
How to Make FDR Spin
LTL Model Checking of CSP by Refinement

Michael Leuschel1, Thierry Massart2 and Andrew Currie1

1 Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
{mal,ajc}@ecs.soton.ac.uk

2 Computer Science Department
University of Brussels ULB - CP 212

Bld du Triomphe, B-1050 Brussels, Belgium
tmassart@ulb.ac.be

Abstract. We study the possibility of doing LTL model checking on
CSP specifications in the context of refinement. We present evidence
that the refinement-based approach to verification does not seem to be
very well suited for verifying certain temporal properties. To remedy this
problem, we show how to (and how not to) perform LTL model checking
of CSP processes using refinement checking in general and the FDR tool
in particular. We show how one can handle (potentially) deadlocking
systems, discuss the validity of our approach for infinite state systems,
and shed light on the relationship between “classical” model checking
and refinement checking.

1 Introduction

Recent years have seen dramatic growth [8] in the application of model check-
ing [7, 4] techniques to the validation and verification of correctness properties
of hardware, and more recently software systems.

One of the methods is to model a hardware or software system as a finite,
labelled transition system (LTS) which is then exhaustively explored to decide
whether a given temporal logic specification φ holds, i.e., checking whether the
system is a model of the formula φ. This approach has lead to various implemen-
tations, such as SPIN [15] for model checking of formulas in LTL [3] or SMV [18]
for CTL [7] model checking.

Another, quite different, approach is based on the notion of refinement and
is used by tools such as FDR [19, 12]. Here, the idea is to model both the system
and the property in the same formalism, e.g., as CSP [14] processes. A system
is said to satisfy a property φ if it is a refinement of φ. In CSP, refinement
can be defined as language containment, failures containment, or failures and
divergences containment.

The refinement-based approach suits itself very nicely to the stepwise de-
velopment of systems, while the temporal logic approach often allows for more

natural or succinct temporal specifications. It is quite surprising that the rela-
tionship between these two approaches appears not to have been studied. For
instance, on the practical side, one might be interested in using tools such as
FDR to do classical temporal logic model checking of CSP processes. In that
context it would be interesting to know how (subclasses of) LTL or CTL tem-
poral logic formulas can be translated into refinement tests. On the theoretical
side, one might be interested in studying the expressive power of full LTL or
CTL compared to refinement based model checking.

In this paper, we study the possibility of doing LTL model checking on CSP
specifications in the context of refinement in general and using the FDR tool in
particular. We discuss some unfruitful attempts at this translation, which show
that it is surprisingly difficult to find intuitive formulations of classical model
checking tasks as refinement checks. In particular, this means that a tool such as
FDR can currently not be used by ordinary users to perform LTL or CTL model
checking. This is a pity, as FDR can handle full CSP extended with functions
and advanced datatypes (such as lists, integers, sets), thus providing a powerful
specification and prototyping language, and it would be extremely valuable to
apply “classical” model checking to such specifications (e.g., to validate the ini-
tial specification). To remedy this problem, we then present a translation from
LTL to refinement (based on Büchi automaton) which does work and (once auto-
mated) allows one to easily perform “classical” model checking in a CSP setting
with refinement.

The remaining part of this paper contains the following. Sect. 2 contains basic
definitions concerning CSP and LTL. Sections 3 and 4 describe our (unsuccessful
and successful) attempts at translating LTL model checks into refinement checks.
In particular, we discuss the semantics of finite versus infinite traces and define
LTL∆ which can express properties both on infinite and deadlocking traces. We
give our construction for a tester which allows us to achieve the model-checking
using refinement. Section 6 contains discussions and future work.

2 Preliminaries

Let us first briefly recall main definitions concerning CSP and LTL. A more
complete and motivated definition can be found in [19] for CSP and in [6] for
LTL.

CSP and Refinement CSP is a process algebra defined by Hoare [14]. The first
semantics associated with CSP was a denotational semantics in terms of traces,
failures and (failure and) divergences. An important notion is refinement: P
refines Q denoted by P w Q, iff [|P]| ⊆ [|Q]|, where [|P]| stands for the (particular)
semantics of P , thus trace refinement is no more than language containment.
Also, P is said to be equivalent to Q iff P refines Q and Q refines P . CSP also
has an operational semantics defined, e.g., in [19].

Let us now give the syntax and semantics of the subset of CSP we want to
handle. This subset will be sufficient to illustrate the problems as well as the
possible solutions for doing LTL model checking using refinement.

Given Σ, a finite or enumerable set of actions (which we will henceforth
denote by lower case letters a, b, c, . . .), and X , an enumerable set of variables
or processes (which we henceforth denote by identifiers such as Q,R, . . ., or
MYPROCESS starting with an uppercase letter), the syntax of a basic CSP
expression is defined by the following grammar (whereA denotes a set of actions):

P ::=
STOP (deadlock) | a→ P (prefix) |
P u P (internal choice) | P 2 P (external choice) |
P [|A]| P (parallel composition) | P\A (hiding) |
Q (instantiation of a process)

Moreover, each process Q used must have a (possibly recursive) definition
Q = P . We suppose that all used processes are defined by at least one recursive
definition (if there is more than one definition this is seen to be like an external
choice of all the right-hand sides). In the following, we also suppose the alphabet
Σ to be finite.

Intuitively, a → P means that the system proposes the action a to its en-
vironment, which can decide to execute it. The external choice is resolved by
the environment (except when two branches propose the same action, where a
nondeterministic choice is taken in case the environment chooses that action).
Internal choice is made by the system without any control from the environment.
P [|A]| Q is the generalized parallel operator of [19], and means that the process
P synchronizes with Q on any action in the set of actions A. If an action outside
A is enabled in P or Q, it can occur without synchronization of both processes.
Pure interleaving P [|∅]| Q is denoted by P ||| Q. Pure synchronization P [|Σ]| Q
is denoted by P || Q. The hiding operator P\A replaces any visible action a ∈ A
of P by the internal action τ .

Note that the internal action τ is a particular action distinct from any action
of Σ (called visible actions). Intuitively this internal action allows to denote a
transition of the system from one state to another without any visible result to
the outside world. In CSP, we handle visible traces, i.e. traces where τ actions
have been removed.

In the trace semantics, the meaning [|P]| of a process P is the prefix closed
set of all the visible finite traces of P . The failure semantics additionally assigns
to a process P the set failures(P) of couples: the first element is a visible finite
trace t of the process P and the second component is a set R of refusals, i.e.
the set of all sets of actions the process P can refuse after having performed the
finite trace t. The divergence semantics of CSP also assigns to a process P the
set divergences(P) of traces after which the process can diverge, i.e., perform an
infinite number of invisible actions τ in sequence.

