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Abstract

ProB is being used for teaching the B-method. In this paper, we present two new features of ProB that we
have introduced while teaching B. One feature allows a student (or an expert user) to graphically visualise
any predicate as a tree. The underlying algorithm can deal with undefined subformulas and tries to provide
useful feedback even for existentially quantified formulas which are false. This feature is especially useful
to inspect unexpected invariant violations or operations which are unexpectedly enabled or disabled. The
other feature enables a student or lecturer to easily and quickly write custom graphical state representations,
to provide a better understanding of the model. With this method, one simply has to assemble a series of
pictures and to write an animation function in B itself, which stipulates which pictures should be shown
where depending on the current state of the model. As an additional side-benefit, writing the animation
function in B itself is a good exercise for students.
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1 Introduction

There are two main proof activities in B: consistency checking, which is used to show
that the operations of a machine preserve the invariant, and refinement checking,
which is used to show that one machine is a valid refinement of another. These
activities are supported by tools, such as Atelier-B, B4Free, and the B-toolkit. In
addition to the proof activities, it is increasingly being realised that validation of the
initial specification is important to avoid deriving a “correct” implementation of an
incorrect specification. This validation can come in the form of animation, e.g., to
check that certain functionality is present in the specification. Another useful tool
is model checking [6], whereby the specification can be systematically checked for
properties expressed in a temporal logic. In previous work [9], the ProB animator

1 This research is being carried out as part of the EU funded FP7 research project 214158: DEPLOY
(Industrial deployment of advanced system engineering methods for high productivity and dependability).
2 Email: leuschel@cs.uni-duesseldorf.de
3 Email: samia@cs.uni-duesseldorf.de
4 Email: bendisposto@cs.uni-duesseldorf.de

mailto:leuschel@cs.uni-duesseldorf.de
mailto:samia@cs.uni-duesseldorf.de
mailto:bendisposto@cs.uni-duesseldorf.de


Leuschel, Samia, Bendisposto, Luo

and model checker has been presented to support those activities. The tool can also
be used to complement proof activities, as it supports automated consistency and
refinement checking of B machines.

ProB [9] is used at several universities for teaching the B-method. 5 Usually
the feedback of students is very positive, and we feel that animation helps the
students get a better understanding of the B formalism. The students have also
provided useful feedback about the tool, and over the years we have added many
new features to make the tool more useful. One such feature, which we present in
Section 2, allows the student (but also the industrial user) to inspect formulas and
graphically visualise them as a tree. It is especially useful to analyse unexpected
invariant violations or operations which are unexpectedly enabled or disabled.

The possibility to see and to explore the behaviour of a formal model is often in-
valuable for students. ProB provides feedback about the current state, the enabled
operations and can be used to visualise the statespace of a model [10]. However,
sometimes a more graphical, domain-specific visualisation of the current state of a
formal model is desirable, to give the student a better understanding of the model.
In earlier work [3], we have presented a flash-based animation engine. However, this
engine still requires careful setup and the development of gluing code together with
Flash animations. It is thus usually too complicated for students to set up and use
themselves, and even for lecturers the overhead can be prohibitive. In this paper,
we provide a very simple but effective way of producing custom animations of a
model. With this method, the student or lecturer simply has to assemble a series of
pictures and has to write an animation function in B itself, which stipulates which
pictures should be shown where depending on the current state of the system. As an
additional side-benefit, writing the animation function in B itself is a good exercise
for students.

Take for example the following B machine describing the well-known sliding
8-puzzle, where numbered tiles can be moved horizontally and vertically (into an
empty square). The goal is to reach a configuration where all tiles are in order. On
the left of Figure 1 you can see the non-graphical visualisation provided by ProB. It
is not unreadable, but the graphical visualisation on the right is clearly much more
inspiring and understandable. We now show how this animation can be achieved
using our new version of ProB with very little effort.
MACHINE Puzzle8
DEFINITIONS INV == (board: ((1..dim)*(1..dim)) -->> 0..nmax);
GOAL == !(i,j).(i:1..dim & j:1..dim =>

board(i|->j) = j-1+(i-1)*dim);
CONSTANTS dim, nmax
PROPERTIES dim:NATURAL1 & dim=3 & nmax:NATURAL1 & nmax = dim*dim-1
VARIABLES board
INVARIANT INV
INITIALISATION board : (INV & GOAL)
OPERATIONS

