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Abstract. ProB is an animator and model checker for the B method.
It also allows to visualise the state space of a B machine in graphical
way. This is often very useful and allows users to quickly spot whether
the machine behaves as expected. However, for larger state spaces the
visualisation quickly becomes difficult to grasp by users (and the com-
putation of the graph layout takes considerable time). In this paper we
present two relatively simple algorithms to often considerably reduce the
complexity of the graphs, while still keeping relevant information. This
makes it possible to visualise much larger state spaces and gives the user
immediate feedback about the overall behaviour of a machine. The algo-
rithms have been implemented within the ProB toolset and we highlight
their potential on several examples. We also conduct a thorough experi-
mentation of the algorithm on 47 B machines and analyse the results.
Keywords: Formal Methods, B-Method, Tool Support, Model Check-
ing, Animation, Visualisation, Logic Programming.

1 Introduction

The B-method, originally devised by J.-R. Abrial [1], is a theory and method-
ology for formal development of computer systems. It is used by industries in a
range of critical domains, most notably railway control. B is based on the notion
of abstract machine and the notion of refinement. The variables of an abstract
machine are typed using set theoretic constructs such as sets, relations and func-
tions. The invariant of a machine is specified using predicate logic. Operations
of a machine are specified as generalised substitutions, which allow deterministic
and nondeterministic assignments to be specified. There are two main proof ac-
tivities in B: consistency checking, which is used to show that the operations of a
machine preserve the invariant, and refinement checking, which is used to show
that one machine is a valid refinement of another. These activities are supported
by industrial strength tools, such as Atelier-B [24] and the B-toolkit [5].

ProB [18] is an animation and model checking tool for the B method. ProB’s
animation facilities allow users to gain confidence in their specifications, and un-
like the animator provided by the B-Toolkit, the user does not have to guess the
right values for the operation arguments or choice variables. The undecidability
of animating B is overcome by restricting animation to finite sets and integer



ranges, while efficiency is achieved by delaying the enumeration of variables as
long as possible. ProB also contains a model checker [9] and a constraint-based
checker, both of which can be used to detect various errors in B specifications.

ProB shows the user a graphical view of the state space the model checker
has already explored. For this ProB makes use of the Dot tool of the graphviz
package [4]. This feedback is very beneficial to the understanding of the specifi-
cation since human perception is good at identifying structural similarities and
symmetries [10]. Such a feature works well for small state spaces, but in practice
specifications under analysis often consume thousands of states, which severely
limits the usefulness of the graph.

Take the following example machine (distributed with ProB).

MACHINE phonebook

SETS Name ; Code = {c1,c2,c3}

VARIABLES db

DEFINITIONS scope_Name == 1..3

INVARIANT

db : Name +-> Code

INITIALISATION

db := {}

OPERATIONS

cc <-- lookup(nn) = PRE nn : Name & nn : dom(db) THEN

cc:=db(nn) END;

add(nn,cc) = PRE nn:Name & cc:Code & nn /: dom(db) THEN

db := db \/ { nn |-> cc} END ;

delete(nn,cc) = PRE nn:Name & cc:Code & nn: dom(db) &

cc: ran(db) & db(nn) = cc THEN

db := db - { nn |-> cc} END

END

The full state space of this example (with Name set to cardinality 3) has 65
states and 433 transitions. As can be seen, the visualization of the state space
in ProB is possible (depicted in Fig. 1; the reader is not expected to be able to
read the labels, just get a general impression of the visualization) but is quite
difficult to grasp by humans and certain “obvious” aspects of the state space
are not be easy to identify in the visualization. For example, it is not obvious to
spot what the actual enabled operations are or that one can do at most three
consecutive calls to the add operation.

The question is whether the state space of B machines can be rendered in
ways more suitable for human understanding. It turns out that there are surpris-
ingly few tools and techniques that addressed this problem in general or for B
in particular. In this paper we thus present various (complimentary) techniques
to improve the visualisation of larger state spaces. These techniques have been
implemented in the ProB toolset and we illustrate the performance of them on
various examples. We also empirically evaluate the techniques on a large number
of examples and show that the techniques can be surprisingly effective.
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Fig. 1. Phonebook machine - Original State Space.