We shall denote P wT Q and P wF Q if the process P is resp. a trace or
a failure refinement of Q. Note that these semantics are slightly different from
classical CSP. In classical CSP, an immediately diverging process is equivalent
to CHAOS , which can perform any sequence of actions and refuse any set of
actions at any point. In our context, a diverging process cannot perform all
possible traces and failures, which conforms to the traces-refinement and failure-

refinement implemented in the FDR tool. A formal definition of the various
semantics of CSP can be found in [19, 14].

Example 1. Take Σ = {a, b}, P1 = a→ STOP , and P2 = (a→ STOP) u (b→
STOP). Then P1 wF P2 because failures(P1) = {(ε, {b}), (ε, ∅), (a,Σ), (a, {a}),
(a, {b}), (a, ∅)} and failures(P2) = {(ε, {b}), (ε, ∅), (ε, {a}), (a,Σ), (a, {a}), (a, {b}),
(a, ∅), (b,Σ), (b, {a}), (b, {b}), (b, ∅)}. Observe that (ε, {a, b}) 6∈ failures(P2), i.e.,
P2 cannot refuse both a and b (but it will refuse either a or b depending on the
internal choice).
Also, for P3 = (a → STOP) 2 (b → STOP) we have P1 wT P3 but P1 6wF P3

because failures(P3) does not contain neither (ε, {a}) nor (ε, {b}).

LTL LTL [3] is a linear-time temporal logic, in the sense that it uses a trace
semantics. Given an alphabet Π of elementary propositions (which we denote by
lower-case letters such as a, b, c, . . .), the syntax of LTL is given by the following
grammar:

φ ::= false|true|a|¬a|φ ∧ φ|φ ∨ φ| © φ|φ U φ|φ R φ

Note that LTL is usually defined for state based models (i.e., Kripke struc-
tures) while the operational semantics of CSP provides a labelled transition
system where transitions rather than states carry labels, and some of the tran-
sitions are labelled by the invisible action τ . We thus have to be very careful
about what the meaning of an elementary formula a is and what the concept of
a successor state (in light of τ) is1.

First, we will set Π to be identical to the set of actions Σ used within CSP
processes. Second, as usual in LTL, we will define the meaning of formulas on
individual traces of a system, and a system is a model for a formula iff all its
traces satisfy the formula. This definition means that the LTL formula a is true
for a system iff the system can perform a visible action (possibly after a sequence
of invisible ones) and that in all cases this visible action must be a. Also, the
system is a model for ¬a iff the action a can not be fired as first visible action.

Conjunction and disjunction have the usual meaning. © is the next operator;
e.g. ©φ means that the system can always perform a visible action, and that
after this action, the formula φ must be true. Notice that various invisible actions
may occur before the first visible action i.e., in our context this operator is not
a “next state” operator but a “next after visible action” operator. φ U ψ means
that for every execution of the system the formula ψ must eventually become
true and furthermore the formula φ must be true until (but not necessarily
including) the first point at which ψ becomes true. R is the release operator
which is the dual of the U operator; φ R ψ intuitively means that ψ must be
true up until and including the first point at which φ becomes true (but φ need
not necessarily ever become true).

1 We do not have to handle “tick” to mark the termination of a process as we do not
treat SKIP or sequential composition.

Formal semantics: The truth value of an LTL formula is first defined in-
dividually for each valid trace of the system (rather than on the whole labelled
transition system). Usually, these traces are supposed to be infinite, i.e., dead-
locking is not allowed. Later in the paper, we will remove this limitation by
extending the finite, deadlocking traces with an infinite number of special “∆”
actions.

First, given an infinite trace π = π0, π1, . . . we define πi to be the trace
πi, πi+1, We now define π |= φ (a trace π satisfies or is a model of a formula
φ) as follows:

– π 6|= false
– π |= true
– π |= a iff π0 = a
– π |= ¬a iff π0 6= a
– π |= φ ∧ ψ iff π |= φ and π |= ψ
– π |= φ ∨ ψ iff π |= φ or π |= ψ
– π |= ©φ iff π1 |= φ
– π |= φ U ψ iff there exists a k ≥ 0 such that πk |= ψ and πi |= φ for all

0 ≤ i < k
– π |= φ R ψ iff for all k ≥ 0 such that πk |= ¬ψ there exists an i, 0 ≤ i < k

such that πi |= φ
Moreover, two additional (derived) operators are usually defined: the always

(2) and the eventually (3) operators: 3φ ≡ true U φ and 2φ ≡ ¬3¬φ.
As is well known, any LTL formula ¬φ can be normalized into a form where

negation is only applied to elementary propositions.
A non-deadlocking system S satisfies a formula φ, denoted by S |= φ, if all

its infinite traces satisfy φ: S |= φ iff ∀π ∈ [|S]|ω, π |= φ, where [|S]|ω is the set
of the infinite traces of S. Note that in LTL S 6|= φ does not imply S |= ¬φ
(although for each individual trace we have π 6|= φ iff π |= ¬φ).

One can characterise two important classes of LTL formulas as follows [2]:

Definition 1 (safety, liveness). Given a set S of traces in Σω∪Σ∗ we define:
pre(S) = {γ ∈ Σ∗ | ∃σ with γσ ∈ S}. The LTL formula φ is a liveness property
over an alphabet Σ iff pre([|φ]|ω) = Σ∗. φ is a safety property over Σ iff ∀γ ∈ Σω

we have γ 6|= φ ⇒ ∃σ ∈ pre({γ}) such that ∀δ σδ 6|= φ.

Any LTL property can be represented as the intersection of a liveness and a
safety property [2].

3 Model Checking Using a Specification and Refinement

We report on our first attempts to do LTL model checking using the classical
refinement based approach, i.e., writing a specification describing all admissible
behaviours and then checking that our system is a valid refinement of that
specification. As we will show below this turns out to be surprisingly difficult; it
might even be impossible in general.

Let us first try to solve the problem for systems S which do not deadlock. If
we denote by [|φ]|ω the set of infinite traces which satisfy the formula φ, we have
S |= φ iff [|S]|ω ⊆ [|φ]|ω. The link between LTL model checking and trace refinement
is thus obvious and model checking corresponds to language containment. If we
succeed in building a process Specφ which generates all the traces that satisfy φ,
we could try to use trace refinement to do LTL model checking. Unfortunately,
refinement in FDR and CSP2 is based on finite traces only and a simple example
suffices to show that a finite traces refinement test S wT Specφ is, in general,
not adequate to model check S |= φ.

