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Abstract. Recently, considerable advances have been made in the (on-
line) control of logic program specialisation. A clear conceptual distinc-
tion has been established between local and global control and on both
levels concrete strategies as well as general frameworks have been pro-
posed. For global control in particular, recent work has developed con-
crete techniques based on the preservation of characteristic trees (limited,
however, by a given, arbitrary depth bound) to obtain a very precise con-
trol of polyvariance. On the other hand, the concept of an m-tree has
been introduced as a refined way to trace “relationships” of partially
deduced atoms, thus serving as the basis for a general framework within
which global termination of partial deduction can be ensured in a non
ad hoc way.
Blending both, formerly separate, contributions, in this paper, we present
an elegant and sophisticated technique to globally control partial de-
duction of normal logic programs. Leaving unspecified the specific local
control one may wish to plug in, we develop a concrete global control
strategy combining the use of characteristic atoms and trees with global
(m-)trees. We thus obtain partial deduction that always terminates in
an elegant, non ad hoc way, while providing excellent specialisation as
well as fine-grained (but reasonable) polyvariance.
We conjecture that a similar approach may contribute to improve upon
current (on-line) control strategies for functional program transformation
methods such as (positive) supercompilation.

1 Introduction

A major concern in the specialisation of functional ([4, 13, 31]) as well as logic
programs ([22, 15, 8, 28, 5]) has been the issue of control: How can the trans-
formation process be guided in such a way that termination is guaranteed and
results are satisfactory?

This problem has been tackled from two (until now) largely separate angles:
the so-called off-line versus on-line approaches. Partial evaluation of functional
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programs ([4, 13]) has mainly stressed the former, while supercompilation of
functional ([31, 32, 30]) and partial deduction of logic programs ([10, 29, 2, 3, 23,
26, 17]) have concentrated on on-line control. (Some exceptions are [33, 27, 16,
14].) It is within this on-line control tradition that the present work provides a
novel and important contribution.

In partial deduction of logic programs, one distinguishes two levels of control
([8, 26]): the local and the global level. In a nutshell, the local level decides on
how SLD(NF)-trees for individual atoms should be built. The (leaves of the)
resulting trees allow to construct specialised clauses for the given atoms ([22,
1]). At the global level on the other hand, one typically attends to the overall
correctness of the resulting program (satisfying the closedness condition in [22])
and strives to achieve the “right” amount of polyvariance, producing sufficiently
many (but not too much) specialised versions for each predicate definition in the
original program.

Gallagher in [8] writes that providing adequate global control seems much
harder than handling the local level. So, in this paper, it is to the latter, global,
level that we (again) turn our attention. In recent work, both authors of the
present paper have already, separately, investigated issues in global control of
partial deduction. [26] and its extended and slightly revised version [25] focus on
termination and provide a quite general, refined framework for global control,
different instances of which can be taken as the core of practical systems. [17] on
the other hand starts from the central role of characteristic trees in preserving
specialisation and determining polyvariance (as first proposed in [10]). It shows
how partial deduction can be governed through the use of characteristic atoms,
combining the usual atoms to be partially deduced with the characteristic trees
to be enforced upon them. Global termination, however, is guaranteed at the
cost of imposing an arbitrary, ad hoc depth bound on characteristic trees (as in
all earlier partial deduction based on characteristic trees, see e.g. [10, 7, 18]).

In the present paper, we endeavour to obtain the best of both worlds, blend-
ing (a slightly adapted version of) the general framework in [26, 25] with the use
of characteristic atoms and trees as in [17]. We thus obtain a very elegant, so-
phisticated and precise apparatus for on-line global control of partial deduction.

Below, we first recapitulate some necessary background material and provide
motivating examples for our approach in Sect. 2. Subsequently, Sect. 3 contains
the formal elaboration of our method, including a partial deduction algorithm,
parameterised by its local control, the particular choice of which is left open in
this paper. Next, in Sect. 4, we return to the examples in Sect. 2, showing how
indeed the method developed in Sect. 3 deals properly with them and leads to
greatly improved practical specialisation results. Finally, a possible drawback
of the presented approach as well as some connections with related work in
supercompilation are briefly discussed. We conclude the paper in Sect. 5.

In order to remain within reasonable space limits, we have not included
any proofs. These can be found in [20], which also contains a section on post-
processing the output of Algorithm 2 as well as a more extensive discussion of
experimental results, connections to other work, and assorted topics.