2 The DFA-Abstraction Algorithm

The state space generated by ProB can be viewed as non-deterministic labelled
transition system (LTS), where the edges are labelled with terms of the form
op(a1, . . . , an) and op(a1, . . . , an) → r1, . . . , rk, where op is the name of the ope-
ration that has been applied and a1, . . . , an are the arguments of the operation.
The first form is used for operations that do not return values, whereas the sec-
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ond form is used for operations that do and where r1, . . . , rk are the returned
values.

Formally, an LTS is a 4-tuple (Q, Σ, q0, δ) where Q is the set of states, Σ the
alphabet for labelling the transitions, q0 the initial state and δ ⊆ Q×Σ ×Q is
the transition relation. By q →a q′ we denote that (q, a, q′) ∈ δ. As usual, we
extend this to sequences of transitions so that q →a1,...,ak

q′ denotes the fact
that there exists a sequence of states q0, . . . , qk such that q0 = q, qk = q′ and
qi →ai

qi+1. The set of reachable states of an automaton is defined to be the
set {q ∈ Q | q0 →γ q for some sequence of states γ}. Finally, the traces of an
automaton L is the set of sequences traces(L) = {γ ∈ Σ∗ | q0 →γ q for some
q ∈ Q}.

One way to reduce the complexity of an LTS is to abstract away from certain
details of the labelling function. For example, the user may not be interested in
seeing (all) the arguments of (all) the operations. To this end we now define
abstraction functions and a way to apply them to construct simplified LTS.

Definition 1. An abstraction function for an LTS (Q,Σ, q0, δ) is a function α
from Σ to some new alphabet Σ′.

The α-abstraction of the LTS is then defined to be a new LTS (Q,Σ′, q0, δ
′)

where δ′ = {(q, α(a), q′) | (q, a, q′) ∈ δ}.

For the experiments later in the paper we have used α(op(a1, . . . , an)) =
op/n for operations without return values and α(op(a1, . . . , an) → r1, . . . , rk) =
op/n → k for operations that return values, but any other abstraction (or even
the identity function) can be used instead.1 This encodes a common perspective
where the user is interested in seeing which operations can be applied, but is not
interested in the actual arguments.

Now, the α-abstraction on its own is not yet very useful, as we have not
yet diminished the number of states (even though we may have reduced the
number of transitions). The first thing that comes to mind in that respect is the
classical minimization algorithm for Deterministic Finite Automaton (DFA) [2,
14]. Indeed, a finite LTS can be viewed as a Non-Deterministic Finite Automaton
(NFA) simply by marking all states as final states (basically the only difference
between an NFA and an LTS is the notion of final states). We can then convert
this NFA into a DFA using another classical algorithm [2, 14], to then apply the
minimization algorithm. This is exactly what we have done in our first so-called
DFA-Abstraction Algorithm, which we have implemented and integrated into
the ProB toolset. In summary, the DFA-Abstraction Algorithm computes

– the α-Abstraction of an LTS
– then determinizes the resulting intermediate LTS by converting sets of reach-

able states of the NFA into single states of the DFA,

1 We have decided to show the number of arguments n and the number of return values
k in our abstracted graphs. This is largely a matter of taste and α(op(a1, . . . , an) →
r1, . . . , rk) = op could have been used instead (as one is not allowed to have two
different operations with the same name anyway).
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– before minimizing it by computing maximal equivalence classes of the DFA,
yielding the result LTS.

The algorithm is shown on a small example in Fig. 2.

add(1)

add(2)

Original LTS

add/1

add/1

add/1

α-Abstraction
After

Determinization

a a

b b

c c

{a} {b,c}

Fig. 2. Illustrating the DFA-Abstraction Algorithm.

