce the memory
footprint of a program.

Our main contributions are the following. We introduce the first, semantics-
preserving, forward slicing technique for logic programs that produces executable
slices. While traditional approaches in the literature demand different techniques
to deal with static and dynamic slicing, our scheme is general enough to produce
both static and dynamic slices. In contrast to [31], the restriction to adopt a
monovariant/monogenetic partial evaluation algorithm is not needed. Dropping
this restriction is important as it allows us to use more powerful specialization
schemes and, moreover, we do not need to modify the basic algorithm, thus
easing the implementation of a slicing tool (i.e., only the code generation phase
should be changed). We illustrate the usefulness of our approach on a series of
benchmarks, and analyze its potential as a code-size reduction technique.

The paper is organized as follows. After introducing some foundations in
the next section, Sect. 3 presents our basic approach to the computation of
forward slices. Then, Sect. 4 considers the inclusion of a post-processing phase
for argument filtering. Section 5 illustrates our technique by means of a detailed
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Fig. 1. The Essence of Conjunctive Partial Deduction

example, while Sect. 6 presents an extensive set of benchmarks. Finally, Sect. 7
compares some related works and concludes. More details and missing proofs
can be found in [22].

2 Background

Partial evaluation [13] has been applied to many programming languages, in-
cluding functional, imperative, object-oriented, logic, and functional logic pro-
gramming languages. It aims at improving the overall performance of programs
by pre-evaluating parts of the program that depend solely on the static input.

In the context of logic programming, full input to a program P consists of a
goal G and evaluation corresponds to constructing a complete SLDNF-tree for
P ∪ {G}. For partial evaluation, the static input takes the form of a goal G′

which is more general (i.e., less instantiated) than a typical goal G at runtime.
In contrast to other programming languages, one can still execute P for G′ and
(try to) construct an SLDNF-tree for P ∪ {G′}. However, since G′ is not yet
fully instantiated, the SLDNF-tree for P ∪ {G′} is usually infinite and ordinary
evaluation will not terminate. A technique which solves this problem is known
under the name of partial deduction [23]. Its general idea is to construct a finite
number of finite, but possibly incomplete1 SLDNF-trees and to extract from
these trees a new program that allows any instance of the goal G′ to be executed.

Conjunctive partial deduction (CPD) [3] is an extension of partial deduction
that can achieve effects such as deforestation and tupling [24]. The essence of
CPD can be seen in Fig. 1. The so-called global control of CPD generates a set
C = {C1, . . . , Cn} of conjunctions whereas the local control generates for each
conjunction a possibly incomplete SLDNF-tree τi (a process called unfolding).
The overall goal is to ensure that every leaf conjunction is either an instance of

1 An SLDNF-tree is incomplete if, in addition to success and failure leaves, it also
contains leaves where no literal has been selected for a further derivation step.



some Ci or can be split up into sub-conjunctions, each of which is an instance of
some conjunction in C. This is called the closedness condition, and guarantees
correctness of the specialized program which is then extracted by:

– generating one specialized predicate per conjunction in C (and inventing a
new predicate name for it), and by producing

– one specialized clause—a resultant—per non-failing branch of τi.
A single resolution step with a specialized clause now corresponds to perform-
ing all the resolutions steps (using original program clauses) on the associated
branch. Closedness can be ensured by various algorithms [16]. Usually, one starts
off with an initial conjunction, unfolds it using some “unfolding rule” (a function
mapping a program P and a goal G to an SLDNF-tree for P ∪ {G}) and then
adds all uncovered2 leaf conjunctions to C, in turn unfolding them, and so forth.
As this process is usually non-terminating, various “generalization” operations
are applied, which, for example, can replace several conjunctions in C by a sin-
gle less instantiated one. One useful foundation for the global control is based
on so-called characteristic trees, used for example by the sp [7] and ecce [19]
specialization systems. We describe them in more detail below, as they turn out
to be important for slicing.

