
Seven at one stroke: LTL model checking for High-level
Specifications in B, Z, CSP, and more

Michael Leuschel and Daniel Plagge

Softwaretechnik und Programmiersprachen
Institut für Informatik, Heinrich-Heine-Universität Düsseldorf

Universitätsstr. 1, 40225 Düsseldorf, Germany
{leuschel,plagge}@cs.uni-duesseldorf.de

Abstract. The size of formal models is steadily increasing and there is a demand
from industrial users to be able to use expressive temporal query languages for
validating and exploring high-level formal specifications. We present an exten-
sion of LTL, which is well adapted for validating B, Z and CSP specifications.
We present a generic, flexible LTL model checker, implemented inside the PROB
tool, that can be applied to a multitude of formalisms such as B, Z, CSP, B‖CSP,
as well as Object Petri nets, compensating CSP, and dSL. Our algorithm can deal
with deadlocking states, partially explored state spaces, past operators, and can
be combined with existing symmetry reduction techniques of PROB. We estab-
lish correctness of our algorithm in general, as well as combined with symmetry
reduction. Finally, we present various applications and empirical results of our
tool, showing that it can be applied successfully in practice.
Keywords: Validation and Verification, Notations and Languages, LTL, model
checking, B-method, CSP, Z, Integrated Methods, symmetry reduction.

1 Introduction and Motivation
The B-Method and Z are used in railway systems (Dollé et al., 2003), the automotive

sector (Pouzancre, 2003), as well as avionics (Hall, 1996). The size of the formal models is
steadily increasing and there is a big demand from industrial users to be able to animate and
validate high-level specifications (Essamé and Dollé, 2007), in order to ensure that the correct
system is built. The PROB tool set can be used to animate B (Leuschel and Butler, 2003) as
well as Z specifications (Plagge and Leuschel, 2007). It can also be used to detect invariant
violations, deadlocks and check refinement. However, there is also an industrial demand for
expressive temporal query and validation languages1, in order to validate temporal properties
of the system (not easily expressed in B or Z), as well as to navigate in the state space, and ask
questions about the future and past of the current state.

In this paper we present a methodology and implementation to satisfy this industrial need
by

1Private communication from Kimmo Varpaaniemi, Space Systems Finland.

– using LTL as the core and—based on feedback from case studies—extending it to enable
convenient property specification by the user,

– implementing the model checking algorithm and integrating it into the PROB tool set.
Due to the flexible, high-level implementation our technology is not limited to B and Z,
but can also be applied to CSP, combinations of B, CSP and Z, as well as to a few other
domain specific formalisms.

– providing a practical evaluation of our language and tool, showing that we can express
a large class of problems (covering many described in earlier literature) and also solve
those problems in practice using our implementation.

2 LTL for Formal Models

LTL is a popular temporal logic for model checking (Clarke et al., 1999), and is now
considered to be more expressive, intuitive and practically useful than CTL (see, e.g., Vardi,
2001). Despite an apparent complexity problem (model checking LTL is exponential in the
size of the formula), “efficient” algorithms exist for LTL model checking, notably by negating
an LTL formula and translating it into a Büchi automata. The most prominent model checking
tool that supports LTL is probably SPIN (Holzmann, 1997). But note that newer versions
of SMV now also support LTL. Despite its popularity and usefulness, there are a number of
formalisms which are still lacking an automatic LTL model checking tool.

– The B-Method (Abrial, 1996)
There has also been considerable interest in trying to verify temporal properties for B
specifications. In Barradas and Bert (2002) proof obligations are defined for liveness
properties in B. A way to reason about temporal properties of B systems is described in
Bert et al. (2005) amongst others, e.g., checking properties about when operations are
enabled. The work in Groslambert (2007b) and the associated JAG tool (Groslambert,
2007a) aim to prove LTL properties of B machines by translating Büchi automata into a
B representation and generating suitable proof obligations. However, none of these pro-
vide a fully automatic model checker, as proof obligations still need to be discharged.
Another approach is the work done in Parreaux (2000), Bellegarde et al. (2002) and
Chouali et al. (2005). This work is actually very much in the spirit of our work; how-
ever, we were not able to download a version of the system, nor do the papers contain
timing results. The system does not cover the full B language (e.g., no power set con-
struction, no lambda abstractions nor set comprehensions are supported). Also, these
works support standard LTL (albeit with fairness constraints).
Finally, the model checker PROB (Leuschel and Butler, 2003) is a fully automatic tool,
but in its current form can only check safety properties, as well as perform refinement
checks.
In summary, to our knowledge there is no automatic tool available to check LTL prop-
erties for full B (or at least a large subset thereof). The same can be said for the compo-
sition of B and CSP (see, e.g. Treharne and Schneider (2000) and Butler and Leuschel
(2005)).

– CSP (Roscoe, 1999)
This formalism is supported by the tool FDR (Formal Systems (Europe) Ltd). Here, the

2

idea is to model both the system and the property in the same formalism, e.g., as CSP
processes, and perform refinement checks.
The relationship between refinement checking and LTL model checking has been stud-
ied (e.g., Roscoe (2005) and Derrick and Smith (2004)) and we ourselves have even
proposed a way to perform LTL model checking for CSP using FDR in Leuschel et al.
(2001), by translating Büchi automata into CSP processes, language intersection into
CSP synchronisation and the emptiness check into a refinement check. However, this
approach is not that useful in practice (because the complexity is on the wrong side of
the refinement check for FDR to be efficient, and because it requires several tools to be
applied in sequence).