This algorithm was was primarily applied as a control: something to which
other algorithms could be compared. We were also aware that it had the potential
to collapse symmetrical subgraphs. It hence turns out to be very useful in some
cases, while in other cases increasing the size of the graph (as is well-known, the
NFA to DFA conversion can lead to an exponential blow-up, even though this
is rarely observed in practice).

How to read DFA-Abstracted graphs Every node in the graph corresponds
to a set of states of the animated B machine. Obviously, we lose information from
the α-abstraction, i.e., we loose the operation arguments. The DFA conversion
and minimization algorithms preserve the set of traces that can be performed.
However, because of determinization, multiple B states are put together into a
single node. Hence, if a node in the DFA-abstracted graph has an outgoing edge
marked with op/n this does not guarantee that the operation can be applied in
all B states covered by this node. Thus, to make the graphs more informative, our
LTS visualization algorithm checks whether an outgoing edge can be performed
in all covered B states: if it does the edge is drawn solid, otherwise the edge is
dashed.

In Fig. 3 you can see the effect of our algorithm on the full state space of
Fig. 1. The reduction is considerable, and the graph can now be easily digested
by a human. Furthermore, even though we have lost the operation arguments,
the reduced graph still contains a lot of useful information (especially since all
edges are solid). For example, one can see that it is only possible to add three
entries into the phonebook. It is also clear that one can only perform a delete or
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lookup after something has been added to the phonebook. One can also deduce
that add and delete are state changing operations.

6 lookup/1-->(1)

5

delete/2 add/2

lookup/1-->(1)

4

delete/2 add/2

lookup/1-->(1)

3

delete/2 add/2 initialise_machine/3

Fig. 3. Phonebook machine - DFA.

An alternative approach to using a DFA-Abstraction would be to minimize
the NFA – which is attractive considering that it is possible for an NFA to be
exponentially smaller in size when compared to an equivalent DFA. However,
the problem of minimizing NFAs is computationally intractable [16, 20], and we
have hence decided not to go down this route.

Another approach, documented in [15], attempts to reduce, and not minimize,
the size of an NFA while retaining language equivalence. Our experiments so far
have shown that the reductions gained are not as useful as our DFA-Abstraction
or Signature Merge approach described in the next section.

3 Merge States With Same Outgoing Transitions

This technique was devised after studying a collection of graphs produced by
ProB. It works by merging all states with the same enabled operations and so
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it may produce an automaton that is not equivalent (as far as the traces of
possible operations are concerned) to the original one. However, the technique
can achieve a big reduction in the size of the automaton while still preserving
the information about which B operations are enabled in a particular state (i.e.
the traces of length 1). To do this, we first introduce the concept of a signature
of a state, which represents the operations (i.e., transition labels) that can be
performed in that state.

Definition 2. Let (Q,Σ, q0, δ) be an LTS. We define the signature of a node
q ∈ Q, denoted by signature(q), as follows: signature(q) = {a | q →a q′ for
some q′ ∈ Q}.

If signature(q) = ∅ then we say that q is deadlocked. An automaton is said
to deadlock iff there is a reachable state that is deadlocked. If a ∈ signature(q)
then we say that a is enabled in q. An automaton is said to be quasi-live for
transition a iff there exists a reachable state where a is enabled.

Definition 3. Let (Q,Σ, q0, δ) be an LTS. The Signature-Merge of the LTS is
defined to be a new LTS (Qs, Σ, qs

0, δ
′) where Qs = {signature(q) | q ∈ Q},

qs
0 = signature(q0), and δs = {(signature(q), a, signature(q′)) | (q, a, q′) ∈ δ}.

Basically, the effect of a signature-merge is to merge all states which have a
common signature. This ensures that at least for traces of length 1 we do not
lose any precision. There are a few more properties that are preserved by the
Signature-Merge:

Proposition 1. 3 Let L = (Q,Σ, q0, δ) be an LTS and LS its Signature-Merge.
Then L deadlocks iff LS deadlocks. Also, for any a ∈ Σ, L is quasi-live for a iff
LS is quasi-live for a. Finally, traces(L) ⊆ traces(LS).