MoveDown(i,j,x) = PRE i:2..dim & j:1..dim &
board(i|->j) = 0 & x:1..nmax & board(i-1|->j) = x

THEN board := board <+ {(i|->j)|->x, (i-1|->j)|->0}
END;
MoveUp(i,j,x) = PRE i:1..dim-1 & j:1..dim &

board(i|->j) = 0 & x:1..nmax & board(i+1|->j) = x
THEN board := board <+ {(i|->j)|->x, (i+1|->j)|->0}

END;
MoveRight(i,j,x) = PRE i:1..dim & j:2..dim &

5 For example, Besançon,Nantes in France; Southampton and Surrey in England; McMaster University, in
Canada, Uppsala University in Sweden, and of course Düsseldorf in Germany.



Leuschel, Samia, Bendisposto, Luo

board(i|->j) = 0 & x:1..nmax & board(i|->j-1) = x
THEN board := board <+ {(i|->j)|->x, (i|->j-1)|->0}

END;
MoveLeft(i,j,x) = PRE i:1..dim & j:1..dim-1 &

board(i|->j) = 0 & x:1..nmax & board(i|->j+1) = x
THEN board := board <+ {(i|->j)|->x, (i|->j+1)|->0}

END
END

Fig. 1. Puzzle8 Non-Graphical and Graphical Visualisation

Another example is the scheduler from [8], whose code is repeated in Figure 2.
Figure 3 shows both the non-graphical animation on the left, as well as the graphical
animation obtained using our new tool, which clearly shows to the student and the
user how the processes progress through the various stages.
MACHINE scheduler
SETS PID = {process1,process2,process3}
VARIABLES active, ready, waiting
INVARIANT

active <: PID & ready <: PID & waiting <: PID &
(ready /\ waiting) = {} &
active /\ (ready \/ waiting) = {} &
card(active) <= 1 &
((active = {}) => (ready = {}))

INITIALISATION active := {} || ready := {} || waiting := {}
OPERATIONS

new(pp) =
SELECT pp : PID & pp /: active & pp /: (ready \/ waiting)
THEN waiting := (waiting \/ { pp })

END;
del(pp) =

SELECT pp : waiting
THEN waiting := waiting - { pp }

END;
ready(rr) = SELECT rr : waiting

THEN waiting := (waiting - {rr}) ||
IF (active = {})
THEN active := {rr}
ELSE ready := ready \/ {rr}
END

END;
swap = SELECT active /= {}

THEN
waiting := (waiting \/ active) ||
IF (ready = {}) THEN active := {}
ELSE ANY pp WHERE pp : ready

THEN active := {pp} || ready := ready - {pp}
END

END
END

END

Fig. 2. Scheduler Specification

We present this new feature for ProB in Section 3 along with typical examples
from teaching, and apply it to a larger case study the size of a typical student
project in Section 5.
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Fig. 3. Scheduler Non-Graphical and Graphical Visualisation

2 Visualising Formulas

Animation has the purpose of identifying unexpected behaviours of a model. If an
unexpected behaviour does occur, the user often would like to know more about the
source of the problem.

• If the invariant is violated, one would like to know exactly which part of the
invariant is violated and why.

• If an operation is unexpectedly not enabled, or unexpectedly enabled, one would
like to know the reason.

• If the animator cannot find values for the constants which satisfy the properties
of a machine, one would like to be able to locate the problematic properties.

For this, ProB had for quite some time the ability to inspect the invariant and
also to debug the properties. However, this view was often not precise enough, and
we have now implemented an algorithm which can take any B predicate or expression
and translates it into a graphical representation that can be inspected by the user.
We believe this feature to be especially useful for students and newcomers to B, but
we also believe it to be important when animating complex specifications.

The algorithm basically uses the ProB interpreter to compute the value of an
expression or the truth-value of a predicate. It then tries to decompose the expres-
sion or predicate into sub-expressions or -predicates. These are in turn recursively
evaluated, until we reach sub-expressions or -predicates which can no longer be de-
composed. The whole is then assembled into a graphical tree representation and
rendered using the GraphViz package [2]. For example, Figure 4 contains a visu-
alisation of the invariant of the scheduler machine, for the state already depicted
earlier in Figure 3. For each expression, we have two lines of text: the first indicates
the type of the node, i.e., the top-level operator. The second line gives the value
of evaluating the expression. For predicates, the situation is similar, except that
there is a third line with the formula itself and that the nodes are coloured: true
predicates are green and false predicates are red.