Contributions: In the rest of this paper we describe an extension of LTL, called LTL[e], which
is well adapted for validating B, Z and CSP specifications, by allowing us to reason about
enabled operations and the execution of operations. In addition, we present the implementation
of a LTL[e] model checking algorithm inside PROB, which can

– deal with deadlocking states and partially explored state spaces,
– be applied in conjunction with symmetry reduction,
– be directly applied to multiple formalisms, such as B, CSP, B ‖ CSP, Z, Object Petri nets,

StAC (CSP with compensations), and dSL.

We establish correctness of our algorithm in general, as well as combined with symmetry
reduction. In addition we provide various applications and useful LTL[e] patterns, as well as
empirical results. We also briefly present an extension to allow Past LTL operators (Laroussinie
and Schnoebelen, 1995).

Discussion about the approach: The interested reader may ask the question: “Why did we
not translate our formal models into, e.g., Promela and use the SPIN LTL model checker?”
Indeed, this approach is perfectly valid, and has proven to be successful for some lower-level
languages (e.g., Hatcliff and Dwyer (2001) or Wachter et al. (2005)). For very high-level lan-
guages, however, this approach becomes much more difficult. Indeed, translating B directly
into Promela would be extremely challenging (it is already difficult enough to write an inter-
preter in Prolog with constraint solving), and it is furthermore very difficult to avoid additional
state space explosion due to the smaller granularity of Promela (also due to limitations of
dstep and atomic).2 Another option would be to compute the state space with PROB, and
then translate it to a Promela model. We have actually implemented such a translation, but it
has so far not proven to be practically useful. First, the overhead of starting up an external tool
can be considerable (typically 6 seconds were needed for SPIN to generate and compile the
pan.c files). Also, translating the high-level properties into atomic Promela properties can be
expensive, and it is not obvious how to exploit the symmetry present in the high-level model in
the Promela model. Most importantly, the extensions of the LTL language, which are needed
for most interesting practical applications discussed in Section 5, are not supported by SPIN.
Still, we plan to reevaluate this approach in the future.

2This process was actually attempted in the past — without success — within the EPSRC funded project ABCD
at the University of Southampton.

3

3 LTL[e]

We want to use the LTL model checker for models specified in B, Z, etc. Those models can
have deadlock states, but usually LTL formulas are defined over Kripke structures such that
every state must have at least one successor state. To support models with deadlock states, we
simply extend the definition of a Kripke structure to also allow states without successors.

From preliminary case studies it became clear that often it is interesting to know which
kind of operation has been performed to get into a certain state. Especially in CSP models,
we are often only interested in the operation performed, not in the state between operations.
We add a label for each transition in the relation of the Kripke structure. LTL with support for
labelled transitions can also be found in Chaki et al. (2005), but the definition there is limited
to infinite paths.

Definition 1. A labelled Kripke structureM with possible deadlocks over atomic propositions
AP and transition labels T is a tuple M = (S, S0, R, L) consisting of a set of states S, a set of
initial states S0 ⊆ S, a ternary relation between states R ⊆ S×T ×S, and a labeling function
L ∈ S → 2AP . For our purposes we do not restrict the relation to be total, so the structure may
have deadlock states. The set of deadlock states is deadlocks = {s ∈ S|¬∃t, s′ : (s, t, s′) ∈ R}.

Definition 2. A path π in M can be either infinite or finite ending in a deadlock state:
– A finite path of length |π| = k, k ≥ 1 is a finite sequence π = s0

t0−→ . . .
tk−2−→sk−1

with sk−1 ∈ deadlocks and ∀i : 0 ≤ i < k − 1⇒ (si, ti, si+1) ∈ R.
– Infinite paths have the form π = s0

t0−→s1
t1−→ . . ., ∀i ≥ 0 : (si, ti, si+1) ∈ R. We

denote |π| = ω for the infinite length of π.

We denote πi as the suffix of π without π’s first i elements.
We extend the semantics of LTL formulas in two aspects: First we claim that a formula of

the form Xϕ is only true if the current state is not a deadlock. Second we allow to check if
a certain operation t will be executed next using the [t] construct. A state s in M satisfies a
formula ϕ (denoted M, s |= ϕ) if all paths starting in s satisfy ϕ. Whether a path π satisfies a
formula ϕ (denoted M,π |= ϕ) is defined by:

M,π |= true

M, π |= p ⇔ p ∈ L(p) for atomic propositions p ∈ AP
M,π |= ¬ϕ ⇔ M,π 6|= ϕ

M,π |= ϕ ∨ ψ ⇔ M,π |= ϕ or M,π |= ψ

M,π |= Xϕ ⇔ |π| ≥ 2 and M,π1 |= ϕ

M,π |= ϕUψ ⇔ ∃k < |π| : M,πk |= ψ and ∀i : 0 ≤ i < k ⇒M,πi |= ϕ

M,π |= [t] ⇔ |π| ≥ 2 and π = s0
t−→s1 . . . for transition labels t ∈ T

So far we have defined only a few basic LTL[e] operators. We introduce other operators like
conjunction (∧), finally (F), globally (G), release (R) and weak until (W) in the usual way:

false := ¬true Gϕ := ¬F¬ϕ = ¬(trueU¬ϕ)
ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ) ϕRψ := ¬(¬ϕU¬ψ)
Fϕ := trueUϕ ϕWψ := Gϕ ∨ ϕUψ = ¬(trueU¬ϕ) ∨ ϕUψ

4

LTL[e]: Syntax of atomic propositions We provide two types of atomic propositions
p ∈ AP in our implementation:

– One can check if a B predicate holds in the current state by writing the predicate between
curly braces, e.g. {card(set) > 0}.