Characteristic trees were introduced in partial deduction in order to capture
all the relevant aspects of specialization. The following definitions are taken from
[19] (which in turn were derived from [9] and the SP system [7]).

Definition 1 (characteristic path). Let G0 be a goal, and let P be a normal
program whose clauses are numbered. Let G0, . . . , Gn be the goals of a finite,
possibly incomplete SLDNF-derivation D of P ∪ {G0}. The characteristic path
of the derivation D is the sequence 〈l0 : c0, . . . , ln−1 : cn−1〉, where li is the
position of the selected literal in Gi, and ci is defined as follows:

– if the selected literal is an atom, then ci is the number of the clause chosen
to resolve with Gi;

– if the selected literal is ¬p(t̄), then ci is the predicate p.

Note that an SLDNF-derivation D can be either failed, incomplete, successful,
or infinite. As we will see below, characteristic paths will only be used to char-
acterize finite and nonfailing derivations. Once the top-level goal is known, the
characteristic path is sufficient to reconstruct all the intermediate goals as well
as the final one.

Now that we have characterized derivations, we can characterize goals through
the derivations in their associated SLDNF-trees.

Definition 2 (characteristic tree). Let G be a goal, P a normal program,
and τ a finite SLDNF-tree for P ∪ {G}. Then the characteristic tree τ̂ of τ is
the set containing the characteristic paths of the nonfailing SLDNF-derivations
associated with the branches of τ . τ̂ is called a characteristic tree if and only if
it is the characteristic tree of some finite SLDNF-tree.

2 I.e., those conjunctions which are not an instance of a conjunction in C.



Let U be an unfolding rule such that U(P,G) = τ . Then τ̂ is also called the
characteristic tree of G (in P ) via U . We introduce the notation chtree(G, P, U) =
τ̂ . We also say that τ̂ is a characteristic tree of G (in P ) if it is the characteristic
tree of G (in P ) via some unfolding rule U .

When characteristic trees are used to control CPD, the basic algorithm returns
a set of characteristic conjunctions, C̃, that fulfills the conditions for the correct-
ness of the specialization process. A characteristic conjunction is a pair (C, τ̂),
where C is a conjunction of literals—a goal—and τ̂ = chtree(C,P, U) is a char-
acteristic tree for some program P and unfolding rule U . From this set of charac-
teristic conjunctions, the specialized program is basically obtained by unfolding
and renaming.

3 Extracting Executable Forward Slices

Within imperative programming, the definition of a slicing criterion depends on
whether one considers static or dynamic slicing. In the former case, a slicing
criterion is traditionally defined as a pair (p, v) where p is a program statement
and v is a subset of the program’s variables. Then, a forward slice consists
of those statements which are dependent on the slicing criterion (i.e., on the
values of the variables v that appear in p), a statement being dependent on the
slicing criterion if the values computed at that statement depend on the values
computed at the slicing criterion or if the values computed at the slicing criterion
determine if the statement under consideration is executed [29]. As for dynamic
slicing, a slicing criterion is often defined as a triple (d, i, v), where d is the input
data for the program, i denotes the i-th element of the execution history, and v
is a subset of the program’s variables.

Adapting these notions to the setting of logic programming is not immediate.
There are mainly two aspects that one should take into account:

– The execution of partially instantiated goals—thanks to the use of logic vari-
ables—makes it unclear the distinction between static and dynamic slicing.

– The lack of explicit control flow, together with the absence of side effects,
makes unnecessary to consider a particular trace of the program’s execution
for dynamic slicing.

Therefore, we define a slicing criterion simply as a goal.3 Typically, the goal will
appear in the code of the source program. However, we lift this requirement for
simplicity since it does affect to the forthcoming developments. A forward slice
should thus contain a subset of the original program with those clauses that are
reachable from the slicing criterion. Similarly to [27], the notion of “subset” is
formalized in terms of an abstraction relation, to allow arguments to be removed,
or rather replaced by a special term:

3 If we fix an entry point to the program and restrict ourselves to a particular evalu-
ation strategy (as in Prolog), one can still consider a concrete trace of the program.
In this case, however, a standard tracer would suffice to identify the interesting goal.