The last property means that if a certain sequence is not possible in the
Signature-Merge then it cannot be performed in the original LTS either.

The overall algorithm we have now implemented is to first compute the α-
abstraction of an LTS and then perform the Signature-Merge on the abstracted
LTS.

How to read Signature-Merge graphs As with the DFA-Abstracted graphs,
every node in the graph corresponds to a set of states of the animated B machine.
However, if a node has an outgoing edge marked with op/n we are not sure that
this particular edge can be taken in all B states covered by this node: we only
know that there is at least one covered state where this edge can be followed.
Hence, contrary to the DFA-conversion and minimization, signature merging
does not preserve the set of possible traces. However, all the states associated
with the node have the same signature: so we at least know that the operation op
is possible in all B states covered by the node. We can also apply Proposition to
deduce information about deadlocks and about traces that are not possible in
the original machine.
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To facilitate the interpretation of the Signature-Merge graphs, we will actu-
ally differentiate the edges according to whether an edge is definitely possible in
all states that have been merged together. Such edges are called definite, as for-
mally defined below, and will be drawn as solid lines, while edges which are not
definite will be drawn as dashed lines. This gives the user clear visual feedback
and allows to infer more properties about the underlying B machine.

Definition 4. Let (Q,Σ, q0, δ) be an LTS and (Qs, Σ, qs
0, δ

′) its Signature-Merge.
A transition (signature(q), a, signature(q′)) ∈ δ′ is called definite iff ∀p ∈ Q
such that signature(p) = signature(q): ∃p′ with signature(p′) = signature(q′)
and (p, a, p′) ∈ δ. In other words, for all other nodes p that have been merged
together with q, we can also perform the transition a leading to the same state
(in the Signature-Merge graph).

In Fig. 4 you can see the effect of this algorithm on the full state space of
Fig. 1. The reduction is considerable, and the graph can now be easily digested
by a human. Note that the reduced graph will not change even if we allow
more entries to be added into the phonebook (e.g., by changing the cardinality
of the set Name). So, in principle, one could even visualise the machine for an
unbounded set Name. This is not the case for the DFA (where if we allow 100
entries the DFA will have 100 nodes). However, some of the precision of the DFA
visualization is lost: we can no longer spot how many entries can be added; all
we can see is that we can add at least two entries, but not exactly how many.
Still, the signature based approach has managed to keep relevant information.
For example, it is still obvious from the graph that we can only lookup or delete
entries after adding an entry, and we can see that it is possible to reach a state
where it is no longer possible to add entries.

Extending the Algorithm We can make the algorithm more precise by dimin-
ishing the α-abstraction, e.g., by not abstracting away certain arguments. This
could be guided by the user and also applies to the DFA-Abstraction algorithm.
Second, the signature of a node basically corresponds to all the traces of length
1 that can be performed from that node. We could thus extend the notion of a
signature and compare all the traces of length 2,3,. . . .2

On the other hand we can make the algorithm less precise and achieve more
reduction in several ways. First, one could make α more aggressive, e.g., by
mapping several operations together (e.g., maybe the user is not interested in
some of the operations). Second, instead of merging nodes if they have exactly
the same signature, we could merge them if the signatures are sufficiently close
(e.g., they are the same except for one element or we only look at the signature
as far as a certain number of operations of interest is concerned).

In practice it may be good to combine both approaches: e.g. the user could
type a certain number as a target for the ideal number of nodes (say 20) and then
the graph is progressively made less or more precise to approach that number.

2 In the limit we obtain the classical equivalence preserving minimization algorithm.

8



1

initialise_machine/3

2

add/2 delete/2

lookup/1-->(1) add/2 delete/2

3

add/2 delete/2

lookup/1-->(1)

Fig. 4. Phonebook machine - Signature Merge.