Example 2. Indeed, S wT Specφ iff [|S]| ⊆ [|φ]|, where we denote by [|S]|, resp. [|φ]|,
the prefix closed set of all finite traces of S, resp. Specφ. Thus, since any trace
〈aib...〉 with any finite number of actions a followed by an action b satisfies 3b,
the prefix closed set [|3b]| includes all the traces 〈ai〉 with any number of actions
a. Thus, we unavoidably have that a process S defined by S = a→ S will satisfy
[|S]| wT [|3b]| even though S 6|= 3b and [|S]|ω 6⊆ [|φ]|ω (because 〈a, a, a, . . .〉 ∈ [|S]|ω
and 〈a, a, a, . . .〉 6∈ [|3b]|ω). Similarly, for Q defined by Q = a→ STOP , we would
have that [|Q]| wT [|3b]|, even though Q 6|= 3b. If we look at failure refinement
with the same process S = a → S and formula [|3b]| where obviously S 6|= 3b,
we can see, as for trace refinement that [|S]| wF [|3b]|

This leads us to the following proposition:

Proposition 1.
1. S |= φ⇒ [|S]| wT [|φ]| (and thus S 6|= φ⇐ [|S]| 6wT [|φ]|) but
2. S |= φ 6⇐ [|S]| wT [|φ]|
3. S |= φ 6⇐ [|S]| wF [|φ]|

It is thus impossible to achieve our goal in this manner, using the finite
traces or failures refinements provided by CSP or FDR. The following corollary
pinpoints exactly when this approach fails (and when it actually succeeds):

Corollary 1. Let φ be a liveness property. Then [|S]| wT [|φ]| for any CSP process
S and there exists a CSP process P such that [|P]| wF [|φ]| and P 6|= φ. Let ψ be a
safety property and S a non-deadlocking CSP process. Then S |= ψ iff [|S]| wT [|ψ]|

Since as we mentioned earlier, any LTL property can be represented as the
intersection of a liveness and a safety property [2], our approach will therefore
fail for any LTL property which is not a pure safety property.

An interesting question is now whether it might be possible to do LTL model
checking by using more sophisticated tests, e.g., using the full failure-divergence
refinement and some other CSP operators? Indeed, sometimes it is definitely pos-
sible to find clever solutions (using hiding, relational renaming, and divergence
checking).
2 [19] defines a theory of infinite traces for CSP, but to our knowledge this has not been

implemented in any tool for CSP. But even if FDR could handle such a theory of
infinite traces, a proper encoding of [|φ]|ω in CSP will in general be infinitely-branching
(cf., Section 5), putting LTL model checking out of reach in practice.

For example, to check whether a system S without divergent states, satisfies
3b we can

– define S′ = S\(Σ \ {b}), i.e., hide all but the action b from S,
– then check whether [|b→ STOP]| wT [|S′]|, i.e., check that S′ can perform b,
– and finally check that S′ cannot diverge in the initial state, i.e., ensuring that
b must eventually happen (this divergence test can be done using FDR).

It is thus possible, using hiding, traces refinement, and divergence testing to
check whether a (divergence-free) system S satisfies 3b.

Unfortunately, this approach (of using hiding plus divergence testing to test
for eventuality 3) does not scale up to more complicated formulas. For example,
when checking 2(a ⇒ 3b), we can no longer systematically hide a; we would
need to hide a (and check for divergence) after each occurrence of a so as to
check whether 3b holds at that state. Bill Roscoe came up with a clever solution
to the above problem, using relational renaming [19]. Other formulas, however,
are much more difficult to tame, and we are still unsure whether there exists a
general solution. Anyway, the solutions seem to get more and more complex and
are definitely outside the reach of an average user.

In summary, using existing features, it seems extremely difficult (maybe even
impossible) for a normal FDR user to achieve LTL model checking using the
classical specification-based approach. In other words, the specification-based
approach to verification, i.e., writing specifications and then checking whether
your system is a valid refinement of that specification, does not seem to be very
well suited for verifying some temporal properties. (Maybe this situation will
change if infinite traces [19] can be integrated into FDR. Also, some temporal
properties related to the distinction between external and internal choice are
easy to express in FDR but impossible to express in temporal logics such as
LTL or CTL.)

4 Model Checking Using a Tester and Composition

The unfruitful attempts in the previous section have led us to develop an alter-
native approach. Indeed, instead of checking whether a system S under consid-
eration is a refinement of some specification φ, we can build, from φ, a tester Tφ,
then compose it with the system S, and finally check whether the composition
satisfies some properties which ensure that S |= φ.

If we look at the possible LTL formulas, for some of them a success or failure
can be declared after having looked at a finite prefix of an infinite trace, such
as a, a ∧ b,©a. However, in general, entire infinite traces must be tested either
to infer that a formula is satisfied (as in 2a) or that it is not satisfied (as in
3a). Therefore, a general solution is to build a tester which produces infinitely
many successes iff a trace is accepted. A classical procedure defined by Vardi
and Wolper [24] consists in verifying that [|S]|ω∩[|¬φ]|ω = ∅ by building a so-called
Büchi automaton able to do all the traces of [|¬φ]|ω, composing it with S and
verifying the emptiness of the resulting process using the Büchi acceptance con-
dition. In brief, a Büchi automaton, is a finite automaton whose corresponding

language is the set of all infinite words which have a path going infinitely often
through an accepting state.

We will try to pursue this avenue to solve our problem. We can already use
tools such as SPIN [15] to obtain the Büchi automaton corresponding to an LTL
formula φ. We will use parallel composition to compose the system with a tester
CSP process derived from the Büchi automaton of ¬φ.

However, we must take special care of deadlocking traces. Classically, when a
system deadlocks, finite traces are extended by a special “∆” (deadlock) action
different from any others, so as to produce infinite traces only. Unfortunately,
even though we can easily replace, in any CSP specification, STOP by a process
which loops on “∆” actions, this is not possible in general. Take for example
the process (a → b → STOP) [|{a, b}]| (a → a → STOP), where after the first a
action, a deadlock occurs. No static analysis (not doing some kind of reachability
analysis) is, for arbitrary CSP expressions, able to detect all such deadlocks.
Moreover, since the system may be infinite state, in general this problem is
clearly undecidable.