– And with e(op) it can be tested if an operation op is currently enabled.
Some useful patterns of LTL[e] formulas for B/Z specifications (and sometimes also CSP)

are as follows:
– quasi-deadlock G (e(O1) | ... | e(On)) where O1,..,On are the real state-

changing operations (as opposed to query operations).
– operation post-condition G ([Op] => X {Post})

([Op] tests if the next executed operation is Op)
– operation pre-condition G (e(Op) => {Pre}).

Later, in Section 5, we will see that LTL[e] is useful in practice to solve a variety of other
problems, and can also be used to encode fairness constraints.

4 The Model Checking Algorithm

Below we adapt the LTL model checking algorithm from Lichtenstein and Pnueli (1985)
and Clarke et al. (1999). One may ask why we did not use the “standard” LTL model checking
algorithm based on Büchi automata. Our motivations were as follows:

– It can be easily extended to deal with “open” nodes, on which no information is available.
This is especially useful for infinite state systems, where only part of the state space can
be computed. Also, it is not clear to what extent Büchi automata can easily deal with the
[Op] construct from LTL[e].

– The state space for B and Z specifications is, due to the high-level nature of the opera-
tions, typically much smaller than for other more low-level formalisms such as Promela.
This is especially true when we apply symmetry reduction (cf. Section 6). Hence, the
bottleneck is generally not to be found inside the LTL model checking algorithm.

– The algorithm can also later be extended to CTL∗ (Clarke et al., 1999).
We implemented the algorithm in C, using SICStus Prolog’s C-Interface to integrate it into

the PROB tool.

4.1 Overview of the algorithm

To check if a model satisfies a given LTL[e] formula, we use a modified version of the
tableau algorithm given in Lichtenstein and Pnueli (1985) and Clarke et al. (1999). We adapted
the algorithm so that deadlock states and transition labels are supported.

To check if a state s in the structure M satisfies a given LTL formula, we try to find a
counter-example by searching for a path starting in s that satisfies the negated formula ϕ.

In the next paragraphs we explain how a graph can be constructed that contains some nodes
(called atoms) for each state of the model. An atom represents a possible valuation of ϕ and
its subformulas that is consistent with the corresponding state. E.g. for a formula ϕ = a ∨Xb
with a, b ∈ AP , the valuations of a and b are defined by the state but there are two atoms, one
where Xb is true and one where Xb is false. There is an edge between two atoms A and B if

5

there is a transition between the corresponding states and if subformulas of the form Xψ in A
have the same valuation as ψ in B.

Then we search for a path of atoms that serves as a counter-example with the following
properties: The path starts with atoms of the initial state where ϕ is true. And for each atom on
the path where ψ1 Uψ2 is true, ψ1 is true until a state is reached where ψ2 is true. A counter-
example may be infinitely long, then it consists of a finite path, followed by a cycle. To find
also those cycles, we search for a strongly connected component (SCC) with certain properties.

We adapt the original algorithm’s rules of how atoms can be constructed and when a tran-
sition from one atom to another exists. And in contrast to the original algorithm we consider
deadlock states in the requirements of the SCC we search for.

After presenting the algorithm, we show how nodes that are not yet explored can be handled
and present a proof for the correctness of our extensions to the algorithm.

For the interested reader we provide our algorithm in full detail below. The reader not
interested in this can skip to Section 5.

4.2 The closure of a formula
The closure Cl(ϕ) of a formula ϕ is the smallest set of LTL[e]-formulas satisfying the

following rules:

ϕ ∈ Cl(ϕ)
ψ ∈ Cl(ϕ) ⇒ (¬ψ) ∈ Cl(ϕ), identifying ¬¬ϕ with ϕ

ψ1 ∨ ψ2 ∈ Cl(ϕ) ⇒ ψ1 ∈ Cl(ϕ) and ψ2 ∈ Cl(ϕ)
Xψ ∈ Cl(ϕ) ⇒ ψ ∈ Cl(ϕ)
¬Xψ ∈ Cl(ϕ) ⇒ X(¬ψ) ∈ Cl(ϕ)

ψ1 Uψ2 ∈ Cl(ϕ) ⇒ ψ1 ∈ Cl(ϕ), ψ2 ∈ Cl(ϕ), X(ψ1 Uψ2) ∈ Cl(ϕ)

Informally, the closure Cl(ϕ) contains all formulas that determine if ϕ is true. This definition
has been taken without modification from the original algorithm.

4.3 Atoms of a state
An atom is a pair (s, F) with s ∈ S and F a consistent set of formulas F ⊆ Cl(ϕ). F is

consistent if it satisfies the following rules:
– p ∈ F iff p ∈ L(s) for atomic propositions p ∈ AP
– ψ ∈ F iff (¬ψ) 6∈ F for ψ ∈ Cl(ϕ)
– ψ1 ∨ ψ2 ∈ F iff ψ1 ∈ F or ψ2 ∈ F for ψ1 ∨ ψ2 ∈ Cl(ϕ)
– ψ1Uψ2 ∈ F iff ψ2 ∈ F or ψ1, X(ψ1Uψ2) ∈ F for ψ1 Uψ2 ∈ Cl(ϕ)
– If s ∈ deadlocks then (¬Xψ) ∈ F for Xψ ∈ Cl(ϕ)
– If s /∈ deadlocks then Xψ ∈ F ⇔ (X¬ψ) /∈ F for Xψ ∈ Cl(ϕ)
– If t is not enabled in s then (¬[t]) ∈ F for transition labels t ∈ T .
– If [t] ∈ F then [t′] /∈ F for all transition labels t′ 6= t, t, t′ ∈ Cl(ϕ).

Our changes to the original rules are as follows: We added the two last rules for transition
labels [t] and we introduced the distinction of the cases s ∈ deadlocks and s /∈ deadlocks for
the X operator.