2 Ecological Partial Deduction and the Depth Bound
Problem

In what follows, we assume the reader to be familiar with the basic concepts of
logic programming and partial deduction, as they are presented in e.g. [21, 22].
Throughout, unless stated explicitly otherwise, the terms “(logic) program” and
“goal” will refer to a normal logic program and goal, respectively.

Given a program P and a goal G, partial deduction produces a new pro-
gram P ′ which is P “specialised” to the goal G. The underlying technique is
to construct “incomplete” SLDNF-trees for a set of atoms A to be specialised
and extract the program P ′ from these incomplete search trees by taking resul-
tants (for each atom in A a different specialised predicate definition will thus
be generated). An incomplete SLDNF-tree is an SLDNF-tree which, in addition
to success and failure leaves, may also contain leaves where no literal has been
selected for a further derivation step. Leaves of the latter kind will be called dan-
gling. Under the conditions stated in [22], namely closedness and independence,
correctness of the specialised program is guaranteed.

In the context of partial deduction, incomplete SLDNF-trees are obtained by
applying an unfolding rule, defined as follows:

Definition 1. An unfolding rule U is a function which given a program P and
a goal G returns a finite (possibly incomplete) SLDNF-tree1 for P ∪ {G}.

2.1 Ecological Partial Deduction

The problem of controlling polyvariance in partial deduction boils down to find-
ing a terminating procedure to produce a finite set of atoms A which satisfies
the correctness conditions of [22] while at the same time being as precise as
possible (usually the more fine-grained and instantiated the set A is, the better
the potential for specialisation is). Most approaches in the literature so far are
based on the syntactic structure of the atoms to be specialised, but it can be
shown (see e.g. [18, 17]) that this provides insufficient detail.

[10, 7] therefore introduced the notion of a characteristic tree, capturing how
atoms are specialised and as such constituting a more refined basis for polyvari-
ance. The following definitions are adapted from [7, 17, 18].

Definition 2. Let G1 be a goal and let P be a program the clauses of which are
numbered. Let G1, . . . , Gn be a finite, incomplete SLDNF-derivation of P ∪{G1}.
The characteristic path of the derivation is the sequence (l1, c1), . . . , (ln−1, cn−1),
where li is the position of the selected literal in Gi, and ci is defined as:
– if the selected literal is an atom, then ci is the number of the clause chosen

to resolve with Gi.
– if the selected literal is ¬p(t̄), then ci is the predicate p.

The set of all characteristic paths for a given goal G and program P will be
denoted by chpaths(G, P ).

1 We even allow a trivial SLDNF-tree, i.e. one whose root is a dangling leaf.



Definition 3. Let G be a goal, P a program and U an unfolding rule. Then the
characteristic tree τ of G (in P ) via U is the set of characteristic paths of the
non-failing derivations of the incomplete SLDNF-tree obtained by applying U to
G (in P ). We introduce the notation chtree(G, P, U) = τ . We also say that τ is
a characteristic tree of G (in P ) if it is the characteristic tree for some unfolding
rule U . Also τ is a characteristic tree if it is a characteristic tree of some G in
some P .

Example 1. Let P be the following program:

(1) member(X, [X|T ])←
(2) member(X, [Y |T ])← member(X, T )

Let A1 = member(a, [a, b]) and A2 = member(a, [a])}. Suppose that A1, A2

are unfolded as depicted in Fig. 1. Then both these atoms have the same char-
acteristic tree τ = {((1, 1))}.
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(2)(1)

← member(a, [a])

2 ← member(a, [])

(2)(1)

fail

← member(a, [a, b])

2 ← member(a, [b])

← member(a, [])

(2)

fail

Fig. 1. Incomplete SLDNF-trees for example 1

Note that the characteristic path of an empty derivation is the empty path
(), and the characteristic tree of a trivial SLDNF-tree is {()}. Characteristic
trees are an interesting abstraction of SLDNF-trees because they capture the
specialisation performed locally by partial deduction. If two atomic goals have
the same characteristic tree then the same branches have been pruned by par-
tial deduction and the atoms have been unfolded in the same way (i.e. to the
same depth and the same clauses have been resolved with literals in the same
position). Furthermore the goals in the bodies of the resultants have the same
structure, varying only by the actual call patterns, meaning that in principle
a single predicate definition can be used. As such, a characteristic tree is an
almost perfect characterisation of the partial deduction of an atom and of the
specialisation that has been performed.2 For more details about the interest and
relevance of characteristic trees, we refer to [10, 7, 18, 17].
2 Sometimes atoms with different characteristic trees have (almost) identical resultants

(due to independence of the computation rule) and could therefore also be replaced



When using characteristic trees to control polyvariance, the atoms to be spe-
cialised are classified according to their characteristic tree. The basic idea is to
have only one specialised version for each characteristic tree. If several atoms
have the same characteristic tree, then they are abstracted by a single more gen-
eral atom. Earlier approaches to partial deduction using characteristic trees [7,
10] have been limited by not being able to preserve characteristic trees in that
abstraction process (implying that the generalisation has a different local spe-
cialisation behaviour). As shown in [17, 18], this can lead to important precision
losses as well as non-termination.