Therefore, since we do not want to (or cannot, e.g., wrt FDR) change the
semantics of CSP (e.g., stipulating that when a process deadlocks it can perform
∆ actions), we must consider a method which leaves the process S unchanged
and build a tester which accepts both infinite traces (using Büchi acceptance
condition) and deadlocking traces which satisfy the formula ¬φ. The precise
meaning of satisfaction of a formula by a deadlocking trace will be given later.

Therefore, in our setting 3 main problems arise:
1. how can we tackle deadlocking traces,
2. how can we translate the tester into CSP, and
3. how can we check emptiness using FDR.

We address all of these issues below.

4.1 Tackling Deadlocking Traces

To handle deadlocking traces we use LTL∆ simply defined as LTL over Σ ∪{∆}
where ∆ 6∈ Σ and where a valid trace π is either an infinite trace over Σ or a
finite trace over Σ terminated with an infinite number of ∆’s.

We have to be careful that the semantics of this extension is in agreement
with our intuition. For example, intuitively a system S should satisfy ¬a iff S
can not perform an a as next visible action. Hence S may either perform only
actions b different from a or it may deadlock. Similarly a system which satisfies
¬© a can either deadlock immediately or perform some visible action and then
satisfy ¬a.

To capture our intuition about when a deadlocking trace satisfies an ordinary
LTL formula over Σ, we can do a translation from LTL into LTL∆, e.g., as
follows:

– ©φ ; ¬∆ ∧©φ
– ¬© φ ; ∆ ∨©¬φ

The definition of S |= φ is very similar to the one for LTL:
S |= φ iff ∀π ∈ [|S]|∆, π |= φ

where [|S]|∆ = [|S]|ω ∪ {γ∆ω | (γ,Σ) ∈ failures(S)}, i.e., all the infinite traces of
S plus all finite traces which can lead to a deadlock, then extended by an infinite
sequence of∆s.

However, recall that even if satisfaction of LTL formulas by deadlocking
traces is defined by extending these traces, in practice we have seen that we
cannot modify the CSP system S to do the same. Therefore, we must build a
tester which tests both infinite traces and deadlocking traces.

For that, we first use the classical construction of a Büchi automaton B for
ψ, where ψ is the translation in LTL∆ of ¬φ and φ is the LTL formula to check.
This automaton B handles infinite traces from Σω, but also (infinite) traces
containing ∆ actions. Now, we know that the system S can only perform traces
in Σ∗ ∪Σω and thus it is impossible to get traces which contain actions from Σ
after an action ∆. We can use this to simplify B. On the other hand, if B accepts
a trace γ∆ω where γ ∈ Σ∗, our tester should accept the finite trace γ if it is
a deadlocking trace of S. To achieve this, we translate the Büchi automaton B
into an extended automaton B∆ with two acceptance conditions:

– the classical Büchi acceptance condition for infinite traces
– another acceptance condition, based on a set of deadlock monitor states: a

deadlocking trace γ will be accepted by B∆ if B∆ has a run taking the trace
t which ends up in a so-called deadlock monitor state.

Definition 2. A Büchi ∆-automaton is a six tuple B = (Σ,Q, T,Q0, F,D)
where Σ is the alphabet, Q is the set of states, T ⊆ Q × Σ × Q is the tran-
sition relation, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of infinite trace
accepting states, and D ⊆ Q is a set of deadlock monitor states.

Büchi ∆-automata include acceptance conditions both from finite automata
and Büchi automata:

Definition 3. Given a Büchi ∆-automaton B = (Σ,Q, T,Q0, F,D), the lan-
guage associated to B is L(B) = Lω(B) ∪ L∆(B) with Lω(B) = {σ|σ ∈ Σω and
there are s0, s1, s2, ... ∈ Q and σ = a1, a2, a3, ... such that s0 ∈ Q0 and s0

a1→
s1

a2→ s2 ... and si ∈ F for infinitely many values of i} and L∆(B) = {σ|σ ∈ Σ∗

and there are s0, s1, s2, ...sn ∈ Q with sn ∈ D and σ = a1, a2, a3, ...an such that
s0 ∈ Q0 and s0

a1→ s1
a2→ s2...

an→ sn}

In practice, we will modify a classical Büchi automaton B (over the alphabet
Σ ∪ {∆}) into a Büchi ∆-automaton B∆ (over the alphabet Σ)as follows
1. states, reachable from an initial state through transitions labelled by actions

in Σ, which accept (with the classical Büchi condition) the string ∆ω are
defined to be deadlock monitor states,

2. all ∆ transitions are now removed from B,
3. transitions (and states) which cannot lead to the acceptance of a trace are

removed.
Observe that Lω(B) is the language of B viewed as a classical Büchi automa-

ton. Also note that in [23] Valmari defines a similar (though more sophisticated)
tester.

One can easily see that the construction of B∆ from B can be done by an
algorithm inspired from the Tarjan’s search of strongly connected components
(see, e.g., [21]): this algorithm does a linear parse of B (which defines the set of
deadlock monitor states). The algorithm can be found in [10]. This translation
from B to B∆ is correct in the following sense:

Proposition 2. L(B∆) = Lω(B) ∩ (Σω ∪Σ∗.∆ω).

The two following subsections discuss how to translate B∆ into CSP and how
to check our two accepting conditions using FDR.

4.2 Translation of the Tester into CSP

We now present the translation of our Büchi ∆-automaton into a CSP process,
which translates every state of Q into a CSP process and where

– an accepting state process produces a special success action (success 6∈ Σ),
– for every deadlock monitor state a special “∆” transition is added to the

corresponding CSP process which leads to the special process DEADLOCK
defined below.

Definition 4. Formally, we define our translation csp(B) of a Büchi ∆-automaton
into a CSP process as follows:

– we map every q ∈ Q to a CSP process name NAME (q)
– for every q ∈ Q0 we add the CSP definition: TESTER = NAME (q)
– for every non-accepting state q ∈ Q\F and for all outgoing edges (q, a, q′) ∈
T we add the definition:
NAME (q) = a→ NAME (q′)

– for every accepting state q ∈ F where {(q, a1, q1), . . . , (q, an, qn)} ⊆ T are
all the outgoing edges of q add the definition:
NAME (q) = success → (a1 → NAME (q1) 2 . . . 2 an → NAME (qn))

– For every state q ∈ D, we add a definition (this is equivalent to adding an
external choice to the above definition):
NAME (q) = deadlock → DEADLOCK

– We add a single definition of DEADLOCK (where Σ = {a1, . . . , an}):
DEADLOCK = a1 → ko → STOP 2 . . . 2 an → ko → STOP

The idea behind the special DEADLOCK process is that if the system to be
verified (with which it will run in parallel, synchronised on Σ) is not deadlocked
then the DEADLOCK process will be able to perform the special ko action
(with ko 6∈ Σ). Hence, the existence of an accepted “really” deadlocking trace
corresponds to a CSP failure trace (deadlock , {ko}) of (S [|Σ]| TESTER))\(Σ ∪
{success}), i.e., we can perform deadlock and then refuse to perform the ko
action.