Note that our algorithm also deals with undefined predicates. Those are rendered
in orange. For example, the formula x ∈ dom(f) ∧ f(x) = 1, where f is the empty
function (and x some value aa) would be visualised as in Figure 5.
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Fig. 4. Visualising the invariant of the scheduler for state of Figure 3

Fig. 5. Visualising a predicate with undefined sub-predicates

One interesting problem is what to do when an existentially quantified formula
is false. In this case, our algorithm removes conjuncts from the end of the body
of the quantified formula, until the formula becomes true. An example is shown in
Figure 6, where we apply our algorithm to the guard of the new operation of the
scheduler machine (for the state already depicted earlier in Figure 3). Note that
the guard is modelled by an existential quantification over the parameters of the
operation. As can be seen, the existential formula is false, but our algorithm has de-
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tected that by removing the first condition pp 6∈ active, the formula would become
satisfiable. This information can be very valuable in detecting exactly where an
inconsistency arises inside a formula. In previous works [5,11], different algorithms
based on SAT solvers were developed to find a Minimal Unsatisfiable Subformula
(MUS). Our approach to find a short unsatisfiable formula is simple. We are cur-
rently interested in improving our algorithm by evaluating how the approaches in
[5,11] can be applied to our Prolog constraint solving technique.

Fig. 6. Visualising the guard of new of the scheduler for the state of Figure 3

3 The new Graphical Animation Model

The animation model is very simple:

(i) The basic units are individual images. The images are given a number and
their source file location is declared in the DEFINITIONS section of the an-
imated machine. A definition ANIMATION IMGx == "filename", defines the
image with number x where filename is the path to a gif image file.

(ii) The graphical visualisation consists of a two-dimensional grid, each cell in the
grid can contain an image. The same image can appear multiple times in the
grid.

(iii) The graphical visualisation is recomputed for every state, by evaluating a user-
defined animation function fa. The animation function fa is declared by defin-
ing ANIMATION FUNCTION in the DEFINITIONS section and must be of type
INTEGER * INTEGER +-> INTEGER. If the function is defined for r and c, this
means that the animator should display the image with number fa(r, c) at row
r and column c. If fa is undefined at r and c, then no image is displayed in
that cell.

The dimension of the grid is computed by looking at the minimum and
maximum coordinates that occur in the animation function. More precisely,
the rows are in the range min(dom(dom(fa)))..max(dom(dom(fa))) and the
columns are in the range min(ran(dom(fa)))..max(ran(dom(fa))).

For our 8-puzzle example, one could thus write the following animation function,
together with an image declaration list. The result of using this animation function
can be seen on the right of Figure 1.
ANIMATION_FUNCTION == ( {r,c,i|r:1..dim & c:1..dim & i=0} <+ board);
ANIMATION_IMG0 == "images/sm_empty_box.gif"; /* empty square */
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ANIMATION_IMG1 == "images/sm_1.gif"; /* square with 1 inside */
ANIMATION_IMG2 == "images/sm_2.gif";
ANIMATION_IMG3 == "images/sm_3.gif";
ANIMATION_IMG4 == "images/sm_4.gif";
ANIMATION_IMG5 == "images/sm_5.gif";
ANIMATION_IMG6 == "images/sm_6.gif";
ANIMATION_IMG7 == "images/sm_7.gif";
ANIMATION_IMG8 == "images/sm_8.gif"; /* square with lightblue 8 inside */

Each of the three integer types in the signature can be replaced by a deferred or
enumerated set, in which case our tool translates elements of this set into numbers.
In case of enumerated sets, the number is position of the element in the definition of
the set in the SETS clause. Deferred set elements are numbered internally by ProB,
and this number is used. (Note, however, that the whole animation function has to
be of the same type; otherwise the animator will complain about a type error.)

To avoid having to produce images for simple strings, one can use a declaration
ANIMATION STRx == "my string" to define image with number x to be automati-
cally generated from the given string.