Definition 3 (term abstraction). Let >t be the empty term (i.e., an unnamed
existentially quantified variable, like the anonymous variable of Prolog). A term
t is an abstraction of term t′, in symbols t � t′, iff t = >t or t = t′.

Definition 4 (literal abstraction). An atom p(t1, . . . , tn) is an abstraction
of atom q(t′1, . . . , t

′
m), in symbols p(t1, . . . , tn) � q(t′1, . . . , t

′
m), iff p = q, n = m,

and ti � t′i for all i = 1, . . . , n. A negative literal ¬P is an abstraction of a
negative literal ¬Q iff P � Q.

Definition 5 (clause abstraction). A clause c is an abstraction of a clause
c′ = L′

0 ← L′
1, . . . , L

′
n, in symbols c � c′, iff c = L0 ← L1, . . . , Ln and Li � L′

i

for all i ∈ {1, . . . , n}.

Definition 6 (program abstraction). A normal program4 P = (c1, . . . , cn)
is an abstraction of normal program P ′ = (c′0, . . . , c

′
m), in symbols P � P ′, iff

n ≤ m and there exists a subsequence (s1, . . . , sn) of (1, . . . ,m) such that ci � c′si

for all i ∈ {1, . . . , n}.

Informally, a program P is an abstraction of program P ′ if it can be obtained
from P ′ by clause deletion and by replacing some predicate arguments by the
empty term >t. In the following, P is a slice of program P ′ iff P � P ′. Trivially,
program slices are normal programs.

Definition 7 (correct slice). Let P be a program and G a slicing criterion. A
program P ′ is a correct slice of P w.r.t. G iff P ′ is a slice of P (i.e., P ′ � P )
and the following conditions hold:

– P ∪ {G} has an SLDNF-refutation with computed answer θ if and only if
P ′ ∪ {G} does, and

– P ∪ {G} has a finitely failed SLDNF-tree if and only if P ′ ∪ {G} does.

Traditional approaches to program slicing rely on the construction of some data
structure which reflects the data and control dependences in a program (like,
e.g., the program dependence graphs of [5]). The key contribution of this paper
is to show that CPD can actually play such a role.

Roughly speaking, our slicing technique proceeds as follows. Firstly, given
a program P and a goal G, a CPD algorithm based on characteristic trees is
applied. The use of characteristic trees is relevant in our context since they
record the clauses used during the unfolding of each conjunction. The complete
algorithm outputs a so-called global tree—where each node is a characteristic
conjunction—which represents an abstraction of the execution of the considered
goal. In fact, this global tree contains information which is similar to that in a
program dependence graph (e.g., dependences among predicate calls). In stan-
dard conjuntive partial deduction, the characteristic conjunctions, C̃, in the com-
puted global tree are unfolded—following the associated characteristic trees—to
produce a correct specialization of the original program (after renaming). In

4 We consider that programs are sequences of clauses in order to enforce the preserva-
tion of the syntax of the original program.



order to compute a forward slice, only the code generation phase of the CPD
algorithm should be changed: now, we use the characteristic tree of each con-
junction in C̃ to determine which clauses of the original program have been used
and, thus, should appear in the slice.

Given a characteristic path δ, we define cl(δ) as the set of clause numbers
in this path, i.e., cl(δ) = {c | 〈l : c〉 appears in δ and c is a clause number}.
Program slices are then obtained from a set of characteristic trees as follows:

Definition 8 (forward slicing). Let P be a normal program and G be a slic-
ing criterion. Let C̃ be the output of the CPD algorithm (a set of characteristic
conjunctions) and T be the characteristic trees in C̃. A forward slice of P w.r.t.
G, denoted by sliceT (P ), contains those clauses of P that appear in some char-
acteristic path of T . Formally, sliceT (P ) = ∪τ̂∈T {cl(δ) | δ ∈ τ̂}.