Example 3. For φ = ¬3b and Σ = {a, b, c} we would produce

B: B∆:����
∈D

a, c

b

a, c,∆

@@R �������
��
-�
��������@@R

and csp(B∆) =
TESTER = State1
State1 = success → ((a→ State1) 2 (c→ State1))
State1 = deadlock → DEADLOCK
DEADLOCK = (a → ko → STOP) 2 (b → ko → STOP) 2 (c → ko →
STOP)

The above approach can easily be extended to CSP with datatypes, as pro-
vided by FDR. For example, if a is a channel of type Int.Bool and c a channel
of type Bool we would produce:

State1 = success → ((a?i?b→ State1) 2 (c?b→ State1))
One can also easily extend the basic propositions of LTL to enable more sophis-
ticated pattern matching on actions. For example, one might want to check a
formula 3a?i!true or 2(reqtoks?c?o⇒ 3colltoks!c!o?t) (see Appendix B).

4.3 Testing Emptiness in CSP/FDR

Let us summarise our approach so far. Given a CSP process S to be verified and
an LTL formula φ to be checked, we do the following to construct a CSP process
which will be used to verify S |= φ:

1. negate the formula and translate it into LTL∆, yielding ψ,
2. construct a Büchi automaton B for ψ using a classical construction,
3. translate B into a Büchi ∆-automaton B∆, to properly handle deadlocking

traces,
4. translate B∆ into a CSP process csp(B∆) (defining the TESTER process).

We now want to check whether there exists an infinite or a finite deadlocking
trace of the system under consideration which satisfies ¬φ. If no such a trace
exists, then the formula φ is verified and the system is a model for φ. We conduct
this test, using FDR, via two refinement checks: one for traces which generate
an infinite number of successes and one to verify success due to deadlocks.

For the latter, as already discussed in Sect. 4.2, the existence of an accepted
deadlocking trace corresponds to a CSP failure trace (deadlock , {ko}) of D =
(S [|Σ]| TESTER))\(Σ ∪ {success}). To check this condition we thus use FDR
to check whether deadlock → STOP wF D holds.

The procedure to check the acceptance condition on infinite traces without
deadlocks, looks like the one given in [24], except that our tester synchronised
with the system will produce infinitely many success actions when it accepts a
trace. More precisely, we have to check whether S [|Σ]| TESTER can produce
a trace containing infinitely many success actions. This can be simplified into
checking whether C = (S [|Σ]| TESTER)\Σ can produce the infinite trace

successω. Now, as our environment (FDR) cannot analyse infinite traces, we
resort to the following “trick”: check using FDR whether SUC wT C, where
SUC = success → SUC, i.e., checking whether for all i, successi can be done
by C.

For non-deadlocking systems, we would like to have SUC wT C iff S 6|= φ.
We will see that this depends on whether the system S is finite state or not.

Finite state processes Suppose that the system to be verified is finite state. Since
the tester can also be defined as a finite state process, C will be finite state, and
if C produces an unbounded number of success actions, it means that there must
be a cyclic path, reachable from the initial state and including a success action.
This is therefore equivalent to verifying that successω is a trace of C and we
thus have the following proposition:

Proposition 3. Let S be a finite state, non-deadlocking CSP process and φ a
LTL formula. Let TESTER be obtained by Def. 4. Then S |= φ iff SUC 6wT
(S [|Σ]| TESTER)\Σ.

Note that one can put syntactic restrictions on the CSP processes to ensure
that they are finite state (see, e.g., [17]): in our case it is sufficient to forbid any
parallel operator in a recursive process.

Infinite state processes Let us show now an example which proves the incom-
pleteness of our procedure (which is still sound to conclude that the property
indeed holds). Take the following CSP process definitions:

S = (P [|{a, c}]| Q) ||| R, with
P = a→ P u T
T = c→ T
Q = a→ (c→ STOP ||| Q)
R = b→ R

The process R has been added to produce a non-deadlocking process. We
can see that S |= ¬23c, i.e. that S can never perform a c action forever, since
in each branch of S, after a finite number of actions a and c, only b actions
are possible. However, for each integer n, there is a branch (trace) which does
n actions c. If we want to check if S |= ¬23c holds, the tester will produce a
success action after each c action, and our test will conclude, since SUC wT C,
that S 6|= ¬23c, which is wrong!

Notes:
– The previous example can also be used as a counter example to show that

neither failure nor divergence will be able, in general, to discriminate an
infinite trace from an unbounded one.

– The procedure given in [24] detects reachable loops. In general, this method
will not be sufficient for infinite state systems. For example,. S = a →
(S [|{a}]| S) satisfies 2a but never loops! We suspect this problem to be
undecidable.

4.4 Summary

To check S |= φ we perform the following 2 checks using FDR, where TESTER
be obtained by Def. 4:

1. SUC wT (S [|Σ]| TESTER)\(Σ ∪ {deadlock , ko})

2. deadlock → STOP wF (S [|Σ]| TESTER)\(Σ ∪ {success})
If the first test succeeds, then we know, if S is finite, that S 6|= φ (there exists

an infinite trace in S accepted by csp(B∆)). Otherwise, if the second test succeeds
(there exists a deadlocking trace in S accepted by csp(B∆)), then S 6|= φ. If both
refinement checks fail, then we know that S |= φ.

Observe that the first test uses the traces-refinement while the second one
uses failures-refinement. This is because in the second test we have to check
whether an “alleged” deadlock is a real deadlock.

A fully worked-out example in CSP (and FDR), checking whether a System
satisfies ¬3b is given in Appendix A. A more complicated and realistic example
can be found in Appendix B, and the alternating-bit protocol is treated in [10].