4 Two more complicated examples

Figures 5, 6, and 7 show the behaviour of our algorithms for the “scheduler”
example taken from [7, 3]. Again, both algorithms perform very well, providing
clear graphs about the overall behaviour of the system.

Another example is taken from our ABCD3 project where we have developed
various B models for a distributed online travel agency, through which users can
make hotel and car rental bookings. Here is one of the (partial) models where the
DFA algorithm works extremely well: basically, the original graph is unreadable
due to the large number of nodes and transitions, while Fig. 8 is quite clear and
provides interesting feedback about the system.

3 “Automated validation of Business Critical systems using Component-based Design,”
EPSRC grant GR/M91013.

9



active={},ready={},waiting={}

initialise_machine({},{},{})

active={},ready={},waiting={PID1}

new(PID1)

active={},ready={},waiting={PID2}

new(PID2)

active={},ready={},waiting={PID3}

new(PID3)

del(PID1)

active={},ready={},waiting={PID1,PID2}

new(PID2)

active={},ready={},waiting={PID1,PID3}

new(PID3)

active={PID1},ready={},waiting={}

ready(PID1)

del(PID2)

new(PID1)

active={},ready={},waiting={PID2,PID3}

new(PID3)

active={PID2},ready={},waiting={}

ready(PID2)

del(PID3)

new(PID1)

new(PID2)

active={PID3},ready={},waiting={}

ready(PID3)

del(PID2)

del(PID1)

active={},ready={},waiting={PID1,PID2,PID3}

new(PID3)

active={PID1},ready={},waiting={PID2}

ready(PID1)

active={PID2},ready={},waiting={PID1}

ready(PID2)

del(PID3)

del(PID1)

new(PID2)

active={PID1},ready={},waiting={PID3}

ready(PID1)

active={PID3},ready={},waiting={PID1}

ready(PID3)

swap

new(PID2)

new(PID3)

del(PID3)del(PID2)

new(PID1)

active={PID2},ready={},waiting={PID3}

ready(PID2)

active={PID3},ready={},waiting={PID2}

ready(PID3)

swap

new(PID1)

new(PID3)

swap

new(PID2)

new(PID1)

del(PID3)

del(PID2)

del(PID1)

active={PID2},ready={},waiting={PID1,PID3}

ready(PID2)

active={PID1},ready={},waiting={PID2,PID3}

ready(PID1)

active={PID3},ready={},waiting={PID1,PID2}

ready(PID3)

swap

del(PID2)

new(PID3)

active={PID1},ready={PID2},waiting={}

ready(PID2)

swap

del(PID1)

new(PID3)

active={PID2},ready={PID1},waiting={}

ready(PID1)

swap

del(PID3)

new(PID1)

active={PID2},ready={PID3},waiting={}

ready(PID3)

swap

del(PID2)

new(PID1)

active={PID3},ready={PID2},waiting={}

ready(PID2)

swap

del(PID3)

del(PID1)

active={PID2},ready={PID1},waiting={PID3}

ready(PID1)

active={PID2},ready={PID3},waiting={PID1}

ready(PID3)

swap

new(PID3)

swap

new(PID1)del(PID3)

active={PID2},ready={PID1,PID3},waiting={}

ready(PID3)

swap

del(PID1)

ready(PID1)

swap

active={PID1},ready={PID3},waiting={PID2}

swap

active={PID3},ready={PID1},waiting={PID2}

swap

swap

del(PID3)

del(PID2)

active={PID1},ready={PID2},waiting={PID3}

ready(PID2)

ready(PID3)

swap

new(PID3)

swap

del(PID3)

new(PID2)

active={PID1},ready={PID3},waiting={}

ready(PID3)

swap

del(PID3)

active={PID1},ready={PID2,PID3},waiting={}

ready(PID3)

swap

del(PID2) ready(PID2)

swap

del(PID1)

new(PID2)

active={PID3},ready={PID1},waiting={}

ready(PID1)

swap

del(PID1)

del(PID2)

ready(PID1)

active={PID3},ready={PID2},waiting={PID1}

ready(PID2)

swap

del(PID2)

active={PID3},ready={PID1,PID2},waiting={}

ready(PID2)

swap

del(PID1)ready(PID1)

swap

new(PID1)

new(PID2)

swap

swap

swap

swap

new(PID2)

swap

swap

Fig. 5. Scheduler machine - Original State Space.