Typical patterns for the animation function are as follows:

• A useful way to obtain a function of the required signature is to write a set
comprehension of the following form:
{row,col,img | row:1..NrRow & col:1..NrCols & P}, where P is a predicate
which gives img a value depending on row and col.

• Another useful pattern is to write one function for default images, and then use the
override operator to replace the default images only when needed: DefaultImages
<+ CurrentImages. This results in much more concise and readable functions.
This was used in the 8-Puzzle, by setting as default the empty square (image 0)
overriden by the partially defined board function.

• Translation predicates between user sets and numbers (extension above can di-
rectly handle user sets, but does not work well if we need a special image for
undefined,...)

4 Further Examples

Below we show three more examples, which illustrate how our new animation model
can be used. The examples also show that, despite its simplicity, the model is
powerful enough to provide interesting animations for a variety of models. This will
be further corroborated in Section 5.

4.1 Towers of Hanoi

The Towers of Hanoi problem is widely used to teach recursion and problem solving.
A B model of this problem is as follows. The animation function is surprisingly
simple (although we needed to make it slightly more complicated to ensure that the
stakes are not shown upside down). The graphical result can be seen in Figure 7.
MACHINE Hanoi
SETS Stakes
DEFINITIONS GOAL == (!s.(s:Stakes & s/=dest => on(s) = <>));
scope_Stakes == 1..3;
ANIMATION_FUNCTION == ({r,c,i|r:1..nrdiscs & c:Stakes & i=0} <+

{r,c,i|r:1..nrdiscs &
c:Stakes & r-5+size(on(c)): dom(on(c)) &
i = on(c)(r-5+size(on(c)))});
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ANIMATION_IMG0 == "images/Disc_empty.gif";
ANIMATION_IMG1 == "images/Disc1.gif"; /* the smallest disc */
ANIMATION_IMG2 == "images/Disc2.gif";
ANIMATION_IMG3 == "images/Disc3.gif";
ANIMATION_IMG4 == "images/Disc4.gif";
ANIMATION_IMG5 == "images/Disc5.gif"; /* the largest disc */
CONSTANTS orig,dest,nrdiscs
PROPERTIES orig: Stakes & dest:Stakes & orig /= dest & nrdiscs = 5
VARIABLES on
INVARIANT on : Stakes --> seq(INTEGER)
INITIALISATION

on := %s.(s:Stakes & s /= orig | <>) \/
{orig |-> %x.(x:1..nrdiscs|x)}

OPERATIONS
Move(from,to,disc) =

PRE
from:Stakes & on(from) /= <> & to:Stakes & to /= from &
disc:NATURAL1 & disc = first(on(from)) &
(on(to) /= <> => first(on(to))> disc)

THEN
on := on <+ { from |-> tail(on(from)), to |-> (disc -> on(to))}

END
END

Fig. 7. Hanoi Non-Graphical and Graphical Visualisation

4.2 Scheduler

We return to the scheduler example from [8], whose code is in Figure 2. Here
we require a more complicated animation function, because we have to map PID
elements to image numbers. The result of the animation has already been shown in
Figure 3.
IsPidNrci ==
((p=process1 & i=1) or (p=process2 & i=2) or (p=process3 & i=3));

ANIMATION_FUNCTION == ({1|->0|->5, 2|->0|->6, 3|->0|->7} \/
{r,c,img|r:1..3 & img=4 & c:1..3} <+
({r,c,i| r=1 & i:INTEGER & c=i & #p.(p:waiting & IsPidNrci)} \/
{r,c,i| r=2 & i:INTEGER & c=i & #p.(p:ready & IsPidNrci)} \/
{r,c,i| r=3 & i:INTEGER & c=i & #p.(p:active & IsPidNrci)} ));

ANIMATION_IMG1 == "images/1.gif";
ANIMATION_IMG2 == "images/2.gif";
ANIMATION_IMG3 == "images/3.gif";
ANIMATION_IMG4 == "images/empty_box.gif";
ANIMATION_IMG5 == "images/Waiting.gif";
ANIMATION_IMG6 == "images/Ready.gif";
ANIMATION_IMG7 == "images/Active.gif"

It would have been more elegant to use subsidiary definitions with arguments,
such as:
IsPidNr(c,i) ==
((c=process1 & i=1) or (c=process2 & i=2) or (c=process3 & i=3))

However, the current parser of ProB (derived from jbtools) cannot deal with
definitions with arguments when used inside other definitions. We are currently de-
ploying a new parser developed by Fabian Fritz using SableCC, which will overcome
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this problem.