The problem has been solved in [17] by simply imposing characteristic trees
on the generalised atoms. 3 This amounts to associating characteristic trees with
the atoms to be specialised, thus allowing the preservation of characteristic trees
without having to construct intricate generalisations. The rest of this subsection
recapitulates and adapts the necessary material from [17].

From now on, throughout the rest of this paper, we implicitly assume the
existence of some given finite underlying language L in which atoms and terms,
goals and programs are expressed.

We first introduce the crucial notion of a characteristic atom.

Definition 4. A P-characteristic atom, for a given program P , is a couple (A, τ)
consisting of an atom A and a characteristic tree τ with τ ⊆ chpaths(← A,P ).

Often, when the context allows it, we will drop the P annotation and simply
refer to characteristic atoms. Also note that τ is not necessarily a characteristic
tree of ← A in P .

Example 2. Let CA1 = (member(a, [a, b]), τ), CA2 = (member(a, [a]), τ) with
τ = {((1, 1))}, and let P be the program from Example 1. CA1 and CA2 are
both P -characteristic atoms with the same characteristic tree component. The
method of [17] will abstract CA1, CA2 by CA3 = (member(a, [a|T ]), {((1, 1))}),
i.e. it imposes the characteristic tree {((1, 1))} on the msg of the atom com-
ponents. CA3 is also a P -characteristic atom, but this time {((1, 1))} is not a
characteristic tree of member(a, [a|T ]) (depending on the unfolding rule the char-
acteristic tree of member(a, [a|T ]) is: {((1, 1)), ((1, 2))} or {((1, 1)), ((1, 2), (1, 1)),
((1, 2), (1, 2))} or something even deeper).

The following definition associates a set of concretisations with each charac-
teristic atom.

by a single predicate definition. Normalising characteristic trees (after unfolding) by
imposing e.g. a left-to-right ordering of selected literals and delaying the selection of
negative literals to the end solves this problem (see also [18]). Thanks to Maurice
Bruynooghe for pointing this out. A similar effect can also be obtained by using the
trace terms of [?].

3 Another solution is presented in [18], which is however limited to definite programs
and certain unfolding rules, but enjoys a better overall precision. The core ideas of
the present paper can also be used to enhance the [18] method in order to eliminate
a similar depth bound problem.



Definition 5. An atom A is a precise concretisation of a P -characteristic atom
(A′, τ ′) iff A is an instance of A′ and for some unfolding rule U we have that
chtree(← A,P, U) = τ ′. An atom B is a concretisation of (A′, τ ′) iff it is an
instance of a precise concretisation of (A′, τ ′).

A P -characteristic atom can thus be seen as standing for a (possibly infinite) set
of atoms, namely the concretisations according to the above definition.

Example 3. Take the P -characteristic atom CA3 = (member(a, [a|T ]), {((1, 1))})
from Example 2. The atoms member(a, [a]) and member(a, [a, b]) are precise con-
cretisations of CA3 (given the unfolding rule of Fig. 1). Also, neither member(a, [a|T ])
nor member(a, [a, a]) are concretisations of CA3.

A characteristic atom (A, τ) also uniquely determines a set of resultants:

Definition 6. Let (A, τ) be a P -characteristic atom. If τ 6= {()} then δ(P, (A, τ))
is the set of all (necessarily non-failing) SLDNF-derivations for P ∪{← A} such
that their characteristic paths are in τ . If τ = {()} then δ(P, (A, τ)) is the set of
all non-failing SLD-derivations for P ∪ {← A} of length 1.4

Definition 7. Let (A, τ) be a P -characteristic atom. Let {δ1, . . . , δn} be the
SLDNF-derivations in δ(P, (A, τ)) and let ← G1, . . . ,← Gn be the goals in the
leaves of these derivations. Let θ1, . . . , θn be the computed answers of the deriva-
tions from ← A to ← G1, . . . ,← Gn respectively. Then the set of resultants
{Aθ1 ← G1, . . . , Aθn ← Gn} is called the partial deduction of (A, τ) in P . Every
atom occurring in some of the Gi will be called a body atom (in P ) of (A, τ).
We will denote the set of such body atoms by BAP (A, τ).