6

Whether a formula ψ ∈ Cl(ϕ) is in F or not for an atom (s, F) thus depends on the current
state’s atomic propositions and whether formulas with next operators Xψ and the transitions
labels [t] are in F or not. There is at most one transition label [t] in F . We denote the set of
all possible atoms of a state s with A(s) and all atoms of the set of states S with A(S). The
number of atoms of s is limited by |A(s)| ≤ 2Nx · (Nt + 1), where Nx is the number of next
operators in Cl(ϕ) and Nt the number of transition labels in Cl(ϕ). The number of atoms
grows exponentially with the number of next operators in Cl(ϕ) and is linear with the number
of transition labels in Cl(ϕ).

4.4 Search for self-fulfilling SCCs
We construct a directed graph G with the set of all atoms A(S) as nodes. There is an edge

from (s1, F1) to (s2, F2) labelled with t iff
– t is a transition in M from s1 to s2 ((s1, t, s2) ∈ R), and
– Xψ ∈ F1 ⇔ ψ ∈ F2 for all formulas Xψ ∈ Cl(ϕ), and
– t′ ∈ F1 ⇔ t′ = t for all transition labels t′ ∈ Cl(ϕ)

The last rule is an addition to the original algorithm.
A strongly connected component (SCC) C is a maximal subgraph of G such that between

all nodes in C there exists a path in C. We search for an SCC C that is reachable from an atom
(s0, F0) of an initial state s0 ∈ S0 with ϕ ∈ F0 and that has the following properties:

– For every atom (s, F) in C, and every formula ψ1 Uψ2 ∈ F there exists an atom (s′, F ′)
in C with ψ2 ∈ F ′. (‘self-fulfilling’)

– There exists an edge in C (‘nontrivial’) or C consists of exactly one deadlock state.
In contrast to the original algorithm we added the exception for deadlock states.

We use Tarjan’s algorithm (Tarjan, 1972) to identify the SCCs in the graph. If we find a
nontrivial self-fulfilling SCC C, we can construct an α-path (a path of atoms)

πα = (s0, F0)
t0
−→ . . .︸ ︷︷ ︸

π1

(sc, Fc)
tc
−→ . . . (sc, Fc)︸ ︷︷ ︸

π2

with s0 ∈ S0, ϕ ∈ F0 and (sc, Fc) in C. The first part π1 is the α-path from an initial atom to
an atom in the found SCC C. The second part π2 is a loop in C that includes an atom (s, F)
with ψ2 ∈ F for each ψ1 Uψ2 ∈ Cl(ϕ).

The path π = s0
t0−→ . . . sc

tc−→ . . . sc then acts as a counter-example.
If the found SCC consists of exactly one atom (sd, Fd) of deadlock state sd, the found α-

path has the form πα = (s0, F0) t0−→ . . . (sd, Fd), and the counter-example is π = s0
t0−→ . . . sd.

4.5 Handling of open nodes
An open node in the state space S is a node, whose outgoing transitions are not calculated

yet. The algorithm explained above can be easily modified to work with state spaces that con-
tain open nodes. Whenever the outgoing transitions of a node are needed in Tarjan’s algorithm,
we check if the current node is an open node. If so, all transitions starting in the node will be
calculated. This way the LTL[e] model checker can drive the exploration of the state space.
Also, part of the state space can remain unexplored, while still ensuring the correctness of the
result.

7

4.6 Correctness of the algorithm
The algorithm is used to find a counter-example for a given LTL formula. This is done by

searching for a path of atoms to a self-fulfilling SCC or an SCC that consists of a deadlock
state. The proof consists of two steps: First we show the equivalence between π |= ϕ and
the existence of an eventuality sequence, then we show the equivalence of the existence of an
eventuality sequence and the existence of a path to an SCC.

The complete proof (without our additions to the LTL semantics and the algorithm) can be
found in Clarke et al. (1999), we extend it only in a way that it covers our additions.

Definition 3. An eventuality sequence πα is an infinite α-path or finite α-path ending in an
atom of a deadlock state such that if ψ1Uψ2 ∈ FA for an atom A on πα, there exists an atom
B on π after A with ψ2 ∈ B.

Lemma 1. There exists a path π starting in s with M,π |= ϕ iff there exists an eventuality
sequence starting at an atom (s, F) such that ϕ ∈ F .

Proof. 1. Let πα = (s0, F0) t0−→ (s1, F1) t1−→ . . . be an eventuality sequence starting in
(s0, F0) = (s, F) with ϕ ∈ F . π = s0, s1, . . . is the corresponding path. We show that
π |= ϕ by showing that πi |= ψ ⇔ ψ ∈ Fi holds for every ψ ∈ Cl(ϕ) and 0 ≤ i < |π|.
The proof is done by induction on the subformulas of ϕ. We only describe the two cases
that are affected by our changes to the LTL semantics.

(a) If ψ = Xϕ1: If si ∈ deadlocks then by definition Xϕ1 /∈ Fi and πi 6|= Xϕ1. If
si /∈ deadlocks then we have a transition from (si, Fi) to (si+1, Fi+1), implying
that Xϕ1 ∈ Fi ⇔ ϕ1 ∈ Fi+1. By induction we know ϕ1 ∈ Fi+1 ⇔ πi+1 |= ϕ1

and by definition πi+1 |= ϕ1 ⇔ πi |= ϕ1 holds.
(b) If ψ = [t] with t ∈ T : If si ∈ deadlocks then t cannot be enabled in si,

so by definition [t] /∈ Fi and πi 6|= [t]. If si /∈ deadlocks then there exists
a transition (si, Fi) t′−→ (si+1, Fi+1). By definition [t] ∈ Fi ⇔ t = t′ and
πi = si

t−→si+1 . . .⇔ πi |= [t].

