Preserving Termination of Tabled Logic
Programs While Unfolding

Michael Leuschel, Bern Martens and Konstantinos Sagonas

K.U. Leuven, Department of Computer Science
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
e-mail: {michael,bern kostis}@cs.kuleuven.ac.be

Abstract. We provide a first investigation of the specialisation and
transformation of tabled logic programs through unfolding. We show
that — surprisingly — unfolding, even determinate, can worsen the ter-
mination behaviour in the context of tabling. We therefore establish two
criteria which ensure that such mishaps are avoided. We also briefly
discuss the influence of some other transformation techniques on the
termination and efficiency of tabled logic programs.

1 Introduction

The use of tabling in logic programming is beginning to emerge as a powerful
evaluation technique, since it allows bottom-up evaluation to be incorporated
within a top-down framework, combining the advantages of both. Although the
concept of tabled execution of logic programs has been around for more than
a decade (see [27]), practical systems based on tabling are only beginning to
appear. Early experience with these systems suggests that they are indeed prac-
tically viable. In particular the XSB system [24], based on SLG-resolution [3],
computes in-memory queries about an order of magnitude faster than current
semi-naive methods, and evaluates Prolog queries with little reduction in per-
formance when compared to well-known commercial Prolog systems.

At a high level, top-down tabling systems evaluate programs by recording
subgoals (referred to as calls) and their provable instances (referred to as an-
swers) in a table. Predicates are designated a priori as either tabled or nontabled.
Clause resolution, which is the basic mechanism for program evaluation, proceeds
as follows. For nontabled predicates the call is resolved against program clauses.
For tabled predicates, if the call is new to the evaluation, it is entered in the
table and Prolog-style program clause resolution is used to compute its answers
which are also recorded in the table. If, on the other hand, a variant! of the call is
already present in the table, then it is resolved against its recorded answers. By
using answer tables for resolving subsequent invocations of the same call, tabled

! Tabling evaluation methods can be based either on variant checks, as SLG-resolution
is, or on subsumption checks. Throughout this paper, unless otherwise specified, we
assume tabling based on variance, and we refer the reader to [3] Section 7.1 for a
discussion on some of the issues that are involved in this choice.

evaluation strategies prevent many cases of infinite looping which normally oc-
cur in Prolog-style SLD evaluation. As a result, termination characteristics of
tabling-based logic programming systems are substantially better than those of
Prolog [3].

Given the relative novelty of tabling-based implementations, many promising
avenues for substantially improving the performance of tabled programs remain
to be explored. Research in this topic has mainly addressed issues related to
finding efficient data structures for tabling [22], or suggesting low-level modi-
fications of the SLG-WAM [23]. In this paper we deviate from this path and
investigate issues related to the optimisation of tabled programs using more
portable techniques such as specialisation through unfolding or similar program
transformations.

Program transformation is by now a widely accepted technique for the sys-
tematic development of correct and efficient programs. Given a program, the aim
of program transformation is to produce a more efficient program which solves
the same problem, that is, which is equivalent in meaning to the original one
under a semantics of choice. Various systems for program transformation have
been developed, usually based on the use of the fold/unfold framework. This
framework dates back to at least [2], has been introduced to the logic program-
ming community in a seminal paper of Tamaki and Sato [26], has since been the
subject of considerable research (see e.g. the references in [18]), and has been
successfully used in many partial evaluators for Prolog-style execution [20, 19,
25, 8]. Unfortunately, no methodology for the transformation or specialisation of
tabled logic programs exists. All techniques stay within the context of untabled
execution. Initially, one may expect that results established in the “classic”
(S)LD setting more or less carry over. This, however, turns out to be far from
obviously true as the differences between the execution models are significant.

In this paper, we mainly concentrate on issues related to the safety of un-
folding in tabled logic programs. We do so because in the context of program
specialisation, unfolding is the most important ingredient. For instance, partial
deduction [17] basically only employs unfolding. In untabled execution of logic
programs unfolding is not problematic. For example, it preserves both the least
Herbrand model and set of computed answer substitutions semantics and —
even in the context of the unfair Prolog selection rule — it cannot worsen the
(universal) termination behaviour of a program [21]. Under tabled execution,
however, unfolding — even determinate — may transform a terminating pro-
gram into a non-terminating one ! Naturally, this is a situation that better be
avoided.

To reason about unfolding of tabled logic programs, we describe a framework
that captures their termination (under the left-to-right selection rule) and define
applicability conditions that ensure the intended equivalence property between
the original program and the transformed one. Using this framework we prove
that certain non-trivial and commonly used in practice types of unfolding are
safe with respect to termination.

In summary, our results regarding unfolding in the context of tabled execution
are as follows:

— We prove that left-most unfolding or unfolding without any left-propagation
of bindings preserves termination of tabled logic programs.

— We show that even though left-propagation of bindings through unfold-
ing can worsen the termination characteristics of a tabled programs, left-
propagation of grounding substitutions is safe wrt termination.