5 Preservation of LTL under Refinement

Despite the failure of refinement to capture temporal properties in Section 3, we
can still derive some positive results. Suppose that for some LTL formula φ and
CSP process P , we know that Q |= φ by applying the technique just presented.
In addition, suppose that we derive a new CSP process Q which refines P , i.e.,
P w Q: are there circumstances where we are assured that P |= φ? A positive
answer would allow us, in a design process where the consecutive specifications
S0, S1, . . . , Sn−1, Sn satisfy Sn w Sn−1 . . . S1 w S0 and where we have checked
S0 |= φ, to be sure that at the end Sn |= φ; i.e., we would only have to model
check the initial specification and not all the successive refinements. As we have
already seen in Sect. 3, traces refinement alone is not sufficient to achieve this
goal:

Proposition 4. Traces refinement does not preserve satisfaction of LTL for-
mulas.

Proof. Using the following counter-example: S0 = a → (b → STOP u c → STOP),
S1 = a → STOP u S0, φ ≡ 3(b ∨ c), we have S1 wT S0, S0 |= φ and S1 6|= φ.

Unfortunately, the same holds for failures refinement in general:

Proposition 5. Failures refinement does not preserve satisfaction of LTL for-
mulas.

Proof. Again, let us show that on a counter-example. In the paragraph 4.3 discussing
infinite state processes, we have seen that for the formula φ ≡ ¬23c and the infinite
state process S, S\{a, b} |= φ and T = c → T wF S\{a, b}, but T 6|= φ (in fact
T |= ¬φ).

Fortunately, if we restrict ourselves to finite state processes or even finitely-
branching processes (using visible a-transition relations3), failures refinement
does preserve LTL.

Proposition 6. Failures refinement of finitely-branching CSP processes (using
the visible transition relations) preserves satisfaction of LTL formula.
Proof. Suppose that P and Q are finitely-branching CSP processes such that P wF Q.
We have to prove that for any LTL formula φ, P |= φ ⇒ Q |= φ, i.e. [|P]|∆ ⊆ [|Q]|∆.
Suppose γ ∈ [|P]|∆ but γ 6∈ [|Q]|∆. Either γ ∈ Σω or γ ∈ Σ∗∆ω.
1. First, suppose γ ∈ Σω. Let τ be the tree representing the labelled transition systems
of Q. We know that this tree is finitely-branching. Now, let us derive τ ′ from τ by
removing from τ any node n (and its descendants) such that the path from the root of
τ to n is not a prefix of γ. Trivially τ ′ is still finitely branching. We also know that τ ′ is
infinite: suppose that τ ′ was finite then there must be maximum depth m of τ ′, which
contradicts the fact that any prefix of γ (in particular the prefix of length m + 1) can
be generated by Q (because P wF Q). Hence, by Königs lemma we know that there is
an infinite branch in τ ′, i.e., γ ∈ [|Q]|∆ which contradicts our hypothesis.
2. If γ ∈ Σ∗∆ω, then γ = t∆ω and (t, Σ) ∈ [|P]| and since P wF Q, (t, Σ) ∈ [|Q]|.
Therefore, γ ∈ [|Q]|∆, which again contradicts our hypothesis.

Thus, if we manage to write a finite state specification S0 and model check
a formula φ, then we do not have to check φ for refinements of S0. Observe that
this result, does not contradict Section 3 and does not enable us to solve the
model checking problem itself more naturally using failures refinement! Indeed,
a specification generating all traces and failures of an LTL formula φ will in
general be infinitely branching (e.g., for 3b) and we cannot apply Proposition 6.
In fact, it will be finitely branching for safety properties but infinitely branching
for liveness properties (cf. Corollary 1). So, even if the theory of infinite traces
[19] were to be added to FDR, classical LTL model checking of finite systems,
using refinement, will require the treatment of infinitely branching systems.

6 Complexity, Future Work, and Conclusion

At the complexity level, the difference between classical LTL model checking
and our approach is due to the test of emptiness. For the method of Vardi and
Wolper, it is exponential in the size of the formula φ, but linear in the size of
the composition of the tester with the system and this composition can be done
on-the fly [13]. Our procedure uses FDR to check language containment, whose
complexity is PSPACE-complete (checking full failures/divergences refinement is
even PSPACE-hard, even though “real” processes do not behave as badly [19]).
Furthermore, from an efficiency point of view, our system to be verified is on the
wrong side of the FDR refinement check (i.e., on the side which FDR normalises).
On the other hand, using FDR means that optimisations such as hierarchical
compression, data-independence and induction [20, 19, 9] can be applied. This

3 Which link two processes (states) P and Q when Q is reachable from P using one
visible action a and possibly invisible actions τ before and after this a-transition.

will allow us to handle some infinite state systems, but the overall effect on the
complexity is unclear (all the examples in the appendices were handled without
any problem).

Fortunately, there might a way to get the best of both worlds, by adding
a special check for refinement problems of the form aω wT S into FDR, thus
achieving the same linear complexity as Vardi and Wolper. Obviously, we cannot
add this improvement ourselves to FDR, but we will try to convince the FDR
implementors to do exactly that.

Another issue that needs to be resolved is the following: when a formula is
not satisfied by a system, one of the interests of model checking is the produc-
tion of a counter example. However, FDR only provides a counter example if
a refinement check fails and not if the check succeeds; unfortunately the latter
is what we would require! Fortunately, it seems possible to feed the result of
the refinement checker into an animator (such as Probe). Further work and
cooperation with the FDR implementors is needed to establish this. Another
interesting further research, is to study and apply our techniques within the
context of other refinement-based formalisms such as action systems or B [1]
and the associated tools b-tool and atelier-b. In fact, the refinement notion
within these approaches connects more tightly with the infinite traces model of
CSP than with the finite traces model [5], and so the relationship and needs will
be somewhat different.

Other issues that should be studied further are the performance of (suitably
extended) FDR on realistic benchmarks, and the study of other temporal logics
such as CTL or CTL∗. One possible approach to achieve CTL model checking
of finite and infinite state CSP systems, is to write an interpreter for CSP in
logic programming and then use the approach of [16]. Finally, we intend to find a
semi-algorithm (using abstractions), to determine when an infinite state system
does not satisfy a property.

History of the paper: This paper arouse out of discussions with proponents of
refinement (and CSP) who proclaimed that “One does not need LTL model
checking (for CSP or FDR), one can always write a specification describing all
admissible behaviours and then checking that the system under consideration
is a valid refinement of that specification.” As we have shown in Section 3 this
turns out to be extremely difficult (or even impossible in general). We have thus
developed another, tester based approach, which can be fully automated. This
paper thus underlines that “One does need LTL model checking, as one can not
always (easily) write a specification describing all admissible behaviours and
then checking that our system is a valid refinement of that specification.”