2. Let π = s0
t0−→s1

t1−→ . . . with s = s0 be a path with π |= ϕ. Let Fi = {ψ | ψ ∈
Cl(ϕ)∧πi |= ψ}. First we show that there is anα-Path πα = (s0, F0) t0−→ (s1, F1) t1−→

(a) (si, Fi) is an atom. This can be seen by comparing the definition |= with the
definition of consistency of an atom’s formulas.

(b) If si ∈ deadlocks: si is the last element of π. Because there is no transition in R
starting in si, there is neither a transition starting in (si, Fi). If si /∈ deadlocks:
There is a state si+1 in π. There is a transition from (si, Fi) to (si+1, Fi+1): For
every Xψ ∈ Cl(ϕ) holds by definition that πi |= Xψ ⇔ πi+1 |= ψ and we have
Xψ ∈ Fi ⇔ πi |= Xψ and ψ ∈ Fi+1 ⇔ πi+1 |= ψ, following that Xψ ∈ Fi ⇔
ψ ∈ Fi+1. Also for every [t] ∈ T ∩ Cl(ϕ), t ∈ T holds πi |= [t] ⇔ ti = t,
πi |= [t]⇔ t ∈ Fi , following that t ∈ Fi ⇔ ti = t.

For every ψ1Uψ2 ∈ Fi there is a Fj , i ≤ j < |π|, such that ψ2 ∈ F , because ψ1Uψ2 ∈
Fi ⇔ πi |= ψ1Uψ2 and by definition there is a j, i ≤ j < |π|, such that πj |= ψ2 and
that implies ψ2 ∈ Fj . So πα is an eventuality sequence.

8

Lemma 2. There exists an eventuality sequence starting at an atom (s,K) iff there is a path
in G from (s,K) to a self-fulfilling SCC or an SCC consisting of a deadlock state.

Proof. We only consider the case where the path ends in a deadlock state.
1. Let there be a finite eventuality sequence πα = (s0, F0) t0−→ . . .

td−1−→ (sd, Fd). sd is a
deadlock state. We know that (sd, Fd) has no outgoing edges, so there is no other node
in the SCC.

2. Let there be a path from (s0, F0) to an SCC consisting of just a deadlock state. We have
to show that for every occurrence of ψ1Uψ2 ∈ Fi there is an atom (sj , Fj), i ≤ j ≤ d
with ψ2 ∈ Fj . Let ψ1Uψ2 ∈ Fi. Then there is (by the definition of an atom) ψ2 ∈ Fi
or X(ψ1Uψ2) ∈ F ⇒ ψ1Uψ2 ∈ Fi+1. Now we assume ψ2 /∈ Fj for i ≤ j ≤ d. Then
we know that X(ψ1Uψ2) ∈ Fj , it follows that X(ψ1Uψ2) ∈ Fd. But sd is a deadlock
state, so X(ψ1Uψ2) /∈ Fd, we have a contradiction. So there is an atom (sj , Fj) with
ψ2 ∈ Fj .

The lemmas 1 and 2 together show that there exists a counter-example to a formula iff the
presented algorithm finds a suitable SCC.

5 Some Examples and Experiments

In this section we exhibit the flexibility and practical usefulness of our approach. Notably,
we show how our tool can now be used to solve a variety of problems mentioned in the litera-
ture. We also show that the tool is practically useful on a variety of case studies.

All experiments were run on a Linux PC with an AMD Athlon 64 Dual Core Processor
running at 2 GHz, and using PROB 1.2.8 built from SICStus Prolog 4.0.2. Our model checker
can actually drive the construction of the state space on demand. However, to clearly separate
the time required for the LTL checking and the state space construction, we have first fully
explored the state space in the examples below.

5.1 B Examples: Volvo Vehicle Function, Robot, and Card Protocol

We have tried our tool on a case study performed at Volvo on a typical vehicle function (see
Leuschel and Butler, 2003). The B machine has 15 variables, 550 lines of B specification, and
26 operations and was developed by Volvo as part of the European Commission IST Project
PUSSEE (IST-2000-30103).

To explore the full state space (1360 states and 25696 transitions) PROB required 25.29 sec-
onds. Some of the LTL[e] formulas we checked are as follows:

– G (e(SetFunctionParameter) => e(FunctionBecomesNotAllowed))
The formula is valid; the model checking time is 0.12 seconds.

– G (e(FunctionBecomesAllowed) => X e(SetFunctionParameter))
A counter-example was found after 0.14 seconds.

– G ([FunctionBecomesAllowed] => X e(SetFunctionParameter))
The formula is valid; the model checking time is 0.20 seconds.

9

We have also applied our tool to the (very) small robot specification from Groslambert
(2007a). The original LTL formula G(({Dt=TRUE}&X{Dt=FALSE})=>{De=FALSE})
from Groslambert (2007a) can now be validated fully automatically (and instantaneously). It
is interesting to observe that the intended temporal property can be more naturally encoded in
our extension LTL[e] as follows: G([Unload] => {De=FALSE}).