The correctness of the forward slicing method is stated as follows:

Theorem 1. Let P be a normal program and G be a slicing criterion. Let P ′

be a forward slice according to Def. 8. Then, P ′ is a correct slice of P w.r.t. G.

The proof can be found in [22]. Our slicing technique produces correct forward
slices and, moreover, is more flexible than previous approaches in the literature.
In particular, in can be used to perform both dynamic and static forward slicing
with a modest implementation effort, since only the code generation phase of
the CPD algorithm should be changed.

4 Improving Forward Slices by Argument Filtering

The method of Def. 8 has been fully implemented in ecce, an off-the-shelf partial
evaluator for logic programs based on CPD and characteristic trees. In practice,
however, we found that computed slices often contain redundant arguments that
are not relevant for the execution of the slicing criterion. In order to further refine
the computed slices and be able to slice out unnecessary arguments of predicates,
we use the redundant argument filtering transformations (RAF) of [21].

RAF is a technique which detects certain redundant arguments (finding all
redundant arguments is undecidable in general [21]). Basically, it detects those
arguments which are existential and which can thus be safely removed. RAF is
very useful when performed after CPD. Redundant arguments also arise when
one re-uses generic predicates for more specific purposes. For instance, let us
define a member/2 predicate by re-using a generic delete/3 predicate:

member(X,L) :- delete(X,L,DL).
delete(X,[X|T],T). delete(X,[Y|T],[Y|DT]) :- delete(X,T,DT).

Here, the third argument of delete is redundant and will be removed by the
partial evaluator ecce if RAF is enabled:

member(X,L) :- delete(X,L).
delete(X,[X|T]). delete(X,[Y|T]) :- delete(X,T).



int(cst(X),_,_,X).

int(var(X),Vars,Vals,R) :- lookup(X,Vars,Vals,R).

int(plus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX+RY.

int(minus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.

int(fun(X),Vars,Vals,Res) :- def0(X,Def), int(Def,Vars,Vals,Res).

int(fun(X,Arg),Vars,Vals,Res) :-

def1(X,Var,Def), int(Arg,Vars,Vals,ResArg),

int(Def,[Var|Vars],[ResArg|Vals],Res).

def0(one,cst(1)).

def0(rec,fun(rec)).

def1(inc,xx,plus(var(xx),cst(1))).

def1(rec,xx,fun(rec,var(xx))).

lookup(X,[X|_],[Val|_],Val).

lookup(X,[Y|T],[_|ValT],Res) :- X \= Y, lookup(X,T,ValT,Res).

Fig. 2. A simple functional interpreter

The ecce system also contains the reverse argument filtering (FAR) of [21]
(“reverse” because the safety conditions are reversed w.r.t. RAF). While RAF
detects existential arguments (which might return a computed answer binding),
FAR detects arguments which can be non-existential and non-ground but whose
value is never used (and for which no computed answer binding will be returned).
Consider, e.g., the following program:

p(X) :- q(f(X)). q(Z).

Here, the argument of q(f(X)) is not a variable but the value is never used. The
ecce system will remove this argument if FAR is enabled:

p(X) :- q. q.

The elimination of redundant arguments turns out to be quite useful to remove
unnecessary arguments from program slices (see next section). Only one exten-
sion is necessary in our context: while redundant arguments are deleted in [21],
we replace them by the special symbol >t so that the filtered program is still a
slice—an abstraction—of the original program. The correctness of the extended
slicing algorithm then follows from Theorem 1 and the results in [21].

5 Forward Slicing in Practice

In this section, we illustrate our approach to the computation of forward slices
through some selected examples. Consider the program in Fig. 2 which defines an
interpreter for a simple language with constants, variables, and some predefined
functions. First, we consider the following slicing criterion:

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),[xx],[11],X).



The slice computed by ecce w.r.t. this slicing criterion is as follows:

int(cst(X),_,_,X).

int(plus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX+RY.

int(minus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.

int(fun(X),Vars,Vals,Res) :- def0(X,Def), int(Def,Vars,Vals,Res).

def0(one,cst(1)).