The rest of the paper is organised as follows. In the next section we introduce
some preliminaries and in Section 3 we show through an example how unfolding
endangers termination of tabled programs. To reason about preservation of ter-
mination by unfolding, in Section 4 we introduce the notion of quasi-termination
of tabled programs, and based on this notion in Section 5 we prove the above
results. We end with an extended discussion of the effect that some other com-
monly used transformation techniques have on the termination and efficiency of
tabled programs.

2 Preliminaries

We denote by BE the non-ground extended Herbrand base? (i.e. the set of
atoms modulo the variant equivalence relation ~ as defined in [7]). We also define
the following notations: the set of variables occurring inside an expression E is
denoted by vars(E), the domain of a substitution 6 is defined as dom(0) = {X |
X/t € 0} and the range of 0 is defined as ran(f) = {Y | X/t € 0ANY € vars(t)}.
Finally, we also define vars(6) = dom(0) U ran(f) as well as the restriction 6|y
of a substitution 6 to a set of variables V by 0|y = {X/t | X/t € 0 A X € V}.
By mgu(A, B) we denote a substitution 6 which is an idempotent (i.e. 00 = 0)
and relevant (i.e. vars(d) C vars(A) U vars(B)) most general unifier of two
expressions A and B. In the remainder of this paper we will use the notations
hd(C),bd(C) to refer to the head and the body of a clause C respectively.

A program transformation process starting from an initial program P is a
sequence of programs Py, ..., P,, called a transformation sequence, such that
program Py.1, with 0 < k& < n, is obtained from Py by the application of
a transformation rule, which may depend on Pp,..., Pr. Let us now formally
define unfolding, slightly adapted from [18, (R1)].

Definition 1. (Unfolding rule) Let Py contain the clause C = H «— F, A, G,
where A is a positive literal and where F' and G are (possibly empty) conjunctions
of literals. Suppose that:

2 In some given language, usually inferred from the program and queries under consid-
eration. The superscipt E is used to prevent confusion with the standard definition
of the Herbrand base.

1. {Dy,..., Dy}, withn > 0, 3 are all the clauses in a program Pj, with
0 < j <k, such that A is unifiable with hd(D1),...,hd(D,,), with most
general unifiers 61,...,6,, and
2. C; is the clause (H «— F,bd(D;),G)0;, fori=1,...,n.
Each binding in 0;|yars(ryuvars(r) 5 called a left-propagated binding.
If we unfold C wrt A (using D1, ..., Dy) in P;, we derive the clauses C1,...,Cy,
and we get the new program Pry; = (P, \ {C}) U{C1,...,Cp}. Whenn =1,
i.e., there is exactly one clause whose head is unifiable with A, the unfolding is
called determinate. Finally, left-most unfolding unfolds the first literal in bd(C)
(i.e. F is empty).t

For example, given Py = {p < ¢ Ar,q < r}, we can unfold p < g AT wrt ¢q
using Py, deriving the clause p < r A7 and we get P, = {p «— r Ar,q — r}.

Note that, in contrast to [18], we treat programs as sets of clauses and not
as sequences of clauses. For pure tabled programs, the order (and multiplicity)
of clauses makes no difference for the termination properties we are (primarily)
interested in preserving (the order of clauses and the order of solutions has no
incidence on universal — i.e. wrt the entire computation process — termination;
it might however affect their existential termination, as discussed in Section 6.4).

3 Unfolding Endangers Termination

In the context of program specialisation, unfolding is the most important trans-
formation rule. For instance, partial deduction [17] basically only employs un-
folding (although a limited form of implicit folding is obtained by the Lloyd and
Shepherdson closedness condition, see e.g. [14]). So in order to study speciali-
sation and transformation of tabled logic programs we will first concentrate on
the behaviour of unfolding.

In logic programs — with or without negation — executed under SLD(NF)
(or variants thereof) any unfolding is totally correct and does not modify the
termination behaviour of the program (see e.g. [18]). In the context of a fixed,
unfair selection rule, like Prolog’s left-to-right rule, unfolding can even improve
termination (cf. [21]), but never worsen it. In the Prolog setting (i.e. if we take
clause order, depth-first strategy into account), unrestricted unfolding can only
affect the existential termination of programs, because unfolding can change the
order of solutions. Moreover, determinate unfolding does mot modify the back-
tracking behaviour [9] and can thus only be beneficial for efficiency (leading to
smaller SLD(NF)-trees).

However, while unfolding is not problematic in the ordinary setting, its in-
fluence on efficiency and termination becomes rather involved in the context of

3 [18, (R1)] actually stipulates that n > 0 and thus does not allow the selection of an
atom which unifies with no clause. However, the “deletion of clauses with finitely
failed body” rule [18, (R12)] can be used in those circumstances instead. We can
thus effectively allow the case n = 0 as well.

4 Note that left-most unfolding is allowed to instantiate the head, while unfolding
without left-propagation is not.

tabled execution. On the one hand, contrary to Prolog-style execution, any un-
folding of Datalog (or propositional) programs is safe wrt termination, as SLG
terminates on such programs [3]. On the other hand however, as soon as func-
tion symbols are introduced, unfolding, even determinate, can ruin termination.
We suppose from now on, for simplicity of the presentation, that all predicates
are tabled. We also suppose that the predicate = /2 is defined by the clause
= (X, X) «.