We have applied our tool on the T=1 protocol3 specification from Chouali et al. (2005).
Computing the state space took 0.02 seconds (for 15 nodes). We tested the formula P1 =
G({CardF2=bl} => F{CardF2=lb}) from Chouali et al. (2005). This took less than
0.01 seconds (and 36 atoms were computed). However, our model checker provided a counter-
example. This is not surprising, as Chouali et al. (2005) also takes fairness constraints into
account. These fairness constraints are written in Chouali et al. (2005) as FAIRNESS =
{Eject ,Csends if (CardF2 = bl),Rsends if (ReaderF2 = bl)}. Fortunately, these fair-
ness constraints can be expressed in our LTL[e] language as follows: f = GF[Eject]&
(GF{CardF2=bl}=>GF[Csends])& (GF{ReaderF2=bl}=>GF[Rsends]). Check-
ing the formula f ⇒ P2 was successful (no counter-example found); this took 12.65 seconds
(computing 98,304 atoms). The time is an illustration that LTL model checking is exponen-
tial in the size of the formula; it may be worthwhile to investigate adapting our algorithm to
incorporate fairness, rather than encoding fairness in the LTL[e] formula itself.

5.2 CSP Examples: Peterson and Train Level-Crossing
First we tried a standard CSP example from the book web page of Schneider (1999)4,

Peterson’s Algorithm version 1. Computing the state space, consisting of 58 nodes and 115
transitions, took 0.32 seconds with PROB (which has recently been extended to handle full
CSP-M). Some of the LTL[e] formulas checked are as follows:

– G ([p1critical] => X(!e(p2critical)))
The formula is valid; the model checking time is 0.02 sec.

– G ([p1critical] => X((!e(p2critical)) W [p1leave]))
The formula is valid; the model checking time is 0.19 sec.

– G ([p2critical] => X((!e(p1critical)) W [p2leave]))
The formula is valid; the model checking time is 0.19 sec.

We have also tested version 2 of the same algorithm. Computing the state space with 215
nodes and 429 transitions took 1.82 seconds. The CSP model is more generic and elegant than
the first version, which enables us to write a single LTL[e] formula basically covering the last
two formulas from above.

– G ([critical] => X((!e(critical)) W [leave]))
The formula is valid; the model checking time is now 3.17 sec.

Another example we tested is crossing.csp also from Schneider (1999). This model
by Bill Roscoe describes a level crossing gate using discrete-time modelling in untimed CSP.
Computing the state space, consisting of 5517 nodes and 12737 transitions, took 95.55 seconds.
Some of the LTL[e] formulas we checked are as follows:

– G F e(enter) The formula is valid; the model checking time is 0.39 seconds.

3En27816-3, European Standard—identification cards—integrated circuit(s) card without contacts—electronic sig-
nal and transmission protocols, 1992.

4http://www.cs.rhul.ac.uk/books/concurrency/

10

– G F [enter] A counter-example (of length 554) was found after 0.36 seconds.

5.3 CSP ‖ B Examples: Control Annotations and Philosophers
In Ifill et al. (2007) it is proposed to check compatibility of a CSP controller with a par-

ticular B machine by adding proof obligations. For this the NEXT annotation is introduced,
from which the proof obligations are derived. It turns out that these annotations can also be
checked (and now automatically) by our LTL model checker. For example, for the traffic
light controller from Ifill et al. (2007), the NEXT annotation for the Stop_All operation can
be checked by the following LTL[e] formula: G ([Stop_All] => X (e(Go_Moat) &
e(Go_Square))). This check can be done instantaneously. We have checked all the NEXT
assertions from Ifill et al. (2007) fully automatically and instantaneously.

We have also applied our LTL[e] model checker to a fully combined CSP and B model.
The B model is the generic dining philosophers example from Leuschel and Massart (2007)
instantiated for three philosophers and three forks, using symmetry reduction (cf. Section 6),
and where the protocol is specified by a CSP Controller.

datatype BPhils = p1 | p2 | p3
channel think, eat, TakeLeftFork, TakeRightFork, DropFork : BPhils
MAIN = ||| p: BPhils @ PHIL(p)
PHIL(P) = think!P -> TakeLeftFork!P -> TakeRightFork!P ->

eat!P -> DropFork!P -> DropFork!P -> PHIL(P)

We have validated the following LTL[e] formula in 0.06 seconds:
– G (e(DropFork) U ([TakeLeftFork] | [TakeRightFork]))

5.4 Z Examples: SAL Example and Workstation Protocol
In Plagge and Leuschel (2007), PROB was extended to deal with Z specifications. We exam-

ined the example from Derrick et al. (2006), formalising the process of joining an organisation.
We were able to check the three LTL formulas described there:

– ! F {card(member)>2} (PROB provides a counter-example)
– ! F {card(waiting)>2} (PROB provides a counter-example)
– G {card(waiting)+card(member)<=3} (the formula is true)

Model checking time is 0.08 sec to construct the state space plus less than 0.01 sec for each LTL
check. This is faster than the times reported in Derrick et al. (2006) (ranging from 3 seconds to
12 hours depending on the translation to SAL). In addition, we were able to uncover an error in
the specification, namely that it is possible to reach a quasi-deadlock state where only probing
operations are possible and no “real” operation can be performed, i.e., the following LTL[e]

formula is false:
– G (e(Join) | e(JoinQ) | e(Remove))

Note that this error was not uncovered in Derrick et al. (2006).
We have also tested our tool on the workstation protocol industrial case study from Plagge

and Leuschel (2007). Computation of the state space for 2 workstations took 2.49 seconds, re-
sulting in 68 states. The formula G([Transfer]=>X(e(ReadRequestOK) | e(ReadResponse)))
was checked in 0.04 seconds, using 421 atoms.

11

FIG. 1 – Counter-example found for the Z model

5.5 Other Formalisms: StAC, Object Petri nets, dSL
PROB has also the ability to load specifications via custom Prolog interpreters following

the style of Leuschel and Massart (2000), describing the initial states, the properties and the
transition relation using the Prolog predicates start/1, prop/2, trans/3.