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),[xx],[11],X).

Here, some predicates have been completely removed from the slice (e.g., def1
or lookup), even though they are reachable in the predicate dependency graph.
Furthermore, unused clauses are also removed, cutting down further the size of
the slice. By applying the argument filtering post-processing, we get5

int(cst(X),*,*,X).

int(plus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX+RY.

int(minus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX-RY.

int(fun(X),*,*,Res) :- def0(X,Def), int(Def,*,*,Res).

def0(one,cst(1)).

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),*,*,X).

The resulting slice is executable and will produce the same result as the original
program, e.g., the query slice1(X) returns the answer X=1. Note that this ex-
ample could have been tackled by a dynamic slicing method, as a fully specified
query was provided as the slicing criterion. It would be interesting to know how
a dynamic slicer would compare against our technique, and whether we have
lost any precision. In order to test this, we have implemented a simple dynamic
slicer in SICStus Prolog using profiled code and extracting the used clauses using
the profile data/4 built-in. The so extracted slice corresponds exactly to our
result (without the argument filtering; see [22]), and hence no precision has been
lost in this example.

In general, not only the code size of the slice is smaller but also the runtime
can be improved. Thus, our forward slicing algorithm can be seen as a—rather
conservative—partial evaluation method that guarantees that code size does not
increase. For instance, it can be useful for resource aware specialization, when
the (potential) code explosion of typical partial evaluators is unacceptable.

Our slicing tool can also be useful for program debugging. In particular,
it can help the programmer to locate the source of an incorrect answer (or an
5 For clarity, in the examples we use “*” to denote the empty term >t. In practice,

empty terms can be replaced by any term since they play no role in the computation.



unexpected loop; finite failure is preserved in Def. 7) since it identifies the clauses
that could affect the computed answer, thus easing the correction of the program.
Consider, e.g., that the definition of function plus contains a bug:

int(plus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.

i.e., the programmer wrote RX-RY instead of RX+RY. Given the following goal:

slice2(X) :- int(plus(cst(1),cst(2)),[x],[1],X).

the execution returns the—incorrect—computed answer X = -1. By computing
a forward slice w.r.t. slice2(X), we get (after argument filtering) the following:

int(cst(X),*,*,X).

int(plus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX-RY.

slice2(X) :- int(plus(cst(1),cst(2)),*,*,X).

This slice contains only 3 clauses and, thus, the user can easily detect that the
definition of plus is wrong.

The previous two slices can be extracted by a dynamic slicing technique,
since they do not involve a non-terminating goal. Now, we consider the following
slicing criterion:

slice3(X) :- int(fun(rec),[aa,bb,cc,dd],[0,1,2,3],X).

Despite the fact that this goal has an infinite search space, our slicing tool returns
the following slice (after argument filtering):

int(fun(X),*,*,*) :- def0(X,Def), int(Def,*,*,*).

def0(rec,fun(rec)).

slice3(X) :- int(fun(rec),*,*,*).

From this slice, the clauses which are responsible of the infinite computation can
easily be identified.

6 Experimental Results

In this section, we show a summary of the experiments conducted on an extensive
set of benchmarks. We used SICStus Prolog 3.11.1 (powerpc-darwin-7.2.0) and
Ciao-Prolog 1.11 #221, running on a Powerbook G4, 1GHz, 1GByte of RAM.
The operating system was Mac OS 10.3. We also ran some experiments with
SWI Prolog 5.2.0. The runtime was obtained by special purpose benchmarker
files (generated automatically be ecce) which execute the original and special-
ized programs without loop overhead. The code size was obtained by using the
fcompile command of SICStus Prolog and then measuring the size of the com-
piled *.ql files. The total speedups were obtained by the formula n∑n

i=1

speci
origi



Table 1. Speedups obtained by Specialization and by Slicing

Prolog System SWI-Prolog SICStus Ciao

Technique Specialized Sliced Specialized Sliced. Specialized Sliced

TOTAL 2.43 1.04 2.74 1.04 2.62 1.05
Average 5.23 1.07 6.27 1.09 11.26 1.09

where n is the number of benchmarks, and speci and origi are the absolute ex-
ecution times of the specialized/sliced and original programs respectively.6 The

total code size reduction was obtained by the formula 1−
∑n

i=1
specszi∑n

i=1
origszi

where n

is the number of benchmarks, and specszi and origszi are the code sizes of the
specialized/sliced and original programs respectively.