Ezxample 1. Let P be the following program.
p(X) —p(Y),Y = f(X)

Under a left-to-right selection rule, this program fails finitely (the selected atom
is a variant of a call for which no answers can be produced) and thus terminates
for e.g. the query « p(X). The following program, P’, obtained by (determi-
nately) unfolding the atom Y = f(X) does not (see Fig. 1):

p(X) < p(f(X))

p(X) p(X) p(f(X)) p(f(f(X)))
P l P l l l
p(Y),Y = f(X) p(f(X)) p(f(f(X)) p(f(f(f(X))))

Fig. 1. SLG-forests for the query « p(X) before and after unfolding Example 1.

This “infinite slowdown” is of course highly undesirable. In the remainder
of this paper we develop criteria which ensure that termination is preserved by
unfolding.

4 Quasi-Termination

We start out with a formalisation of termination (under a left-to-right selection
rule) in the setting of tabled execution of logic programs.

Definition 2. (call graph) Given a program P, the call graph of P is the
graph whose nodes are the elements of BE and which contains a directed edge
from A to B, denoted by A —p B (or more precisely A —pc; B), iff there
exists a (renamed apart) clause C = H «— By, ..., B, in P such that

e A and H unify via an mgu 6 and

e B~ B;#0,...0;_1 where 0} is a c.a.s. for PU{«— B;06,...6;_1}.
By —% we denote the transitive and reflexive closure of —p. Given an atom
A € BE, we also define A% = {B € BE| A —% B}. A subset S of BE is said
to be closed iff A —p B, for some A € S, implies that B € S.

Ezample 2. Let P be the following program.

pla) —

p(X) — q(X),p(X)

q(a) —

q(b) —
We have that e.g. p(a) —p q(a), p(a) —p p(a) and p(a)* = {p(a),q(a)}. The
full call graph is depicted in Fig. 2.

q(;XL_p(ff) Q(ob)
AN
q(a) p(a)\j p(b) \j

Fig. 2. Call graph of P for Example 2

We now define the notion of quasi-termination of tabled logic programs (a
term borrowed from [12], defining a similar notion in the context of termination
of off-line partial evaluation of functional programs).

Definition 3. (quasi-termination) Let P be a program and S a subset of
BE. P is said to be quasi-terminating wrt S iff for every A € S the set A} is
finite. Also, P is quasi-terminating iff it is quasi-terminating wrt BE.

E.g. the program P from Example 2 is quasi-terminating wrt the entire BE.

The above definition in essence means that, starting from S, evaluation pro-
duces only a finite number of different calls. Equivalently, every LD-tree (i.e.
an SLD-tree using the left-to-right selection rule) for P U {— A}, A € S, con-
tains only a finite number of selected atoms modulo variable renaming. It is also
equivalent to stating that every SLG-forest using the left-to-right selection rule
for PU{«— A}, A € S, contains only finitely many SLG-trees. This means that
non-termination can only occur if a call produces an infinite number of computed
answers. Hence, universal termination holds iff we have quasi-termination and
there are only finitely many c.a.s. for the selected atoms (for a more thorough
discussion on termination issues in tabled execution see [6]) Thus, if a trans-
formation sequence preserves the set of c.a.s. — something which holds for all
the transformations we are interested in — then preserving quasi-termination is
equivalent to preserving universal termination.

5 Preserving Quasi-Termination While Unfolding

In the problematic Example 1 we have, by unfolding, left-propagated the binding
Y/ f(X) on the atom p(Y"). Without left-propagation the sequence of c.a.s. under

untabled LD-resolution is not changed (see e.g. [21]) and even the behaviour of
problematic non-logical built-in’s like var/1 is preserved (see e.g. [20,25]). We
first prove that such restricted unfolding is also safe wrt quasi-termination of
tabled logic programs.

Theorem 1. Let S C BE, and let P' be obtained from P by a sequence of left-
most unfolding steps and unfolding steps without left-propagated bindings.
If P is quasi-terminating wrt S then so is P’.

Proof. In Appendix A. O

We will now explore extensions of this basic result, as the left-propagation of
bindings can often be highly beneficial and, as it allows the evaluation to focus
on only the relevant data, can lead to a dramatic pruning of the search space
(see e.g. [13]).

However, considerable care has to be taken when performing instantiations
in the context of tabled logic programs. We have already illustrated the danger
of unfolding with left-propagation of bindings. Note, however, that if we just
instantiate the query « p(X) to < p(f(X)), but leave the clause in program P
of Example 1 unmodified, quasi-termination is not destroyed. So, one might
hope that instantiating a query and leaving the program unmodified should
be safe wrt quasi-termination. Alas, there is another more subtle reason why
left-propagation of bindings can endanger termination. Termination of ordinary
SLD(NF)-resolution has the following property.

Definition 4. The termination of an evaluation strategy € is closed under susti-
tution iff whenever in a program P a query «— @ terminates under &, then so
does every instance «— Q0 of it.

Surprisingly, this is not a property that carries over to tabled evaluation! We
show that termination (and quasi-termination) of SLG-resolution is not closed
under sustitution with the following counterexample.