4.3 Sudoku

For our course, we have also developed a B model of Sudoku, and show students how
they can use ProB to solve Sudoku puzzles. The machine has the variable Sudoku9
of type 1..fullsize-->(1..fullsize+->NRS), where NRS is an enumerate set
{n1, n2, ...} of cardinality fullsize. The animation function is as follows:

Nri == ((Sudoku9(r)(c)=n1 => i=1) & (Sudoku9(r)(c)=n2 => i=2) &
(Sudoku9(r)(c)=n3 => i=3) & (Sudoku9(r)(c)=n4 => i=4) &
(Sudoku9(r)(c)=n5 => i=5) & (Sudoku9(r)(c)=n6 => i=6) &
(Sudoku9(r)(c)=n7 => i=7) & (Sudoku9(r)(c)=n8 => i=8) &
(Sudoku9(r)(c)=n9 => i=9) );

ANIMATION_FUNCTION == ( {r,c,i|r:1..fullsize & c:1..fullsize & i=0} <+
{r,c,i|r:1..fullsize & c:1..fullsize & c:dom(Sudoku9(r)) &

i:1.. fullsize & Nri} );

Figure 8 shows the non-graphical visualisation of a particular puzzle, then the
graphical visualisation of the puzzle as well as the visualisation of the solution found
by ProB (after a couple of seconds).

Fig. 8. Sudoku Non-Graphical and Graphical Visualisation

Note that it would have been nice to be able to replace Nri inside the animation
function simply by i = Sudoku9(r)(c). While our visualisation algorithm can
automatically convert set elements to numbers, the problem is that there is a type
error in the override: the left-hand side is a function of type INTEGER*INTEGER+->INTEGER

while the right-hand side now becomes a function of type INTEGER*INTEGER+->NRS. One
solution is to extend our animator to accept multiple definitions of the animation
function. We have done so, and the user can, in addition to the standard animation
function, optionally define a default background animation function. The standard
animation function will override the default animation function, but the overriding
is done within the graphical animator and not within a B formula. In this way, one
can now rewrite the above animation as follows:
ANIMATION_FUNCTION_DEFAULT == ( {r,c,i|r:1..fullsize & c:1..fullsize & i=0} );
ANIMATION_FUNCTION == ( {r,c,i|r:1..fullsize & c:1..fullsize &

c:dom(Sudoku9(r)) & i:1.. fullsize & i = Sudoku9(r)(c)} )

The scheduler animation from Section 4.2 can now also be rewritten more ele-
gantly as follows:

ANIMATION_FUNCTION_DEFAULT ==
( {1|->0|->5, 2|->0|->6, 3|->0|->7} \/ {r,c,img|r:1..3 & img=4 & c:1..3} );

ANIMATION_FUNCTION == ( {r,c,i| r=1 & i:PID & c=i & i:waiting} \/
{r,c,i| r=2 & i:PID & c=i & i:ready} \/
{r,c,i| r=3 & i:PID & c=i & i:active}

)
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5 A more detailed case study: Formalising and Visual-
ising a Lift

In this section, we provide a more detailed case study and apply our animation
technology to a bigger specification, similar to a typical student project: the model
of a lift along with a controller that ensures that requests are eventually served.

Our experience was very positive, it was relatively straightforward to provide an
appealing graphical visualisation of the model. This greatly enhanced the under-
standability of the model, and allowed us to spot errors more quickly (e.g., in one
version of the model, the lift could get stuck on the top floor, which was not that
obvious to spot in the non-graphical visualisation).

In the following, we actually present two models of a lift. The first model makes
no distinction between internal and external call buttons. The second model is a
refinement of the first, and here there are separate panel buttons inside the lift
and external call buttons on each floor. In both cases, the lift can move between a
ground floor (constant groundf) and a top floor (constant topf). The state of both
lift models consists of the current floor the lift is on (variable cur floor), whether
its door is open or not (variable door open), whether it is currently moving up or
down (variable direction up) as well as the state of the buttons. In Figure 9, we
present the graphics we used in the definition ANIMATION IMGx == "filename" and
describe their associated event. Note that the images used before refinement are
from x=0 to 6.