This directly opens up LTL model checking for three further formalisms, for which we
have such interpreters: Compensating CSP (StAC) (Ferreira and Butler, 2000), Object Petri
Nets, (Farwer and Leuschel, 2004), and dSL (Wachter et al., 2005).

6 LTL Model Checking with Symmetry Reduction
Combining full blown LTL model checking and symmetry reduction is not always easy.

If one is not careful, the application of symmetry reduction can lead to unsoundness for more
complicated LTL formulas. Quite often, only safety properties or some other subset of LTL is
supported.

It turns out that our LTL[e] language is the ideal companion to the existing symmetry re-
duction techniques developed for PROB (Leuschel et al., 2007; Leuschel and Massart, 2007;
Turner et al., 2007), i.e., we can apply the symmetry reduction techniques and need to impose
no restrictions whatsoever on the LTL[e] formulas. This meant that, in preliminary experi-
ments, we were actually able to model check some examples considerably faster, than using
SPIN with partial order reduction on hand-translated Promela models.

Let us recall some of the results from Leuschel et al. (2007). First, the notion of a permu-
tation is introduced, which can permute elements of deferred sets. DS is the set of all deferred
sets of the B machine under consideration.

12

Definition 4. Let DS be a set of disjoint sets. A permutation f over DS is a total bijection
from ∪S∈DSS to ∪S∈DSS such that ∀S ∈ DS we have {f(s) | s ∈ S} = S.

The following results show that the deferred sets induce a symmetry in the state space: if
in a given state s we permute the deferred set elements, the resulting state will be symmetrical
to s.

Theorem 1. For any expression E, predicate P , state [V := C] and permutation function f :

f(E[V := C]) = E[V := f(C)]
P [V := C] ⇔ P [V := f(C)]

Corollary 1. Every state permutation f for a B machine M satisfies
– ∀s ∈ S : s |= I iff f(s) |= I
– ∀s1 ∈ S, ∀s2 ∈ S: s1 →M

op.a.b s2 ⇔ f(s1)→M
op.f(a).f(b) f(s2).

From these theoretical results in Leuschel et al. (2007) we can deduce a new result for
LTL[e]:

Proposition 1. Let f be a permutation function, s a state of B machine M and φ a LTL[e]

formula. Then M, s |= φ iff M,f(s) |= φ.
Proof. (Sketch)

– By Theorem 1, if a predicate { Pred } is true in a state then it is true in all permuta-
tion states.

– By Corollary 1, if a sequence of operations is possible in s then a permuted sequence
is possible in the state π(s). As the permutation does not affect the enabled operations
nor the operation label itself (just the arguments): we can deduce that a LTL[e] formula
is true in s iff it is true in π(s).

In other words, there exists a LTL[e] counter-example for a B machine iff there exists one
with symmetry reduction. As Z specifications are translated internally into B machines (Plagge
and Leuschel (2007)), all of the above also applies when model checking Z specifications.

7 Future Work, Discussion and Conclusion
Concerning the expressivity of LTL[e], we would like to allow patterns to be used in-

side the [.] and e(.) constructs. E.g., one may wish to be able to check temporal for-
mula such as G ([sends!2] => X e(receives!2)) or even G ([sends!x] =>
X e(receives!x)). We have already implemented another extension of LTL[e], which al-
lows reasoning about the past of a state, using, e.g., the Y (yesterday), S (since), O (once) Past-
LTL operators. For the Volvo vehicle function, it was thus possible to validate the following
property in 0.21 seconds: G(e(FunctionOff) => YO[SetFunctionParameter]),
i.e., when the vehicle function can be turned off it must have been activated in the past.

In summary, we have presented LTL[e] to conveniently express temporal properties of for-
mal models. Indeed, LTL[e] can be used, e.g., to express pre- and post-conditions of operations,
fairness constraints as of Chouali et al. (2005), the NEXT control annotations from Ifill et al.
(2007), as well as a large class of interesting properties which cannot be directly expressed in

13

pure LTL. We have shown an algorithm for LTL[e], proven it correct with and without sym-
metry reduction, and have integrated it into the PROB tool set. In the empirical section, we
have shown that LTL[e] is expressive enough and that our tool is fast enough for a variety of
practical applications.

References

Abrial, J.-R. (1996). The B-Book. Cambridge University Press.
Barradas, H. R. and D. Bert (2002). Specification and proof of liveness properties under fair-

ness assumptions in B event systems. In M. J. Butler, L. Petre, and K. Sere (Eds.), IFM,
LNCS 2335, pp. 360–379. Springer.

Bellegarde, F., S. Chouali, and J. Julliand (2002). Verification of dynamic constraints for B
event systems under fairness assumptions. In ZB’2002, LNCS 2272, pp. 477–496.

Bert, D., M.-L. Potet, and N. Stouls (2005). Genesyst: A tool to reason about behavioral
aspects of B event specifications. application to security properties. In H. Treharne, S. King,
M. C. Henson, and S. A. Schneider (Eds.), ZB 2005, LNCS 3455, pp. 299–318. Springer.

Butler, M. and M. Leuschel (2005). Combining CSP and B for specification and property
verification. In Proceedings of Formal Methods 2005, LNCS 3582, Newcastle upon Tyne,
pp. 221–236. Springer-Verlag.

Chaki, S., E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha (2005). Concurrent software
verification with states, events, and deadlocks. Formal Aspects of Computing V17(4), 461–
483.

Chouali, S., J. Julliand, P.-A. Masson, and F. Bellegarde (2005). Pltl-partitioned model check-
ing for reactive systems under fairness assumptions. ACM Trans. Embedded Comput.
Syst. 4(2), 267–301.