Ezample 3. Let p/2 be a tabled predicate defined by the following clause.
p(f(X),Y) < p(X,Y)

Then, both under variant- and subsumption-based tabling, the query «— p(X,Y)

terminates while «— p(X, X) does not!

p(X,Y) p(X, X) p(X, (X)) p(X, f(f(X)))
x = .f(X’>l x = f(X/)l x = f(X’)l x= f(X’)l e
p(X"Y) p(XL (X)) p(XLF(F(XT)) p(X7 F(F(F(XT))))

Fig. 3. SLG-forests for the queries « p(X,Y) and «— p(X, X).

As a side-comment, note that, because termination of tabled execution is
not closed under sustitution, tabling systems based on (forward) subsumption
have unpredictable termination characteristics in general (termination of queries
depends on the chronological order of encountering tabled calls). At least from
a purely practical perspective, this is can be seen as an advantage of tabling
systems based on variance over those based on subsumption.

Example 3 can be adapted to show that even left-propagation of bindings
which do not introduce any new structure can be dangerous: t — p(X,Y), X =Y
terminates while a program containing ¢ < p(X, X) does not. Moreover, a
variant of the same example shows that even left-propagation of bindings to
variables that appear only in the head can ruin termination as can be seen by
the unfolding of the atom Z = f(X) in the following clause:

P(Z.Y) = p(X.Y).Z = f(X)

So, although left-propagation and instantiation in the context of tabled exe-
cution of logic programs seems like a hopeless endeavour, we will now formally
establish that a non-trivial class of substitutions can actually be safely left-
propagated.

Definition 5. A substitution 7 is called a grounding substitution iff for all
X/t € v we have that t is a ground term.

We say that v is structurally simpler than another grounding substitution o,
denoted by v < o, iff for every X/s € ~y there exists a Y/t € o such that s is a
subterm of t.

Note that any term is considered a subterm of itself.

Ezample 4. Let o0 = {X/f(a),Y/b} be a grounding substitution. Then o itself as
well as e.g. {Z/a, X/b} and {X/f(a),Y/f(a),Z/b,V/a} are structurally simpler
than o (it would be possible to disallow the last case by a more refined definition,
but it is not required for our purposes). However, neither {Z/f(f(a))} nor {X/c}
are structurally simpler than o.

The interest of the relation <, in the context of quasi-termination, derives
from the following proposition.

Lemma 1. Let o be a grounding substitution and let A be an atom. Then the
set {A'y| A" = A and v <o} is finite up to variable renaming.

Proof. Let vars(A') = {X1,..., X} and let v <o. Then we either have X;v = X; or
we have that X;v = ; where t; is a subterm of some s; with Y/s; € 0. Now, as there
are only finitely many bindings Y/s in o and as for each such s there are only finitely
many subterms, we can only construct finitely many different atoms A’y up to variable
renaming. O

Next, we prove the following lemma, capturing an interesting property of
grounding substitutions. Together with Lemma 1, this will enable us to show
that left-propagation of grounding substitutions is safe wrt quasi-termination.

Lemma 2. Let v be a grounding substitution and let «— Q~ have a derivation
leading to < RQ'. Then < Q has a corresponding derivation leading to < RQ
such that for some grounding substitution v <~, RQ' ~ RQ~'.

Proof. In Appendix B. a
We will now put the above lemmas to use.

Theorem 2. Let P be a program, A an atom and let o be a grounding substi-
tution. If A} is finite then so is Aop.

Proof. By Lemma 2 we know that for every A —} B we can only have Ac —} By
for grounding substitutions v < o. This means that A = {B’y | B € A* A B’ ~ B and
v <o} is a safe approximation (i.e. a superset) of Acp. We can apply Lemma 1 to
deduce that A is finite whenever A™ is. O

Theorem 3. Let S C BE, and let P' be obtained from P by left-most unfolding
steps and unfolding steps such that each left-propagated binding is a grounding
substitution. If P is quasi-terminating wrt S then P’ is quasi-terminating wrt S.

Proof Sketch. The full proof is obtained by adapting the proof of Theorem 1 to make
use of Theorem 2 for the left-propagated grounding substitutions. The only tricky
aspect is that, when instantiating a body atom B of a clause C to B~y, Theorem 2 only
tells us that if B was terminating in P then B~ is also terminating in P. To actually
infer that By also terminates in P’ = P\CU{C4,...,C,} we have to take into account
that v might be repeatedly applied, i.e. whenever a derivation of B uses the clause C.
This is no problem, however, because v' <+ = v’y < v, meaning that Lemma 2 (and
thus also Theorem 2) also holds when the grounding substitution is repeatedly applied.
O
A similar result does not hold when using tabling based on subsumption
rather than variance as shown by the following example.

Ezample 5. The following program is quasi-terminating wrt {q} when using sub-
sumption checks (but not when using variant checks).

p(X) — p(f(X))

q < p(X)a X=a
Unfolding X = a in the last clause will result in the left-propagation of the
grounding substitution {X/a} and produce the clause ¢ < p(a). The resulting
program is no longer quasi-terminating wrt {¢} when using subsumption checks
only (term-depth abstraction in the spirit of OLDT-resolution is then also re-
quired to ensure termination).