5.1 The Lift Model before Refinement

Below are the constants and variables of the first lift model.
MODEL LiftM
CONSTANTS groundf,topf
PROPERTIES

topf : INTEGER &
groundf : INTEGER &
groundf = -1 &
topf = 2 &
groundf < topf

VARIABLES call_buttons,cur_floor,direction_up,do_count,
door_open,inside_panel_buttons

INVARIANT
cur_floor : groundf .. topf &
door_open : BOOL &
call_buttons : POW(groundf .. topf) &
direction_up : BOOL &
inside_panel_buttons : POW(groundf .. topf) &
do_count : 0 .. 3
...

Below is our animation function. The left part of the relational overriding <+
gives the default values (i.e., images), and the right part gives the actual images.
DEFINITIONS

Rconv == topf-r+groundf;
ANIMATION_FUNCTION ==
( {r,c,i|r:groundf..topf & ((c=2 & i=0) or (c=1 & i=2))} <+
({r,c,i|r:groundf..topf & Rconv:call_buttons & c=2 & i=1} \/
{r,c,i|r:groundf..topf & Rconv=cur_floor & c=1 &

((door_open=TRUE & i=3) or (door_open=FALSE & i=4))}) \/
{r,c,i| r=topf+1 & c=1 & ((direction_up=TRUE & i=5)

or (direction_up=FALSE & i=6)) } );

Our default images are 0 and 2. Our current images are 1, 3, 4, 5 and 6.
In our case, the lowest floor groundf and the highest floor topf are equal to −1
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 x "filename" Image  Description of the Event 
0 "images/lift/B_CallButtonOff.gif"  

A call button is off. 
1 "images/lift/B_CallButtonOn.gif"  O

ut
si

de
 

th
e 

lif
t 

A call button is on. 
2 "images/lift/LiftEmpty.gif" The lift is not on a specific 

floor. 
 

3 "images/lift/B_LiftOpen.gif" 

 

The lift’s door is opened. 

4 "images/lift/B_LiftClosed.gif" 

 

The lift’s door is closed. 

5 "images/lift/B_up_arrow.gif"  
The lift’s direction up is on. 

B
e
f
o
r
e
 
R
e
f
i
n
e
m
e
n
t
 

6 "images/lift/B_down_arrow.gif"  
The lift’s direction down is 
off. 

7 "images/lift/B_up_arrow_off.gif"  

 

The lift’s direction up is off.
8 "images/lift/B_floor_U1_off.gif" 

 
The panel button U1 is off. 

9 "images/lift/B_floor_U1_on.gif" 
 

The panel button U1 is on. 

10 "images/lift/B_floor_E_off.gif" 
 

The panel button E is off. 

11 "images/lift/B_floor_E_on.gif" 
 

The panel button E is on. 

12 "images/lift/B_floor_1_off.gif" 
 

The panel button 1 is off. 

13 "images/lift/B_floor_1_on.gif" 
 

The panel button 1 is on. 

14 "images/lift/B_floor_2_off.gif" 
 

The panel button 2 is off. 

15 "images/lift/B_floor_2_on.gif" 
 

In
si

de
 th

e 
lif

t 

The panel button 2 is on. 

16 "images/lift/B_down_arrow_off.gif"  
 The lift’s direction down is 

off. 
17 "images/lift/B_floor_U1.gif" 

 
Floor U1 

18 "images/lift/B_floor_E.gif" 
 

Floor E 

19 "images/lift/B_floor_1.gif" 
 

Floor 1 

A
N
I
M
A
T
I
O
N
_
I
M
G

 x
 =

= 
"f

ile
na

m
e"
 

A
f
t
e
r
 
R
e
f
i
n
e
m
e
n
t
 

 

20 "images/lift/B_floor_2.gif" 
 

O
ut

si
de

 th
e 

lif
t 

Floor 2 

 