For example the partial deduction of (member(a, [a|T ]), {((1, 1))}) in the
program P of Example 1 will be {member(a, [a|T ])←}. Note that it is different
from any set of resultants that can be obtained for incomplete SLDNF-trees of
the ordinary atom member(a, [a|T ]). However the partial deduction is valid for
any concretisation (as defined in Def. 5) of (member(a, [a|T ]), {((1, 1))}).

The approach in [17] generates a partial deduction not for a set of atoms but
for a set of characteristic atoms. Algorithm 2 below (also) computes exactly such
a set of characteristic atoms. The actual code of the specialised program is then
produced by unfolding the atoms according to their associated characteristic
trees, as described in Definitions 6 and 7.

Of course, the same atom A might occur in several characteristic atoms with
entirely different characteristic trees. In order to guarantee correctness of the
specialised program, renaming (as well as filtering, see also [9]) is added in [17].
Then, given the following coveredness condition, correctness of the specialised
program is established in [17].

Definition 8. Let P be a program and A a set of characteristic atoms. Then A
is called P -covered iff for every characteristic atom in A each of its body atoms
in P is a concretisation of a characteristic atom in A.
4 The reason behind the special treatment of the case τ = {()} is that at least one

unfolding step is needed to avoid the problematic resultant A← A in Definition 7.



2.2 The Depth Bound Problem

When, for the given program, query and unfolding rule, the above sketched
method generates a finite number of different characteristic trees, its global con-
trol regime guarantees termination and correctness of the specialised program
as well as “perfect”5 polyvariance: For every predicate, exactly one specialised
version is produced for each of its different associated6 characteristic trees. Now,
[17], as well as all earlier approaches based on characteristic trees ([10, 7, 18]),
achieves the mentioned finiteness condition at the cost of imposing an ad hoc
(typically very large) depth bound on characteristic trees. However, for a fairly
large class of realistic programs (and unfolding rules), the number of different
characteristic trees generated, is not naturally bounded. In those cases, the un-
derlying depth bound will have to ensure termination, meanwhile propagating
its ugly, ad hoc nature into the resulting specialised program. We illustrate this
problem through some examples, setting out with a slightly artificial, but very
simple one.

Example 4. The following is the well known reverse with accumulating parame-
ter where a list type check on the accumulator has been added.

(1) rev([], Acc,Acc)←
(2) rev([H|T ], Acc,Res)← ls(Acc), rev(T, [H|Acc], Res)
(3) ls([])←
(4) ls([H|T ])← ls(T )

As can be noticed in Fig. 2, (determinate ([10, 7, 18]) and well-founded ([3, 24,
23]), among others) unfolding produces an infinite number of different charac-
teristic atoms, all with a different characteristic tree. Imposing a depth bound of
say 100, we obtain termination, but the algorithm produces 100 different reverse
versions and the specialised program looks like:

(1’) rev([], [], [])←
(2’) rev([H|T ], [], Res)← rev2(T, [H], Res)
(3’) rev2([], [A], [A])←
(4’) rev2([H|T ], [A], Res)← rev3(T, [H, A], Res)
...
(197’) rev99([], [A1, . . . , A98], [A1, . . . , A98])←
(198’) rev99([H|T ], [A1, . . . , A98], Res)← rev100(T, [H, A1, . . . , A98], Res)
(199’) rev100([], [A1, . . . , A99|AT ], [A1, . . . , A99|AT ])←
(200’) rev100([H|T ], [A1, . . . , A99|AT ], Res)←

ls(AT ), rev99(T, [H, A1, . . . , A99|AT ], Res)
(201’) ls([])←
(202’) ls([H|T ])← ls(T )

This program is certainly far from optimal and clearly exhibits the ad hoc nature
of the depth bound.

5 W.r.t. local precision, see [18, 17].
6 I.e. a characteristic tree associated to an atom with this predicate symbol.
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← rev(L, [], R)

← ls([]), rev(T, [H], R)

← rev(T, [H], R)

(3)
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(1)

2

(2)

← rev(T, [H], R)

← ls([H]), rev(T ′, [H ′, H], R)

← rev(T ′, [H ′, H], R)

(3)

← ls([]), rev(T ′, [H ′, H], R)

(4)
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In general:

(1)

2

(2)

(4)

← rev(T, [...], R)

← ls([...]), rev(T ′, [H ′, ...], R)

← rev(T ′, [H ′, ...], R)

(3)

← ls([]), rev(T ′, [H ′, ...], R)

(4)

...