6 Extensions and Efficiency Considerations

6.1 Mixing Tabled and Prolog-Style Execution

So far we have assumed that all predicates are tabled. When not all predicates
are tabled, then one can safely left-propagate any substitution on un-tabled

predicates if they do not call tabled predicates themselves (otherwise a problem
similar to Example 3 can arise; e.g. through left-propagation of X/Y on the
untabled call ¢(X,Y"), where ¢/2 is defined by ¢(X,Y) <« p(X,Y)).

One also has to ensure that unfolding does not replace a tabled predicate by
an un-tabled one. Otherwise, the termination might be affected as the following
example shows.

Ezample 6. In program P of Figure 4 where only ¢/1 is tabled all queries finitely
fail; so the program is terminating. However, by determinate unfolding of the
first clause wrt to ¢(X), we end up with the program P’ on the right side of the
same figure for which the query « p(X) is non-terminating.

p(X) — t(X) p(X) < p(X)
P P
t(X) « p(X) tH(X) «— p(X)

Fig. 4. P’ is obtained from P by unfolding wrt ¢+(X).

6.2 Polyvariance and Renaming

Most partial evaluators and deducers use a technique called renaming (see e.g.
[10,1]) to remove redundant structure from the specialised program but also to
ensure the independence condition of [17] (thus avoiding the use of abstraction
instead), thereby allowing unlimited polyvariance. In the context of SLD(NF)-
execution, such additional polyvariance might increase the code size but is always
beneficial in terms of the size of the (run-time) SLD(NF)-trees. The following
example shows that, again, in the context of tabled execution, appropriate care
has to be taken.

Ezample 7. Let P be the following program, containing some arbitrary definition
of the predicate p/2.

¢(X,Y) —p(a,Y),p(X,)
After specialising one might obtain the following program along with definitions
for p,/1 and py/1.

a(X,Y) « pa(Y), pp(X)
For the query < ¢(a, b) the call p(a, b) will only be executed once against program
clauses in the original program while in the specialised program both p,(b) and
py(a) will be executed. The specialised program might thus actually be less
efficient than the original one !

A conservative, but safe, approach is to apply renaming only when the atoms
are independent — it should just be used to remove superfluous structure from
the specialised program while the independence condition should be ensured via
abstraction.

10

Similar difficulties can arise when performing conjunctive partial deduction
[14,11] (as well as tupling or deforestation), which specialises entire conjunctions
and renames them into new atoms. Indeed, renaming a conjunction into a new
atom might diminish the possibility for tabling, i.e. the possibility of reusing
earlier computed results. If e.g. we rename the conjunction p(X,Y) A ¢(X, Z)
into pq(X,Y, Z) then the query « p(a,b) A g(a,c) can reuse part of the results
computed for < p(a,b) A ¢(a,d), while the renamed query < pq(a,b,c) cannot
reuse results computed for «— pq(a, b, d).

6.3 A note on the efficiency of unfolding with left-propagation

In untabled execution the left-propagation of substitutions usually prunes the
search space, and thus can only be beneficial for the efficiency of query evalu-
ation. In tabled execution, as some program clause resolution is substituted by
resolution against answers that are materialised in tables and can be retrieved
without recomputation, the left-propagation of (even grounding) substitutions
may sometimes worsen performance (of course it can also vastly improve it).
For example, in many tabled-based program analysers, it is usual practice to
employ what is known as the most-general call optimisation [4]; i.e., compute
analysis information for the most general form of each predicate and then retrieve
this information from the tables, appropriately filtering it by explicit equality
constraints. The basic idea of the approach can be illustrated by two simple
abstract interpreters from [5] shown in Figure 5. The definition of the fact/1
predicate (which can be the only tabled predicate) is the same for both inter-
preters and assumes that each program clause H «— Gy, ..., G, is represented
as a fact of the form pe(H, [G,...,Gy]) <. A top-level query «— fact(X) trig-

fact(Head) «— fact(Head) «—

pc(Head, Body), prove(Body) pe(Head, Body), prove(Body)
prove([]) — prove([]) —
prove([G|Gs]) « prove([G|Gs]) «—

fact(G), prove(Gs) fact(GenG), GenG = G, prove(Gs)

Fig. 5. Two abstract meta-interpreters for concrete evaluation.

gers the computation of the program’s non-ground minimal S-model that gets
recorded in the tables. Only one such table is created when using the inter-
preter with the most-general call optimisation (shown on the right side of the
figure). However, using the interpreter on the left side of the figure the number
of tables depends on the number of distinct (up to variance) instantiation pat-
terns for calls to fact/1. Besides the overhead in space, this has an associated
performance cost especially in complicated abstract domains (see e.g. [4,5] for
more information and experimental evaluation of this technique over a variety
of domains).

11

6.4 Taking program clause order into account

In existing implementations of tabling, program clause resolution is performed
in a style similar to Prolog’s; i.e. visiting clauses according to their textual or-
der. Consequently, in tabled programs which are not quasi-terminating, non-
determinate unfolding (even without left-propagation) can worsen their existen-
tial termination. This, in turn, might affect their behaviour under optimisations
which involve pruning, such as existential negation (c.f. [24]). We illustrate the
problem by the following example, which extends a similar example given in [21].