DPPD. We first compared the slicing tool with the default conjunctive spe-
cialization of ecce on the DPPD library of specialization benchmarks [15]. In a
sense these are not typical slicing scenarios, but nonetheless give an indication
of the behavior of the slicing algorithm. The experiments also allow us to eval-
uate to what extent our technique is useful as an alternative way to specialize
programs, especially for code size reduction. Finally, the use of the DPPD li-
brary allows comparison with other reference implementations (see, e.g., [3, 14]
for comparisons with mixtus, sp and paddy).

Table 1 (which is a summary of the full tables in [22]) shows the speedup of
the ecce default specialization and of our slicing algorithm. Timings for SWI
Prolog, SICStus Prolog, and Ciao Prolog are shown. It can be seen that the
average speedup of slicing is just 4%. This shows how efficient modern Prolog
implementations are, and that little overhead has to be paid for adding extra
clauses to a program. Anyway, the main purpose of slicing is not speedup,
but reducing code size. In this case, slicing has managed an overall code size
reduction of 26.2% whereas the standard specialization has increased the code
size by 56%. In the worst case, the specialization has increased the code size by
493.5% (whereas slicing never increases the code size; see the full tables in [22]).

Slicing-Specific Benchmarks. Let us now turn our attention to four, more
slicing-specific experiments. Table 2 contains the results of these experiments.
The inter medium benchmark is the simple interpreter of Sect. 5. The ctl trace
benchmark is the CTL model checker from [20], extended to compute witness
traces. It is sliced for a particular system and temporal logic formula to model
check. The lambdaint benchmark is an interpreter for a simple functional lan-
guage taken from [17]. It is sliced for a particular functional program (computing
the Fibonacci numbers). Finally, matlab is an interpreter for a subset of the Mat-
lab language (the code can be found in [22]). The overall results are very good:
the code size is reduced by 60.5% and runtime decreased by 16%.
6 Observe that this is different from the average of the speedups (which has the dis-

advantage that big slowdowns are not penalized sufficiently).



Table 2. Slicing Specific Benchmarks

Slicing Time Runtime Size

Original Sliced Original Sliced Reduction
Benchmark ms ms speedup Bytes Bytes %

inter medium 20 117 1.06 4798 1578 67.1%
lambdaint 390 177 1.29 7389 4769 35.5%
ctl trace 1940 427 1.35 8053 4214 47.7%
matlab 2390 1020 1.02 27496 8303 69.8%

Total 1.16 60.5%

Table 3. Various Slicing Approaches

Full Slicing Simple Std. PD Näıve PD

Benchmark Time (ms) Reduction Time (ms) Reduction Time (ms) Reduction

inter medium 20 67.1% 50 67.1% 20 41.8%
lambdaint 390 35.5% 880 9.0% 30 9.0%
ctl trace 1940 47.7% 140 47.7% 40 1.3%
matlab 2390 69.8% 1170 69.8% 200 19.3%

Total 4740 60.5% 2240 56.4% 290 17.0%

Comparing the Influence of Local and Global Control. In Table 3, we
compare the influence of the partial deduction control. Here, “Full slicing” is the
standard CPD that we have used so far; “Simple Std. PD” is a standard (non-
conjunctive) partial deduction with relatively simple control; and “Näıve PD” is
very simple standard partial deduction in the style of [31], i.e., with a one-step
unfolding and very simple generalization (although it is still more precise than
[31] as it can produce some polyvariance), where we have turned the redundant
argument filtering off.