Fig. 2. SLD-trees for Example 4

Situations like the above typically arise when an accumulating parameter
influences the computation, because then the growing of the accumulator causes
a corresponding growing of the characteristic trees. To be fair, it must be ad-
mitted that with most simple programs, this is not the case. For instance, in the
standard reverse with accumulating parameter, the accumulator is only copied
in the end, but never influences the computation. As illustrated by Example 4
above, this state of affairs will often already be changed when one adds type
checking in the style of [11] to even the simplest logic programs.

Among larger and more sophisticated programs, cases like the above become
more and more frequent, even in the absence of type checking.7 For instance,
in an explicit unification algorithm, one accumulating parameter is the substi-
tution built so far. It heavily influences the computation because new bindings
have to be added and checked for compatibility with the current substitution.
Another example is the “mixed” meta-interpreter of [12, 19] (sometimes called
InstanceDemo; part of it is depicted in Fig. 3) for the ground representation
in which the goals are “lifted” to the non-ground representation for resolution.
To perform the lifting, an accumulating parameter is used to keep track of the
variables that have already been encountered. This accumulator influences the
computation: Upon encountering a new variable, the program inspects the ac-
cumulator.

7 Especially since efficiently written programs often use accumulating parameters.



Program:
(1) make non ground(GrTerm, NgTerm)←

mng(GrTerm, NgTerm, [], Sub)
(2) mng(var(N), X, [], [sub(N, X)])←
(3) mng(var(N), X, [sub(N, X)|T ], [sub(N, X)|T ])←
(4) mng(var(N), X, [sub(M, Y )|T ], [sub(M, Y )|T1])←

not(N = M), mng(var(N), X, T, T1)
(5) mng(struct(F, GrArgs), struct(F, NgArgs), InSub, OutSub)←

l mng(GrArgs, NgArgs, InSub, OutSub)
(6) l mng([], [], Sub, Sub)←
(7) l mng([GrH|GrT ], [NgH|NgT ], InSub, OutSub)←

mng(GrH, NgH, InSub, InSub1),
l mng(GrT, NgT, InSub1, OutSub)

Example query:
← make non ground(struct(f, [var(1), var(2), var(1)]), F )

; c.a.s. {F/struct(f, [Z, V, Z])}

Fig. 3. Lifting the ground representation

Example 5. Let A = l mng(Lg, Ln, [sub(N,X)], S) and P be the program of
Fig. 3 (this situation arose in a real-life experiment). As can be seen in Fig. 4,
unfolding A (e.g. using well-founded measures) causes the addition of the atom
l mng(Tg, Tn, [sub(N,X), sub(J,Hn)], S) at the global (control) level. Notice
that the third argument has grown (i.e. we have an accumulator).
So, when in turn unfolding l mng(Tg, Tn, [sub(N,X), sub(J,Hn)], S), we will
obtain a deeper characteristic tree (because mng traverses the third argument
and thus needs one more step to reach the end) which will have as one of its leaves
the atom l mng(Tg′, Tn′, [sub(N,X), sub(J,Hn), sub(J ′,Hn′)], S). An infinite
sequence of ever growing characteristic trees results and again, as in Example 4,
we obtain non-termination without a depth bound, and very unsatisfactory (ad
hoc) specialisations with it.

Summarising, computations influenced by one or more growing data struc-
tures are by no means rare and will, very often, lead to ad hoc behaviour of
partial deduction where the global control is founded on characteristic trees with
a depth bound. In the next section, we show how this annoying depth bound
can be lifted without endangering termination.

3 Partial Deduction using Global Trees

3.1 Introduction

A general framework for global control, not relying on any depth bounds, is pro-
posed in [26, 25]. Marked trees (m-trees) are introduced to register descendency
relationships among atoms at the global level. The overall tree is then kept finite
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(6) (7)

2 ← mng(Hg, Hn, [sub(N, X)], S1), l mng(Tg, Tn, S1, S)

(3) (5)
(4)

← l mng(Lg, Ln,

accumulator︷ ︸︸ ︷
[sub(N, X)], S)

← l mng(Ag, An, [sub(N, X)], S1), l mng(Tg, Tn, S1, S)← l mng(Tg, Tn, [sub(N, X)], S)

(2)

← not(J = N), mng(var(J), Hn, [], T1), l mng(Tg, Tn, [sub(N, X)|T1], S)

← not(J = N), l mng(Tg, Tn, [sub(N, X), sub(J, Hn)]︸ ︷︷ ︸
accumulator

, S)

Fig. 4. Accumulator growth in Example 5

through ensuring monotonicity of well-founded measure functions and termina-
tion of the algorithm follows, provided the generalisation operation (on atoms)
is similarly well-founded. It is to this framework that we now turn for inspiration
on how to solve the depth bound problem uncovered in Subsect. 2.2.