10



12

10

new/1

7

swap/0

11

swap/0

del/1

ready/1

9

swap/0 ready/1

8

swap/0

del/1

ready/1

6

del/1

ready/1

new/1

swap/0

5

del/1

new/1

ready/1

4

del/1

new/1

swap/0

new/1

ready/1

3

del/1 new/1 initialise_machine/3

Fig. 6. Scheduler machine - DFA.

11



1

initialise_machine/3

2

new/1 del/1

new/1 del/1

3

ready/1

4

new/1

5

ready/1

swap/0

swap/0 new/1 6

new/1

del/1

ready/1

swap/0

ready/1del/1

new/1

del/1 swap/0

del/1

ready/1 swap/0

7

ready/1 swap/0

Fig. 7. Scheduler machine - Signature Merge.

12



25 VerifyCreditCard/2

15

Request/1

24

19

VerifyCreditCard/2

23

VerifyCreditCard/222

VerifyCreditCard/2

21

VerifyCreditCard/2

20

Request/1

VerifyCreditCard/2

VerifyCreditCard/2

18

VerifyCreditCard/2

17

VerifyCreditCard/2

16

VerifyCreditCard/2

Request/1 VerifyCreditCard/2

14 VerifyCreditCard/2

13

VerifyCreditCard/2

12

VerifyCreditCard/2

11

VerifyCreditCard/2

10

VerifyCreditCard/2

9

Request/1 VerifyCreditCard/2

8

Request/1 VerifyCreditCard/2

7

VerifyCreditCard/2Request/1

6

Request/1 VerifyCreditCard/2

5

Request/1

VerifyCreditCard/2

4

Request/1 VerifyCreditCard/2

3

Request/1

initialise_machine/5

Fig. 8. TravelProB machine - DFA.

13



5 Empirical Evaluation

The DFA-Abstraction and Signature-Merge algorithms described in this docu-
ment have been implemented within ProB and are available in ProB 1.1 and
later.

We have conducted both an empirical evaluation of our algorithms, with con-
crete numbers on the size reductions achieved, and a more informal evaluation.
Some of the examples of the latter are found in the various figures of this paper
(notably in the preceding section). A more extensive list of figures is presented
in an accompanying technical report [19]. This informal evaluation suggests that
the algorithms are often surprisingly efficient at deriving informative graphs.
However, on some examples they fail to help the user, but overall they are a
very useful addition to the ProB toolset. The precise numbers presented in the
rest of this section underline this more informal evaluation.

Tables 1 and 2 below show key statistics obtained after applying the Signature-
Merge and the DFA-Abstraction algorithms on 47 arbitrary state spaces that had
been previously model checked with the ProB model checker: Table 1 shows
percentages of states and transitions compared to the original state space4 and
Table 2 shows the overall statistics.

Signature-Merge produced the best results, reducing the number of states by
at least 85% and the number of transitions by at least 87% in half of the state
spaces tested. Moreover, 80% of the graphs had at least 43% fewer states and
59% fewer transitions than the original. The best case produced a graph with
approximately 99% fewer states and transitions. The DFA-Abstraction technique
also gave good results; half of the graphs having at least 40% fewer states and at
least 64% fewer transitions, and the best case again reduced the number of states
and transitions by 99%. The worst case didn’t follow the trend of producing a
reduction, but in fact increased the size of the original graph by approximately
ten times. A result like this should not come as a surprise since, after all, it is
possible for a DFA to be exponentially greater in size than an equivalent NFA.
However, only a small proportion of the applications of this technique had this
effect; approximately 80% of the tests produced a reduction.