The experiments we conducted (see [22] for the table of results) show the
clear difference between our slicing approach and one using a näıve PD on the
DPPD benchmarks used earlier: our approach manages a code size reduction of
26% whereas the näıve PD approach manages just 9.4%. The table also shows
that the overall impact of the filtering is quite small. This is somewhat surprising,
and may be due to the nature of the benchmarks. However, it may also mean
that in the future we have to look at more powerful filtering approaches.

7 Discussion, Related and Future Work

In this work, we have introduced the first, semantics-preserving, forward slicing
technique for logic programs. Traditional approaches to program slicing rely on
the construction of some data structure to store the data and control depen-
dences in a program. The key contribution of this paper has been to show that
CPD can actually play such a role. The main advantages of this approach are
the following: there is no need to distinguish between static and dynamic slicing
and, furthermore, a slicing tool can be fully implemented with a modest imple-
mentation effort, since only the final code generation phase should be changed



(i.e., the core algorithm of the partial deduction system remains untouched). A
slicing tool has been fully implemented in ecce, where a post-processing trans-
formation to remove redundant arguments has been added. Our experiments
demonstrate the usefulness of our approach, both as a classical slicing method
as well as a technique for code size reduction.

As mentioned before, we are not aware of any other approach to forward
slicing of logic programs. Previous approaches have only considered backward
slicing. For instance, Schoening and Ducassé [27] defined the first backward slic-
ing algorithm for Prolog which produces executable programs. Vasconcelos [30]
introduced a flexible framework to compute both static and dynamic backward
slices. Similar techniques have also been defined for constraint logic programs
[28] and concurrent logic programs [33]. Within imperative programming, Field,
Ramalingam, and Tip [6] introduced a constrained slicing scheme in which source
programs are translated to an intermediate graph representation. Similarly to
our approach, constrained slicing generalizes the traditional notions of static and
dynamic slicing since arbitrary constraints on the input data can be made.

The closest approaches are those of [31] and [21]. Vidal [31] introduced a
forward slicing method for lazy functional logic programs that exploits the sim-
ilarities between slicing and partial evaluation. However, only a restrictive form
of partial evaluation—i.e., monovariant and monogenetic partial evaluation—is
allowed, which also restricts the precision of the computed slices. Our new ap-
proach differs from that of [31] in several aspects: we consider logic programs;
we use a polyvariant and polygenetic partial evaluation scheme and, therefore,
the computed slices are significantly more precise; and, moreover, since the basic
partial deduction algorithm is kept unmodified, it can easily be implemented on
top of an existing partial deduction system. On the other hand, Leuschel and
Sørensen [21] introduced the concept of correct erasure in order to detect and
remove redundant arguments from logic programs. They present a constructive
algorithm for computing correct erasures which can be used to perform a simple
form of slicing. In our approach, we use this algorithm as a post-processing phase
to slice out unnecessary arguments of predicates in the computed slices. The com-
bination of these two approaches, [31] and [21], together with a special-purpose
slicing code generator, form the basis of a powerful forward slicing technique.

Since our work constitutes a first step towards the development of a forward
slicing technique for logic programs, there are many interesting topics for future
work. For instance, an interesting topic for further research involves the compu-
tation of backward slices (a harder topic). In this case, the information gathered
by characteristic trees is not enough and some extension is needed.

One should also investigate to what extent abstract interpretation can be
used to complement our slicing technique. On its own, abstract interpretation
will probably lack the precise propagation of concrete values, hence making it
less suitable for dynamic slicing. However, for static slicing it may be able to
remove certain clauses that a partial deduction approach cannot remove (see,
e.g., [4, 8] where useless clauses are removed to complement partial deduction)
and one should investigate this possibility further. One could also investigate



better global control, adapted for slicing (to avoid wasted specialisation effort in
case added polyvariance does not increase the precision of the slice). Finally, we
can use our slicing technique as a starting point for resource aware specialization,
i.e., finding a good tradeoff between code size and execution speed.
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