The basic idea will be to watch over the evolution of characteristic trees
associated to atoms along the branches of the global tree. Obviously, just mea-
suring the depth of characteristic trees would be far too crude: Global branches
would be cut off prematurely and entirely unrelated atoms could be mopped
together through generalisation, resulting in completely unacceptable special-
isation losses. No, as can be seen in Fig. 2, we need a more refined measure
which would somehow spot when a characteristic tree (piecemeal) “contains”
characteristic trees appearing earlier in the same branch of the global tree. If
such a situation arises (as it indeed does in Example 4), it seems reasonable to
stop expanding the global tree, generalise the offending atoms and produce a
specialised procedure for the generalisation instead.

However, a closer look at the following variation of Example 5 shows that
also this approach would sometimes overgeneralise and consequently fall short
of providing sufficiently detailed polyvariance.

Example 6. Reconsider the program in Fig. 3, and suppose that local control
uses determinate unfolding. Let us now start partial deduction for the atom
A = mng(G, struct(cl, [struct(f, [X, Y ])|B]), [], S) (also this situation arose in
a real-life experiment). When unfolding A (see Fig. 5), we obtain an SLDNF-
tree containing the atom mng(H, struct(f, [X, Y ]), [], S1) in one of its leaves. If
we subsequently (determinately) unfold the latter atom, we obtain a tree that
is “larger” than its predecessor, also in the more refined sense. Potential non-
termination would therefore be detected and a generalisation operation executed.
However, the atoms in the leaves of the second tree are more general than those



already met, and simply continuing partial deduction without generalisation will
lead to natural termination without any depth bound intervention.
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← l mng(A, [struct(f, [X, Y ])|B]), [], S)2

← mng(H, struct(f, [X, Y ]), [], S1)︸ ︷︷ ︸, l mng(T, B, S1, S)

(2) (5)

(7)

← mng(G, struct(cl, [struct(f, [X, Y ])|B]), [], S)
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2

(2) (5)

(7)

← mng(H, X, [], S2), l mng(T, [Y ], S2, S1)

← l mng(A, [X, Y ], [], S1)

←
︷ ︸︸ ︷
mng(H, struct(f, [X, Y ]), [], S1)

(7)

← mng(H, X, [], S2), mng(H′, Y, S2, S3), l mng(T ′, [], S3, S1)

← mng(H, X, [], S2), mng(H′, Y, S2, S1)

(6)

Fig. 5. SLD-trees for Example 6

Example 6 demonstrates that only measuring growth of characteristic trees,
even in a refined way, does not always lead to satisfactory specialisation.8 Luckily,
the same example also suggests a solution to this problem: Rather than measur-
ing and comparing characteristic trees, we will scrutinise entire characteristic
atoms, comparing both the syntactic content of the ordinary atoms they contain
and the associated characteristic trees. Accordingly, the global tree nodes will
not be labeled by plain atoms as in [26, 25], but by entire characteristic atoms.

The rest of this section, then, contains the formal elaboration of this new
approach.

8 In fact, whenever the (local) unfolding rule does not unfold “as deeply as possible”
(for whatever reason), then a growing characteristic tree might simply be caused by
splitting the “maximally deep tree” in such a way that the second part “contains”
the first part.



3.2 More on Characteristic Atoms

Generalising Characteristic Atoms. We extend the notions of variants, in-
stances and generalisations, familiar for ordinary atoms,9 to characteristic trees
and atoms:

Definition 9. A characteristic tree τ1 is more general than another character-
istic tree τ2, denoted by τ1 � τ2, iff τ2 can be obtained by attaching subtrees
to the leaves of τ1. A characteristic atom (A1, τ1) is more general than another
characteristic atom (A2, τ2), denoted by (A1, τ1) � (A2, τ2), iff A1 � A2 and
τ1 � τ2. Also (A1, τ1) is a variant of (A2, τ2), denoted by (A1, τ1) ≡ (A2, τ2),
iff (A1, τ1) � (A2, τ2) and (A2, τ2) � (A1, τ1). Finally, CA1 ≺ CA2 holds when
CA1 � CA2 but not CA1 ≡ CA2.