Table 1. Size of state space compared to original (%).
Sig. Merge DFA-Abstr.

Machine Name States Transitions States Transitions

Ambulances 0.24 0.02 0.86 0.10
Baskets 6.33 2.02 21.52 8.59
B Clavier code 100.00 42.11 133.33 42.11
bibliotheque 73.33 58.49 93.33 75.47

4 Some of the machine names in Table 1 appear more than once, however their imple-
mentations differ.
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Table 1 Size of state space (%) – continued from previous page.

Sig. Merge DFA-Abstr.
Machine Name States Transitions States Transitions

B Site central 60.00 12.50 80.00 12.50
CarlaTravelAgency 9.09 30.09 60.61 78.76
CarlaTravelAgencyErr 13.33 43.17 67.5 71.22
countdown 0.13 0.10 7.97 7.77
Cruise 29.54 18.19 1203.97 901.35
CSM 83.12 86.60 101.30 100.00
DAB 40.00 4.88 80.00 7.32
dfa 75.00 57.14 150.00 100.00
dijkstra 42.86 33.33 100.00 66.67
DSP0 12.24 10.61 16.33 12.12
Fermat 11.76 3.70 58.82 20.99
FinalTravelAgency 0.93 0.57 7.69 6.12
FunLaws 1.95 0.63 14.79 6.49
FunLaws 4.28 2.45 20.23 15.39
GAME 8.97 5.30 32.79 20.45
GSM revue 36.36 28.57 63.64 50.00
Inscription 25.93 16.03 33.33 19.08
inst adapted 1.07 0.41 17.17 6.68
Jukebox 15.00 4.53 1225.00 616.83
Level0 0.26 0.03 1.43 0.16
m0 100.00 99.98 150.77 150.29
Main 100.00 100.00 150.00 100.00
mm0 3.55 2.44 43.65 40.52
monitor 9.88 3.59 39.51 18.90
phonebook7 6.15 1.62 9.23 2.31
Queues 42.86 22.22 57.14 22.22
Results 66.67 45.45 83.33 45.45
Rubik2 0.09 0.10 100.03 100.00
RussianPostalPuzzle 2.04 1.71 27.21 22.33
rw 90.00 94.59 105.00 100.00
scheduler 22.22 14.05 33.33 20.66
SensorNode 60.00 18.18 80.00 18.18
SeqLaws 15.79 22.41 71.05 101.72
SetLaws 1.23 0.72 17.40 11.78
station 25.00 14.61 28.57 14.61
Teletext 16.00 5.71 48.00 35.71
Teletext 21.43 9.84 107.14 100.00
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Table 1 Size of state space (%) – continued from previous page.

Sig. Merge DFA-Abstr.
Machine Name States Transitions States Transitions

TheSystem 14.04 43.09 72.81 69.92
TransactionsSimple 16.79 33.33 76.34 83.01
TravelAgency 9.09 34.55 59.66 62.83
TravelAgency trace check 0.33 0.93 38.75 40.92
TravelProB 0.80 0.26 3.83 0.95
UndefinedFunctions 29.41 13.99 70.59 37.82

Signature Merge NFA to DFA
Statistic States Transitions States Transitions

Minimum 0.09 0.02 0.86 0.10
Maximum 100.00 100.00 1225.00 901.35
Median 15.00 12.50 59.66 35.71
Average 27.77 22.23 107.76 73.33
80th Percentile 56.57 40.6 100.02 96.6
Std. Dev. 31.05 27.95 241.50 155.05
Table 2. Statistics of reductions on 47 arbitrary state spaces

6 Discussion and Related Work

Tables 1 and 2 show some encouraging results. The often considerable reduction
of the original state space by the DFA-Abstraction algorithm can be explained
by its ability of finding regular behaviour amongst abstracted transitions, and
collapsing duplicated instances of it into a single path. A good example of this
is shown in the original Phonebook example (Figure 1) and the DFA reduced
Phonebook example (Figure 3).