Fig. 9. The Definition ANIMATION IMGx == "filename" and the Description of the Event associated to each
Image

and 2, respectively. The minimum and maximum coordinates, which occur in the
animation function, are 2 and 5, respectively. Then, the dimension of the grid is
3x2. To determine the value of r, we sometimes use Rconv==topf-r+groundf. The
values of Rconv are in the ranges groundf..topf. Rconv depends on the values
obtained, when a call button is pushed or when the lift is on the current floor. For
instance, if the current floor cur floor is equal to 2, then Rconv is also equal to
2. Consequently, applying r==topf+groundf-Rconv, the row r is equal to −1. If
door open=TRUE, then the image number i=3 is displayed at column 1. Otherwise,
if door open=FALSE, then the image number i=4 appears at column 1. More details
are presented in Figure 10. Due to space restrictions we do not show the graphical
visualisation of this model, only of the more refined model later in Figure 12.
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c i = x Rconv= =topf-r+groundf Image Explanation  r 
2 0 
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 The image is displayed at column 1 
and row 3, when 
direction_up=FALSE 
(the lift’s direction is down). 

 
       

Fig. 10. The Definition ANIMATION FUNCTION before Refinement

5.2 The Lift Model after Refinement

After refinement, the ProB animation function is as follows. Note that, due to
the distinction between internal buttons and external call buttons, the graphical
visualisation has become more sophisticated and the animation function thus more
complicated.
DEFINITIONS

pushed_buttons == (call_buttons \/ inside_panel_buttons);
Rconv == topf-r+groundf;
ANIMATION_FUNCTION ==
({r,c,i|r:groundf..topf & ((c=3 & i=0) or (c=2 & i=2))} <+
({r,c,i|r:groundf..topf & Rconv:call_buttons & (c=3 & i=1)} \/
{r,c,i|r:groundf..topf & Rconv=cur_floor & c=2 &

((door_open=TRUE & i=3) or (door_open=FALSE & i=4))}) \/
{r,c,i|c=1 & ((r=groundf & i=20) or (r=groundf+1 & i=19) or

(r=topf-1 & i=18) or (r=topf & i=17)) } \/
{r,c,i| r=topf+1 &

((direction_up=TRUE & ((c=1 & i=5) or (c=6 & i=16))) or
(direction_up=FALSE & ((c=1 & i=7) or (c=6 & i=6)))) } \/

{r,c,i|r=topf+1 & c=2 & (((-1):inside_panel_buttons & i=9) or
((-1)/:inside_panel_buttons & i=8))} \/

{r,c,i|r=topf+1 & c=3 & ((0:inside_panel_buttons & i=11) or
((0/:inside_panel_buttons) & i=10))} \/

{r,c,i|r=topf+1 & c=4 & ((1:inside_panel_buttons & i=13) or
(1/:inside_panel_buttons & i=12))} \/

{r,c,i|r=topf+1 & c=5 & ((2:inside_panel_buttons & i=15) or
(2/:inside_panel_buttons & i=14))});

...

In the lift model LiftR 1, we use 21 gif images. Note that the first seven gif
images were also used in the lift model LiftM. In the relational overriding <+, the
default values (i.e., images) are 0 and 2 and our current images are 1 and from 3 to
20. As in the lift model LiftM, groundf and topf are equal to−1 and 2, respectively.
The dimension of the grid is 3x6. Moreover, we sometimes use Rconv in order to
compute the value of r. More details about the definition ANIMATION FUNCTION; i.e,
the position of each image in the graphical visualisation, the image’s number and
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If 2:inside_panel_buttons, the image is 
displayed at column 5 and row 3. 

Fig. 11. The Definition ANIMATION FUNCTION after Refinement

the image’s associated event are provided in Figure 11.
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Figure 12 contains an animation sequence, starting from the initial state (a1),
where the lift is on the ground floor, with its door closed, no buttons pressed and the
lift controller being in upwards mode. Between states (a1) and (a2), the operation
push call button(-1) has been executed. The user can clearly see the effect of
the operation. This operation now also enables the open door operation, after
whose execution we reach state (a3). This enables the close door operation, whose
execution leads us to state (a4). Here, we can clearly see that the call button to
floor U1 has been turned off again. After (a4), the user has executed the operation
push call button(1) leading to (a5). This enabled the move up operation, after
whose execution we reach state (b1), etc...