Note that {()}, a characteristic tree containing a single, empty path, can be
extended into a more specific characteristic tree, while the empty characteristic
tree ∅ = {} cannot.

Example 7. Let τ1 = {((1, 3))}, τ2 = {((1, 3), (2, 4))} and τ3 = {((1, 3)), ((1, 4))},
then we have that τ1 � τ2 and τ1 ≺ τ2 but not that τ1 � τ3 nor τ2 � τ3.

The following proposition shows that the above definition makes sense wrt
the set of ordinary atoms represented by characteristic atoms.

Proposition 1. Let CA1, CA2 be two characteristic atoms such that CA1 �
CA2. Then every atom A which is a concretisation of CA2 is also a concretisa-
tion of CA1.

Finally, we extend the notion of most specific generalisation (msg) to char-
acteristic trees and atoms:

Definition 10. Let τ1, τ2 be two P-characteristic trees. Then msg(τ1, τ2) is the
most specific characteristic tree which is more general than both τ1 and τ2.
Let (A1, τ1), (A2, τ2) be two characteristic atoms. Then msg((A1, τ1), (A2, τ2)) =
(msg(A1, A2),msg(τ1, τ2)).

Note that the above msg for characteristic atoms is still unique up to variable
renaming. Its further extension to sets of characteristic atoms (rather than just
pairs) is straightforward, and will not be included explicitly.

Example 8. Given τ1 = {((1, 3))}, τ2 = {((1, 3), (2, 4))}, τ3 = {((1, 3)), ((1, 4))},
τ4 = {((1, 3), (2, 4)), ((1, 3), (2, 5))}, we have that msg(τ1, τ2) = τ1, msg(τ1, τ3) =
msg(τ2, τ3) = {()} and msg(τ2, τ4) = τ1.

Ordering Characteristic Atoms. We now proceed to introduce an order rela-
tion on characteristic atoms. It will be instrumental in guaranteeing termination
of the partial deduction method to be presented.

9 For ordinary atoms, A1 � A2 will denote that A1 is more general than A2.



Definition 11. A set V,≤V is called well-quasi-ordered (wqo) iff for any infi-
nite sequence of elements e1, e2, . . . in V there are i < j such that ei ≤V ej. We
also say that ≤V is a well-quasi order (wqo) on V .

An interesting wqo is the homeomorphic embedding relation � of [30] (where
it is adapted from [6]).

Definition 12. The homeomorphic embedding relation � on atoms and terms10

is defined inductively as follows:

1. X � Y for all variables X, Y
2. s � f(t1, . . . , tn) if s � ti for some i
3. f(s1, . . . , sn) � f(t1, . . . , tn) if ∀i ∈ {1, . . . , n} : si � ti.

Example 9. We have: p(a)�p(f(a)), X �X, p(X)�p(f(Y )), p(X, X)�p(X, Y )
and p(X, Y ) � p(X, X).

Proposition 2. The relation � is a wqo on the set of atoms and terms.

The intuition behind Definition 12 is that when some structure re-appears
within a larger one, it is homeomorphically embedded by the latter. As is ar-
gued in [30], this provides a good starting point for detecting growing structures
created by (hence) possibly non-terminating processes.

However, as can be observed in Example 9, the homeomorphic embedding
relation � as defined in Definition 12 is rather crude wrt variables. In fact, all
variables are treated as if they were the same variable, a practice which is clearly
undesirable in a logic programming context. Intuitively, in the above example,
p(X, Y ) � p(X, X) is acceptable, while p(X, X) � p(X, Y ) is not.11

To remedy the problem, we refine the above introduced homeomorphic em-
bedding as follows:

Definition 13. Let A,B be atoms or terms. Then B (strictly homeomorphi-
cally) embeds A, written as A �∗ B, iff A � B and A is not a strict instance of
B.

Example 10. We now have that p(X, Y )�∗ p(X, X) but not p(X, X)�∗ p(X, Y ).
Note that still X �∗ Y and X �∗ X.

Proposition 3. The relation �∗ is a wqo on the set of atoms and terms.

We now extend the embedding relation of Definition 13 to characteristic
atoms. One way to obtain a wqo is to first define a term representation of
characteristic trees and then use the embedding relation �∗ with this term rep-
resentation.
10 Expressed in the language L which we implicitly assume underlying the programs and

queries under consideration. Remember that it contains only finitely many constant,
function and predicate symbols ! This property is of crucial importance for the proofs
in [20].