In conclusion, we hope that we have shed light on the relationship between
model checking and refinement checking. We have unveiled shortcomings of the
specification/refinement based approach to model checking, but have shown how
to overcome them. Indeed, we have shown how to do LTL model checking of finite
state CSP processes using refinement in general and the FDR environment in
particular. We have also shown that our method is sound (but not complete) for
processes which have an infinite number of states.

Acknowledgements

We want to thank Michael Butler, Marielle Doche, Javier Esparza, Andy Gravell,
Ranko Lazic, Ulrich Ultes-Nitsche, Jean-François Raskin and Moshe Vardi as
well as the anonymous referees for extremely useful comments, feedback, and
explanations about CSP and LTL. We also would like to thank David Jackson for
some insightful comments about FDR. Finally, we are grateful for the comments
and constructive criticisms of the anonymous referees of VCL’2000 (a preliminary
version of this paper appeared in the proceedings of VCL’2000).

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

2. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, October 1985.

3. A.Pnueli. The temporal logic of concurrent programs. Theoretical Computer Sci-
ence, 13:45–60, 1981.

4. R. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, September 1992.

5. M. Butler and C. Morgan. Action systems, unbounded nondeterminism, and infi-
nite traces. Formal Aspects of Computing, 7:37–53, 1995.

6. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

7. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

8. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28(4):626–643, Dec. 1996.

9. S. J. Creese and A. W. Roscoe. Data independent induction over structured net-
works. In International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA ’00), Las Vegas, USA, June 2000.

10. M. Leuschel, T. Massart, and A. Currie. How to make FDR spin: LTL model
checking of CSP by refinement. Technical Report DSSE-TR-2000-10, Department
of Electronics and Computer Science, University of Southampton, September 2000.

11. J. Esparza. Decidability of model-checking for infinite-state concurrent systems.
Acta Informatica, 34:85–107, 1997.

12. Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2 User
Manual.

13. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic veri-
fication of linear temporal logic. In Proc. 15th Workshop on Protocol Specification,
Testing, and Verification, Warsaw, June 1995. North-Holland.

14. C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

15. G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

16. M. Leuschel and T. Massart. Infinite state model checking by abstract interpreta-
tion and program specialisation. In A. Bossi, editor, Proceedings of LOPSTR’99,
LNCS 1817, pages 63–82, Venice, Italy, September 1999.

17. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. Wiley,
1999.

18. K. L. McMillan. Symbolic Model Checking. PhD thesis, Boston, 1993.

19. A. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.

20. A. W. Roscoe and R. S. Lazic. Using logical relations for automated verification of
data-independent CSP. In Proceedings of Oxford Workshop on Automated Formal
Methods ENTCS, 1996.

21. R. Sedgewick. Algorithms in C++. Addison-Wesley, 1992.
22. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal

logics. Journal of the ACM, 32(3):733–749, July 1985.
23. A. Valmari. On-the-fly verification with stubborn sets. In C. Courcoubetis, editor,

Proceedings of CAV’93, LNCS 697, pages 397–408. Springer-Verlag, 1993.
24. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In Proceedings of LICS’86, pages 332–344, 1986.

A A Simple Example in FDR 2.28

Here is an original System to verify, using the machine-readable CSP syntax
employed by FDR:

channel a,b,c,d
System = (b->System) [] (b->c->a->SKIP)

Suppose we wanted to establish whether the system satisfied 3b using Σ =
{a, b, c, d}. We would then construct the extended Büchi automaton B for ¬3b
(see Ex. 3) and apply our translation (Def. 4) to obtain csp(B):
channel success, deadlock,ko
TESTER = State1
State1 = (success->((a->State1) [] (c->State1) [] (d->State1))) [] deadlock -> Deadlock
Deadlock = (a->ko->STOP) [] (b->ko->STOP) [] (c->ko->STOP) [] (d->ko->STOP)

We now compose csp(B) with the system to be verified:
Composition = (System [| {a,b,c,d} |] TESTER) \{a,b,c,d,deadlock,ko}

and then check whether this composition can generate an infinite number of
success actions:

SUC = success -> SUC
assert Composition [T= SUC

In our case, this refinement test fails. However, for System2 defined below, it
succeeds, meaning that System2 does not satisfy 3b (as it is finite state):

System2 = (a->System2) [] (b->c->a->SKIP) [] STOP

To test whether there is, in our System, a deadlocking trace that accepts the
formula ¬φ we do the following composition:

CompositionRD = (System [| {a,b,c,d} |] TESTER) \{a,b,c,d,success}

and check whether this can generate a real deadlock:
RealDeadlock = deadlock -> STOP
assert CompositionRD [F= RealDeadlock

In our case, this refinement test fails and we have thus established System |= 3b.
However, for System3 defined below, it succeeds, meaning that the system does
not satisfy 3b. For System4 the refinement check fails, i.e., when checking for
deadlocks, there is a distinction between internal and external choice.

System3 = (b->c->STOP) |~| (a->c->STOP)
System4 = (b->System4) [] (b->c->a->SKIP) [] STOP

B A more complicated example in FDR

The following is a more complicated CSP specification, which models distributed
system for pension (i.e., tokens) distribution via postoffices. Customers have
a preferred postoffice, but they can collect their pension from any postoffice.
In the latter case, the authority to distribute the pension must be requested
from the Home-postoffice. (This case study grew out of interaction with one of
the industrial partners of the EPSRC-funded critical systems project “ABCD”,
currently ongoing at the University of Southampton.)

-- ===
-- A distributed pension distribution scheme via Postoffices
-- by Marielle Doche, University of Southampton
-- ===
nametype Tokens = {0..5}
nametype Cust = {1,2,3} -- 3 customers
nametype Home = {0,1,2} -- 0 = centre; 1,2 = offices
nametype Office = diff(Home, {0})
home(1) = 1
home(2) = 2
home(3) = 0
channel reqtoks : Cust.Office
channel colltoks : Cust.Office.Tokens

-- This process gives a global specification from a Customer point of view
CUST(c,n) = reqtoks.c?o -> colltoks.c!o!n -> CUST(c,0)

-- abstract spec of the system with 3 customers
SPEC = ||| c : Cust @ CUST(c,4)
--
-- This specification describes the centre, which communicates with the offices
channel disthome, sendoff, rechome : Cust.Office.Tokens
channel reqoff, queryhome : Cust.Office
CENTRE(c,n) =

n>0 and home(c)!=0 & disthome.c?o:{home(c)}!n -> CENTRE(c,0)
[] reqoff.c?o:Office ->