Example 8. Assuming a scheduling strategy that returns answers to calls as soon
as these are generated, program P of Figure 6 produces the answer X = 0 for
the query «— p(X), and then loops, while program P’ loops without producing
any answers.

p(X) — q(X),r ggﬁg:gg;g,ﬂul
q(O) — _

Fr| 0 T PR < atst)
Pt r «— fail

r

Fig. 6. P’ is obtained from P by unfolding wrt r.

7 Discussion

We conclude with a brief discussion of a possible application of this work, namely
optimising integrity checking upon updates in recursive databases, by specialis-
ing meta-interpreters. For hierarchical databases successful results have already
been achieved in [13]. Unfortunately, moving to recursive databases has proven
to be difficult, because the loop check — which is necessary for termination —
requires the use of the ground representation when using SLD(NF)-execution.
This imposes a large initial overhead and leads to further difficulties in terms
of specialisation [15,16]. However, by writing the integrity checker in a tabled
environment we can use the non-ground representation and together with the
techniques explored in this paper, one might obtain effective specialised update
procedures even for recursive databases. Note that in the setting of deductive
databases left-propagation of grounding substitutions corresponds to the well-
known optimisation principle of making selections first, and thus occurs very
naturally.

12

Acknowledgements

Michael Leuschel is supported by the Belgian GOA “Non-Standard Applications of
Abstract Interpretation”. Bern Martens is a post-doctoral fellow of the K.U.Leuven

Research Council. Konstantinos Sagonas is a post-doctoral fellow of the Flemish Fund
for Scientific Research (FWOQO). We thank Danny De Schreye and Stefaan Decorte for
interesting discussions, ideas and comments.

References

1.

2.

3.

10.

11.

12.

13.

K. Benkerimi and P. M. Hill. Supporting transformations for the partial evaluation
of logic programs. Journal of Logic and Computation, 3(5):469-486, October 1993.
R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44-67, 1977.

W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM, 43(1):20-74, January 1996.

M. Codish, M. Bruynooghe, M. Garcia de la Banda, and M. Hermenegildo. Ex-
ploiting Goal Independence in the Analysis of Logic Programs. Journal of Logic
Programming, 32(3):247-262, September 1997.

M. Codish, B. Demoen, and K. Sagonas. General Purpose Semantic Based Program
Analysis using XSB. K.U. Leuven Technical Report CW 245. December 1996.

S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K. Sagonas. Termination
Analysis for Tabled Logic Programming. In Proceedings of LOPSTR’97: Logic
Program Synthesis and Transformation, Leuven, Belgium, July 1997.

M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. Declarative Modeling of
the Operational Behavior of Logic Languages. Theoretical Comput. Sci., 69(3):289—
318, 1989.

J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,
University of Bristol, November 1991.

J. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 88—98, Copenhagen, Denmark, 1993. ACM
Press.

J. Gallagher and M. Bruynooghe. Some low-level transformations for logic pro-
grams. In M. Bruynooghe, editor, Proceedings of Meta90 Workshop on Meta Pro-
gramming in Logic, pages 229-244, Leuven, Belgium, 1990.

R. Gliick, J. Jogrgensen, B. Martens, and M. H. Sgrensen. Controlling Con-
junctive Partial Deduction of Definite Logic Programs. In H. Kuchen and
S. Swierstra, editors, Proceedings of the International Symposium on Program-
ming Languages, Implementations, Logics and Programs (PLILP’96), number 1140
in LNCS, pages 152-166, Aachen, Germany, September 1996. Springer-Verlag.
Extended version as Technical Report CW 226, K.U. Leuven. Accessible via
http://www.cs.kuleuven.ac.be/ 1lpai.

C. K. Holst. Finiteness Analysis. In J. Hughes, editor, Proceedings of the 5th
ACM Conference on Functional Programming Languages and Computer Architec-
ture (FPCA), number 523 in LNCS, pages 473-495. Springer-Verlag, August 1991.
M. Leuschel and D. De Schreye. Towards creating specialised integrity checks
through partial evaluation of meta-interpreters. In Proceedings of PEPM’95, the
ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, pages 253—-263, La Jolla, California, June 1995. ACM Press.

13

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Leuschel, D. De Schreye, and A. de Waal. A conceptual embedding of fold-
ing into partial deduction: Towards a maximal integration. In M. Mabher, edi-
tor, Proceedings of the Joint International Conference and Symposium on Logic
Programming JICSLP’96, pages 319-332, Bonn, Germany, September 1996. MIT
Press. Extended version as Technical Report CW 225, K.U. Leuven. Accessible
via http://www.cs.kuleuven.ac.be/ 1pai.

M. Leuschel and B. Martens. Partial deduction of the ground representation and its
application to integrity checking. In J. W. Lloyd, editor, Proceedings of ILPS’95,
the International Logic Programming Symposium, pages 495-509, Portland, USA,
December 1995. MIT Press. Extended version as Technical Report CW 210, K.U.
Leuven. Accessible via http://www.cs.kuleuven.ac.be/ 1pai.