Clarke, E. M., O. Grumberg, and D. Peled (1999). Model Checking. MIT Press.
Derrick, J., S. North, and T. Simons (2006). Issues in implementing a model checker for Z. In

Z. Liu and J. He (Eds.), ICFEM, LNCS 4260, pp. 678–696. Springer.
Derrick, J. and G. Smith (2004). Linear temporal logic and Z refinement. In C. Rattray,

S. Maharaj, and C. Shankland (Eds.), AMAST 04, LNCS 3116, pp. 117–131. Springer.
Dollé, D., D. Essamé, and J. Falampin (2003). B dans le tranport ferroviaire. L’expérience de

Siemens Transportation Systems. Technique et Science Informatiques 22(1), 11–32.
Essamé, D. and D. Dollé (2007). B in large-scale projects: The Canarsie line CBTC experi-

ence. In Proceedings of the 7th International B Conference (B2007), LNCS 4355, Besancon,
France, pp. 252–254. Springer-Verlag.

Farwer, B. and M. Leuschel (2004). Model checking object Petri nets in Prolog. In Proceedings
PPDP ’04, New York, NY, USA, pp. 20–31. ACM Press.

Ferreira, C. and M. Butler (2000). A process compensation language. In T. Santen and B. Stod-
dart (Eds.), Proceedings Integrated Formal Methods (IFM 2000), LNCS 1945, pp. 424–435.
Springer-Verlag.

Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2 User Manual.

14

Groslambert, J. (2007a). A jag extension for verifying LTL properties on B event systems. In
Proceedings B’07, pp. 262–265.

Groslambert, J. (2007b). Verification of LTL on B event systems. In Proceedings B’07, pp.
109–124.

Hall, A. (1996). Using formal methods to develop an atc information system. IEEE Software,
66–76. Reprinted in Industrial-Strength Formal Methods in Practice, M.G. Hinchey & J.P.
Bowen, Springer, 1999.

Hatcliff, J. and M. B. Dwyer (2001). Using the bandera tool set to model-check properties of
concurrent java software. In K. G. Larsen and M. Nielsen (Eds.), CONCUR, LNCS 2154,
pp. 39–58. Springer.

Holzmann, G. J. (1997). The model checker Spin. IEEE Trans. Software Eng. 23(5), 279–295.
Ifill, W., S. A. Schneider, and H. Treharne (2007). Augmenting B with control annotations. In

Proceedings B’07, pp. 34–48.
Laroussinie, F. and P. Schnoebelen (1995). A hierarchy of temporal logics with past. Theor.

Comput. Sci. 148(2), 303–324.
Leuschel, M. and M. Butler (2003). ProB: A model checker for B. In K. Araki, S. Gnesi,

and D. Mandrioli (Eds.), FME 2003: Formal Methods, LNCS 2805, pp. 855–874. Springer-
Verlag.

Leuschel, M., M. Butler, C. Spermann, and E. Turner (2007). Symmetry reduction for B by
permutation flooding. In Proceedings B2007, LNCS 4355, Besancon, France, pp. 79–93.
Springer-Verlag.

Leuschel, M. and T. Massart (2000). Infinite state model checking by abstract interpreta-
tion and program specialisation. In A. Bossi (Ed.), Proceedings LOPSTR’99, LNCS 1817,
Venice, Italy, pp. 63–82.

Leuschel, M. and T. Massart (2007). Efficient approximate verification of B via symmetry
markers. Proceedings International Symmetry Conference, 71–85.

Leuschel, M., T. Massart, and A. Currie (2001). How to make FDR spin: LTL model checking
of CSP by refinement. In J. N. Oliviera and P. Zave (Eds.), FME’2001, LNCS 2021, Berlin,
Germany, pp. 99–118. Springer-Verlag.

Lichtenstein, O. and A. Pnueli (1985). Checking that finite state concurrent programs satisfy
their linear specification. In Proceedings POPL ’85, New York, NY, USA, pp. 97–107.
ACM Press.

Parreaux, B. (2000). Vérification de systèmes d’événements B par model-checking PLTL.
Thèse de Doctorat, LIFC, Université de Franche-Comté.

Plagge, D. and M. Leuschel (2007). Validating Z Specifications using the ProB Animator and
Model Checker. In J. Davies and J. Gibbons (Eds.), Proceedings IFM 2007, LNCS 4591,
pp. 480–500. Springer-Verlag.

Pouzancre, G. (2003). How to diagnose a modern car with a formal B model?. In D. Bert, J. P.
Bowen, S. King, and M. A. Waldén (Eds.), ZB’2003, LNCS 2651, pp. 98–100. Springer.

Roscoe, A. W. (1999). The Theory and Practice of Concurrency. Prentice-Hall.

15

Roscoe, A. W. (2005). On the expressive power of CSP refinement. Formal Asp. Com-
put. 17(2), 93–112.

Schneider, S. (1999). Concurrent and Real-time Systems: The CSP Approach. Wiley.
Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),

146–160.
Treharne, H. and S. Schneider (2000). How to drive a B machine. In J. P. Bowen, S. Dunne,

A. Galloway, and S. King (Eds.), ZB’2000, LNCS 1878, pp. 188–208. Springer.
Turner, E., M. Leuschel, C. Spermann, and M. Butler (2007). Symmetry reduced model check-

ing for B. In Proceedings Symposium TASE 2007, Shanghai, China, pp. 25–34. IEEE.
Vardi, M. Y. (2001). Branching vs. linear time: Final showdown. In T. Margaria and W. Yi

(Eds.), TACAS’01, LNCS 2031, pp. 1–22. Springer.
Wachter, B. D., A. Genon, T. Massart, and C. Meuter (2005). The formal design of distributed

controllers with dsl and Spin. Formal Asp. Comput. 17(2), 177–200.

16