(if n>0 or home(c)==0 or home(c)==o
then sendoff.c!o!n -> CENTRE(c,0)
else queryhome.c?o1:{home(c)} -> rechome.c.home(c)?a:Tokens

-> sendoff.c!o!a -> CENTRE(c,n))
--
-- This specification describes an office which communicates with the centre
-- about a customer
channel sendcentre, reccentre, recdist : Cust.Office.Tokens
channel reqcentre, querycentre : Cust.Office
OFF(c,o,n) = n==0 & recdist.c.o?a:Tokens -> OFF(c,o,a)

[] reqcentre.c.o -> sendcentre.c.o!n -> OFF(c,o,0)
[] reqtoks.c.o ->

(n > 0 & colltoks.c.o!n -> OFF(c,o,0)
[]

n ==0 & (
(querycentre.c.o -> (

reccentre.c.o?a:Tokens -> colltoks.c.o!a -> OFF(c,o,0)
[] -- (+)

recdist.c.o?a:Tokens ->
reccentre.c.o?b:Tokens -> -- ($)
-- colltoks.c.o!a -> OFF(c,o,0) -- (+)
colltoks.c.o!a -> OFF(c,o,b) -- (+) ($)))

[]
(o == home(c) & recdist.c.o?a:Tokens

-> colltoks.c.o!a -> OFF(c,o,0))))
--
-- This process describe for a given customer a synchronous communication
-- between the centre and the offices

SYNCHCOM(c,n) =
CENTRE(c,n)
[disthome.c.o.a <-> recdist.c.o.a, sendoff.c.o.a <-> reccentre.c.o.a,

rechome.c.o.a <-> sendcentre.c.o.a, reqoff.c.o <-> querycentre.c.o,
queryhome.c.o <-> reqcentre.c.o | o <- Office, a <- Tokens]

(|||o: Office @ OFF(c,o,0))
--
SYNCHTRANS(c,n) =

CUST(c,n)[|{|reqtoks.c, colltoks.c |}|]
(SYNCHCOM(c,n)\{|disthome.c, recdist.c, sendoff.c,

reccentre.c, rechome.c, sendcentre.c,
reqoff.c, querycentre.c, queryhome.c, reqcentre.c|})

SYNCH = ||| c : Cust @ SYNCHTRANS(c,4)

In the remainder of this appendix, we will assume that any channel or action
stands for all its “completions”. For example, reqtoks stands for reqtoks.1.0,
reqtoks.1.1,

Let us now try to verify the LTL formula 2(reqtoks⇒ 3colltoks), i.e., when-
ever a token (i.e., pension) is requested by a user a token will eventually be col-
lected. For this we first negate the formula, i.e., we get ¬2(reqtoks⇒ 3colltoks)
= 3(reqtoks ∧ ¬3colltoks) = 3(reqtoks ∧ 2¬colltoks). We now translate this
into a Büchi automaton, and simplify for deadlocks, giving us Figure 1. (Observe
that this automaton is non-deterministic; there is no equivalent deterministic au-
tomaton for that property.) We now translate Figure 1 into CSP as described in
the paper:

channel success,deadlock,ko
TESTER = STATE1
STATE1 = reqtoks?c?o -> STATE1 [] colltoks?c2?o2?t -> STATE1 [] reqtoks?c?o -> STATE2
STATE2 = ((success -> (reqtoks?c?o -> STATE2)) [] deadlock -> Deadlock)
Deadlock = (reqtoks?c?o->ko->STOP [] colltoks?c?o?t->ko->STOP)

reqtoks

@@R ��

∆

��@@R

reqtoks, colltoks

@@R ��
∆reqtoks ��

��
����

-����
-��

��
��
��

Fig. 1. A Büchi automaton for 3(reqtoks ∧ 2¬colltoks)

We now encode our refinement checks as described in the paper:
SComposition = (SPEC [| {|reqtoks,colltoks|} |] TESTER) \{| reqtoks,colltoks,deadlock,ko|}
SComposition2 = (SPEC [| {|reqtoks,colltoks|} |] TESTER)\{| reqtoks,colltoks,success |}
Composition = (SYNCH [| {|reqtoks,colltoks|} |] TESTER) \{| reqtoks,colltoks,deadlock,ko |}
Composition2 = (SYNCH [| {|reqtoks,colltoks|} |] TESTER)\{| reqtoks,colltoks,success |}
SUC = success->SUC
RealDeadlock = deadlock->STOP
assert SComposition [T= SUC
-- refinement fails => no infinite trace violates formula => OK
assert SComposition2 [F= RealDeadlock
-- refinement fails => no deadlocking trace violates formula => OK
assert Composition [T= SUC
-- refinement fails => no infinite trace violates formula => OK
assert Composition2 [F= RealDeadlock
-- refinement fails => no deadlocking trace violates formula => OK

So, both the very high-level specification SPEC and the more detailed spec-
ification SY NCH satisfy the LTL formula 2(reqtoks⇒ 3colltoks).

We can actually try to verify a more complicated property, namely 2(reqtoks?c?o⇒
3colltoks!c!o?t), by re-defining STATE1 as follows:

STATE1 = reqtoks?c?o -> STATE1 [] colltoks?c2?o2?t -> STATE1 [] reqtoks?c?o -> STATE2(c,o)
STATE2(c,o) = ((success -> ((reqtoks?c2?o2 -> STATE2(c,o))

[] (colltoks?c2?o2?t -> STATE3(c,o,c2,o2)))) [] deadlock -> Deadlock)
STATE3(c,o,c2,o2) = if ((c==c2) and (o==o2)) then STOP else STATE2(c,o)

We are now checking that if a customer c request a token (at office o) that
he will eventually get a token (at that same office o).

Now the refinement checks look as follows:

assert SComposition [T= SUC
-- refinement succeeds => infinite trace violates formula => NOT OK !!
assert SComposition2 [F= RealDeadlock
-- refinement fails => no deadlocking trace violates formula => OK

assert Composition [T= SUC
-- refinement succeeds => infinite trace violates formula => NOT OK !!
assert Composition2 [F= RealDeadlock
-- refinement fails => no deadlocking trace violates formula => OK

This is essentially due to possible starvation of a customer because other
customers can repeatedly ask for and always collect a token before he gets his
token. However, if we change the specification of the behaviour of customers to:

CUST(c,n) = reqtoks.c?o -> colltoks.c!o!n -> STOP

i.e., the customers do not repeatedly ask for tokens (pensions), then all refine-
ment checks fail and the formula is actually satisfied.