M. Leuschel and D. Schreye. Logic program specialisation: How to be more spe-
cific. In H. Kuchen and S. Swierstra, editors, Proceedings of the International
Symposium on Programming Languages, Implementations, Logics and Programs
(PLILP’96), number 1140 in LNCS, pages 137-151, Aachen, Germany, Septem-
ber 1996. Springer-Verlag. Extended version as Technical Report CW 232, K.U.
Leuven. Accessible via http://www.cs.kuleuven.ac.be/ 1pai.

J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11(3& 4):217-242, 1991.

A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. The Journal of Logic Programming, 19& 20:261-320, May 1994.

S. Prestwich. The PADDY partial deduction system. Technical Report ECRC-92-
6, ECRC, Munich, Germany, 1992.

S. Prestwich. An unfold rule for full Prolog. In K.-K. Lau and T. Clement,
editors, Logic Program Synthesis and Transformation. Proceedings of LOPSTR’92,
Workshops in Computing, University of Manchester, 1992. Springer-Verlag.

M. Proietti and A. Pettorossi. Semantics preserving transformation rules for Pro-
log. In Proceedings of the ACM Symposium on Partial Evaluation and Semantics
based Program Manipulation, PEPM’91, Sigplan Notices, Vol. 26, N. 9, pages 274—
284, Yale University, New Haven, U.S.A., 1991.

I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. Efficient
Tabling Mechanisms for Logic Programs. In L. Sterling, editor, Proceedings of the
12th International Conference on Logic Programming, pages 687-711, Japan, June
1995. The MIT Press.

K. Sagonas. The SLG-WAM: A Search-Efficient Engine for Well-Founded Evalu-
ation of Normal Logic Programs. PhD thesis, Department of Computer Science,
SUNY at Stony Brook, August 1996.

K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database
engine. In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, pages 442—-453, Minneapolis, Minnesota, May 1994. ACM
Press.

D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12(1):7-51, 1993.

H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In S.-
A. Térnlund, editor, Proceedings of the Second International Conference on Logic
Programming, pages 127-138, Uppsala, Sweden, 1984.

H. Tamaki and T. Sato. OLD Resolution with Tabulation. In E. Shapiro, editor,
Proceedings of the Third International Conference on Logic Programming, number
225 in LNCS, pages 84-98, London, July 1986. Springer-Verlag.

14

A Proof of Theorem 1

Theorem 1. Let S C BE, and let P’ be obtained from P by a sequence of
left-most unfolding steps and unfolding steps without left-propagated bindings.
If P is quasi-terminating wrt S then so is P’.

Proof. Let P= Py, P1,..., P. = P’ be the transformation sequence used to obtain P’.
We will prove by induction on the number of unfolding steps that in each intermediate
program P; the transitive closure of —p, will be smaller or in the worst case equal to
the transitive closure of — p. This ensures that quasi-termination is indeed preserved.
Let P;1+1 be obtained from unfolding the clause C = H <« F, A, G in P; wrt A using
D1,...,Dy in Pj. Let B —p, ¢ B'. If C' # C then we trivially have that this part
of the call graph is not modified in P11 and we have B —p, | ¢k B’. If on the other
hand C = C’ then we do not have B —p,, ;,¢,x B’ as C has been removed and has been
replaced by the clauses {C1,...,Cyr} of Definition 1. Let C = H <« Bi,..., B, with
F=15B,...,Bq—1, A= By and G = Bg41,..., Br. There are now three possibilities:

1. k < g. This implies that we have applied unfolding without left-propagation (for
left-most unfolding no atoms can be to the left of the unfolded atom By). We
know that B —p,,, cv B’ for every C” € {C1,...,Cy} and as no bindings are
left-propagated, C"" = H « F A Rest. So, if n > 0 we have B —p,,, B’ and the
relation —p, , is the same as —p,. If n = 0 then the unfolding has possibly (there
could be other ways to establish B —p, B’) removed an arrow by going from — p,
to —p,,, (if it is actually removed then termination might be improved by pruning
a non-terminating computation).
2. k > ¢. In that case we have B —p,,, B’ as unfolding preserves the set of com-
puted answers. More precisely, by Definition 2, we know that B’ = B0 where
0 = 001 ...60;_1. Let us consider the following auxiliary clause Auz = aux(X') —
(Bi,...,Byq,...,Br_1)0 where X are the variables in the body of Aux. We know
that if we unfold Aux wrt B, then the set of computed answers of e.g. the query
«— Auz are preserved for any selection rule (so also the left-to-right one). This
means that if < (B1,...,Bq,..., Br—1)0 had the computed answer 6, then there
must be a similar computed answer in the unfolded program and thus we also have
B —p,,, Bib.
3. k = ¢. In that case we do not have B —p,,, B’ — unless there was another way
to establish B —p, B’ — but it is replaced by several (possibly) new arrows. Let
B = Bké where 6 = 007 ...0;k_1. Let us first consider the case that unfolding
without left-propagation has been performed, i.e. let Cs = H «— F,bd(D5s)0s, GO
be an unfolded clause where 0; = mgu(By, hd(Ds)). If B —p, | ¢, qrw B” for
0 < k' < I where [is the number of atoms in bd(D;) (i.e. we have a new arrow)
then we must have B —p, p, » B":
Take the clause D, = hd(Ds) « bd(Ds). Then the clause D, = By0s «—
bd(Ds)0s is actually the resultant of a simple derivation of length 1 for « By.
Hence we can use e.g. Lemma 4.12 from [17] to deduce that the computed
answers of an instance < B’ of « B, are the same when resolving with D; as