6 Related Work and Conclusions

As far as related work is concerned, we would like to mention the Possum anima-
tion tool [7] for Z. The latter is probably most related, as it allows the user to write
custom TclTk code that can query the state of a Z specification in order to provide
a custom graphical visualisation. The most closely related work on the B side is
[4,1], which uses a special purpose constraint solver over sets (CLPS) to animate
B and Z specifications using the so-called BZ-Testing-Tools. However, the focus of
these tools is test-case generation and not verification, and the subset of B that
is supported is comparatively smaller (e.g., no set comprehensions or lambda ab-
stractions, constants and properties nor multiple machines are supported). To our
knowledge no graphical visualisation for states is available.

In summary, we have provided two new graphical visualisation features for ProB:
one to visualise predicates as a tree and the other to view the state of a B model in a
domain-specific manner. We have shown the usefulness of these features on a series
of examples. We hope that this provide further value to teaching B to students.
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A Sudoku Example

MACHINE SudokuSETS9
SETS
NRS = {n1,n2,n3,n4,n5,n6,n7,n8,n9}

DEFINITIONS
Column(jj) == %ii.(ii:1..fullsize & jj:dom(Sudoku9(ii)) | Sudoku9(ii)(jj));
ColumnSol(jj) == %ii.(ii:1..fullsize | SudokuSol(ii)(jj));

SUBSqIndx == {1..3, 4..6, 7..9}
CONSTANTS sqsize,fullsize
PROPERTIES

fullsize = card(NRS) & sqsize:NAT1 & sqsize*sqsize = fullsize
VARIABLES Sudoku9, solved
INVARIANT

Sudoku9: 1..fullsize --> (1..fullsize +-> NRS) & solved:BOOL
INITIALISATION

Sudoku9:= %i1.(i1:1..fullsize|{}) || solved := TRUE
OPERATIONS

Set(i,j,nr) =
PRE
i:1..fullsize & j:1..fullsize & j/: dom(Sudoku9(i)) &
nr:NRS & nr/:ran(Sudoku9(i)) & nr/:ran(Column(j))

THEN Sudoku9(i) := Sudoku9(i) \/ {j |-> nr}
END;
StartSolve =
PRE
solved=TRUE

THEN solved := FALSE
END;
SetPuzzle1 =
BEGIN
Sudoku9 := { 1 |-> { 1|->n7, 2|->n8, 3|->n1, 4|->n6, 6|->n2, 7|->n9, 9|->n5 },

2 |-> { 1|-> n9, 3|->n2, 4|->n7, 5|->n1 },
3 |-> { 3|-> n6, 4|-> n8, 8|->n1, 9|->n2},
4 |-> { 1|-> n2, 4|->n3, 7|->n8, 8|->n5, 9|->n1} ,
5 |-> { 2|-> n7, 3|->n3, 4|->n5, 9|->n4} ,
6 |-> { 3|-> n8, 6|->n9, 7|->n3, 8|->n6} ,
7 |-> { 1|-> n1, 2|->n9, 6|->n7, 8|->n8} ,
8 |-> { 1|-> n8, 2|->n6, 3|->n7, 6|->n3, 7|-> n4, 9|-> n9} ,
9 |-> { 3|-> n5, 7|->n1} }

END;
Solve =
ANY
SudokuSol

WHERE
solved=FALSE &
SudokuSol: 1..fullsize --> (1..fullsize --> NRS) & /* all values are specified */
!(i,j).(i:1..fullsize & j:1..fullsize & j:dom(Sudoku9(i))
=> SudokuSol(i)(j) = Sudoku9(i)(j))& /*all existing values copied from current board*/

!(i,j1,j2).(i:1..fullsize & j1:1..fullsize & j2:1..fullsize &
j2 > j1 => (SudokuSol(i)(j1) /= SudokuSol(i)(j2) & /* all different on a row */
SudokuSol(j1)(i) /= SudokuSol(j2)(i) /* all diferent on a column */ )) &
!(xi,yi).(xi: SUBSqIndx & yi: SUBSqIndx =>
!(i1,j1,i2,j2).(i1:INTEGER & i2:INTEGER & j1:INTEGER & j2:INTEGER &

i1:xi & i2:xi & i2 >= i1 & j1:yi & j2:yi &
(i2=i1 => j2>j1) /* (i1|->j1) /= (i2|->j2) */
=> SudokuSol(i1)(j1) /= SudokuSol(i2)(j2))

THEN Sudoku9 := SudokuSol || solved := TRUE
END

END
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Fig. 12. Lift Graphical Visualisation
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