The Signature-Merge algorithm gave better reductions than the DFA-Abstra-
ction reduction, producing non-equivalent graphs to the original that do not show
the exact behaviour. However, they remain useful since they can still be used
to check many properties (e.g., to check whether a certain execution path may
exist in the full state space).

The three algorithms, DFA minimization [2, 14], Computing Small NFAs [15]
and the Minimal Unambigous ε-transition NFAs [17] were also tested but were
found to be less effective than the two mentioned above. One reason for this
is that they do not implement any α-abstraction — hence future testing will
attempt to incorporate this.

In addition to the two main algorithms, several other approaches for im-
proving the visualization of state spaces were implemented and tested, and are
documented in the following subsections.
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Fig. 9. Screenshot of Java version of ProB

Integrated Java/Swing Visualizer Fig. 9 shows a version of ProB that has
been developed using Java to take advantage of its cross platform compatability
and rich graphical user interface library. Various panes in the main window
present the user with information relating to the current state; including the
variables and values of the current state, a history of operations executed, a
hierarchical expansion of enabled operations (top left pane) and a state space
visualization. There is also an integrated specification editor to facilitate any
changes necessary. As can be seen in the central pane of the screenshot, the
user has several choices of visualization to choose from – some of which allow
operations to be selectively removed from the visualization e.g., to remove self
loops and improve clarity.

User Defined Constraints Through previous experience gained with model
checkers, it was proposed that a better understanding of the system might be
gained if the user were able to directly query the state space. Therefore we
extended our tool by enabling the user to define constraints on system variables
and on values of operation arguments, and to subsequently view a graph of all
states in which these hold, and the relationship between them, if any. This is
generally useful when the user is interested in exposing some subtle aspect of the
state space, which a more general algorithm would be unlikely to reveal without
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user intevention. It should be noted that the effectiveness of reducing state spaces
using this technique depends largely on the user’s literacy in the specification
language and their understanding of the system; however its potential makes it
a feature worth keeping and extending in the future. As mentioned, it is also
possible for the user to selectively turn off visible operations in the visualization,
to further reduce the size of the graph: see the tick boxes in the middle of
Figure 9.

Subgraphs Another method of reducing the size of the graph is to show only
part of it: a subgraph – hence our system has the option to view the subgraph
that connects one or more states. This is particularly useful when one wants to
view all paths that lead to a state that violates the system invariant.

More Related Work

In addition to considering algorithms and techniques that produce smaller graphs,
with the goal of finding a more effective visualization, we must also consider the
other aspects that affect this. These are outside the main scope of the present
paper, but the interested reader is referred to [21], [8], [11], and [13].

The final aspect regards the influence of the size of a graph on the efficiency
of the graph layout algorithm. This issue is somewhat orthogonal to the issues
addressed in the present paper. Few layouting techniques can claim to deal effec-
tively with thousands of nodes even though graphs of this size appear frequently
in application domains, including model checking. The size of a graph can make
a normally good layout algorithm completely unusable. Therefore many visual-
ization techniques attempt to reduce the size of the graph to display. A large
quantity of the important techniques are documented in [13], one of which ap-
pears particularly relevant to our overall goal: that of clustering. A clustering
layout algorithm generally assigns nodes of a graph that satisfy some condition,
into the same cluster (the condition may be an equivalence relation). Edges be-
tween clusters are displayed to represent the relation between the nodes of one
cluster with those of another. Some good results have been witnessed and tested
for large graphs containing thousands of vertices [12]. However, these graphs
were representing deterministic protocols; it would be interesting to see if one
could find a suitable clustering technique for the elements of the state space of
a nondeterministic B model.

Finally, one can view the work in abstraction-based model checking, where
abstractions are applied during exploration, as very related to our work. For
example, the data abstraction of [9] is similar to our α-abstraction. However,
the purpose of all these model checking works (e.g., [22, 23, 6]) is to obtain more
efficient model checking, and not visualization by humans.
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