when resolving with DZ.
By the induction hypothesis we know that both B —p, B’ and B’ —p; B were
already in the transitive closure of —p and thus the (possibly) new arrow B —p,
B" was also already in the transitive closure of —p. Now, in the case that left-most
unfolding has been performed then F' is empty and we have that Cs = HO; «—

15

bd(Ds)8s,GOs with 6, = mgu(Bg, hd(D,)). Note that in contrast to unfolding
without left-propagation the head of Cs is not necessarily equal to H. However,
by a similar application of Lemma 4.12 from [17] we can deduce that this has no
influence and we can apply the same reasoning as above.

So, the only new arrows which are added were already in the transitive closure of —p
and the new transitive closure will thus be smaller (as some arrows might be removed)
or equal than the one of —p. O

B Proof of Lemma 2

Lemma 3. Let A and H be atoms with vars(A) Nvars(H) = (. Let o = {X/t}
be a grounding substitution with X ¢ vars(H) and 0 = mgu(A, H) and ' =
mgu(Ao, H).

1. If X & dom(0) then HO' ~ Hfo.
2. If X € dom(60) then there exists a substitution v <o such that HO' ~ H0~.

Proof. Point 1. If X ¢ vars(A) then the property is trivial, as A and Ao are identical
and X cannot be in ran(f) by idempotence of 6.

Now let X € vars(A). Because X & dom(f) and t is ground, we have, by definition
of composition of substitutions, that o = 0.5 Hence, (Ac)fo = Afc = Hfo and
fo is a unifier of Ac and H. Thus, as 6’ is a most general unifier there must exist a
substitution 4’ such that 0" = #o and thus Hfo is an instance of H'.

We now establish that H6’ is in turn an instance of Hfo, and thus prove that Hf' ~
Hbo.

Let o/ = of'. This substitution is a unifier of A and H: Ho' = H' (because X ¢
vars(H)) and Ao’ = Ac#’ = HO'. So there must exist a substitution v such that
6y = o’ (because 0 is an mgu). This means, as X & dom(0), that X/t € v, i.e. v = o4
for some 4 because t is ground. Now, H0' = Ho' = HOvy = HO04y and we have
established that H@' is an instance of Hfo.

Point 2. We have that X/s € 6 for some term s. We must have that, for some =,
sy = t. Indeed, o6’ is a unifier of A and H (see proof of Point 1.) and therefore for some
substitution 4 we have 0% = 00'. Now, because X/t € 00’ (as t is ground) we have
that s% =t. Let v = Y|yars(s) = {X1/t1,..., Xn/tn}. We have that all t; are subterms
of t and, unless n = 1 and s = X1, the ¢; must also be strict subterms. In other words,
~v < o. We now prove that H' ~ H@. First, we have that X/t € 0, by definition of
v, and we can thus find some substitution 6 such that 0y = ob (because t is ground).
Thus 6~ is a unifier of H and Ao: (Ac)0y = Ao = (because t is ground) Ao = Afy
= HOv. Thus 6~ is an instance of the mgu ¢’ and Hfvy and Afy is an instance of
H¢'. Secondly, as already mentioned above, 85 = o6’. Now, because X ¢ vars(H),
HO' = Ho6' and thus we have: HY' = Hof' = HOy = HOvyy" for some v (because
the ¢; are ground) and H6’ is in turn an instance of H0-. a

The following lemma follows immediately from Definition 5.

® This also holds if o is not a grounding substitution but if we have ran(o)Nvars(A) =
() instead.

16

Lemma 4. Let v1,72,01,02 be grounding substitutions such that dom(oq) N
dom(og) = 0. If 1 Qo1 and y2 Qog then 11772 Jop09.

Lemma 5. Let A and H be atoms with vars(A) Nvars(H) = 0. Let o be a
grounding substitution with dom(o) Nwvars(H) = 0 and 8 = mgu(A, H) and
0" = mgu(Ao, H). There exists a substitution v <o such that HY' ~ HO~y.

Proof. By induction on the number of elements in o, using Lemma 3 and Lemma 4.
O

The following lemma again follows immediately from Definition 5.
Lemma 6. If v1 <o and o <3 then 1 I3

We can finally prove Lemma 2.
Proof of Lemma 2. By induction on the length of the derivation, using Lemma 5
for each derivation step (and the fact that unifiers are relevant and the head of clauses
renamed apart meaning that H0' =~ H6v implies Bodyd' =~ Bodyfy and thus also
implies, together with A9’ = HO' and Afy = Afy, that RQ' ~ RQy) and using
Lemma 6. ad

17