11 p(X, X) can be seen as standing for something like and(eq(X, Y ), p(X, Y )) which
clearly embeds p(X, Y ), but the reverse does not hold.



Definition 14. By d.e we denote an injective, monotonic12 mapping from char-
acteristic trees to (ordinary) atoms.

Such a mapping can be easily constructed by representing leaves of the tree by
variables. For example we could have d{((1, 3))}e = select(1, [match(3, X)]) and
d{((1, 3), (2, 4))}e = select(1, [match(3, select(2, [match(4, X)]))]).13

Definition 15. Let (A1, τ1) and (A2, τ2) be two characteristic atoms. We say
that (A2, τ2) embeds (A1, τ1), denoted by (A1, τ1) �∗ (A2, τ2), iff A1 �∗ A2 and
dτ1e�∗ dτ2e.

Proposition 4. Let A be a set of P -characteristic atoms. Then A,�∗ is well-
quasi-ordered.

Finally, we consider the relationship between �∗ and � on characteristic
atoms.

Proposition 5. Let CA1, CA2, CA3 be characteristic atoms such that CA3 �
CA2. Then CA1 �∗ CA3 ⇒ CA1 �∗ CA2.

So, a generalisation of a given characteristic atom will only embed characteristic
atoms already embedded by the given one.

Proposition 6. Let CA1, CA2 be characteristic atoms such that CA2 � CA1.
Then CA1 �∗ CA2 iff CA1 ≡ CA2.

Proposition 7. Let CA1, . . . , CAn be characteristic atoms and assume that
M = msg(CA1, . . . , CAn).14 Then the following three statements are equiva-
lent (where 1 ≤ i ≤ n):
1. CAi �∗M
2. CAi ≡M
3. CAi � CA1, . . . , CAi � CAn

Properties 5 and 7 will be used to prove termination of the partial deduction
algorithm in Sect. 3.4. Note that Propositions 6 and 7 do not hold for the �

relation (which makes � less suitable for ensuring termination of partial deduc-
tion).

3.3 Global Trees

In this subsection, we adapt and instantiate the m-tree concept presented in [26,
25] according to our particular needs in this paper.

Definition 16. A global tree γP for a program P is a (finitely branching) tree
where nodes can be either marked or unmarked and each node carries a label
which is a P -characteristic atom.
12 I.e. if τ1 ≺ τ2 then dτ1e ≺ dτ2e.
13 Note that {((1, 3))} ≺ {((1, 3), (2, 4))} and indeed d{((1, 3))}e ≺ d{((1, 3), (2, 4))}e.
14 As we in fact already did in the pair-wise case, we slightly abuse notation by not

writing msg({CA1, . . . , CAn}), while that is of course actually what is intended.



In other words, a node in a global tree γP will look as follows: (n, mark, (A, τA)),
where n is the node identifier, mark an indicator that can take the values u or
m designating whether the node is marked or not, and the P -characteristic
atom (A, τA) is the node’s label. Informally, a marked node corresponds to a
characteristic atom which has already been treated by the partial deduction
algorithm. We will often omit the P subscript when it is either clear from or not
relevant in the particular context we are considering.

In the sequel, we consider a global tree γ partially ordered through the usual
ancestor node >γ descendent node relationship. Given a node n ∈ γ, we
denote by Ancγ(n) the set of its γ ancestor nodes (including itself).

Let γP be a global tree. Then we will henceforth denote as LγP
the set of its

labels. And for a given node n in a tree γ, we will refer to its label by ln.

Definition 17. Let γ be a global tree. Then we define its associated label map-
ping fγ as the one-to-one mapping fγ : γ, >γ→ Lγ ,�∗ such that n 7→ ln. fγ will
be called non-monotonic iff ∃n1, n2 such that n1 >γ n2 and ln1 �∗ ln2 .

Definition 18. We call a global tree γ well-quasi-ordered if fγ is not non-
monotonic.

Theorem 1. A global tree γ is finite if it is well-quasi-ordered.

3.4 An Algorithm for Partial Deduction

In this subsection, we present the actual partial deduction algorithm where global
control is imposed through characteristic atoms in a global tree.

We first introduce the following definition:

Definition 19. Let A be an ordinary atom, U an unfolding rule and P a pro-
gram. Then chatom(A,P, U) = (A, τ) where chtree(← A,P, U) = τ .

A formal description of the algorithm can be found in Fig. 6. Please note
that it is parameterised by an unfolding rule U , thus leaving the particulars of
local control unspecified. Without loss of generality, we suppose the initial goal
to consist of a single atom.

As in e.g. [8, 26, 17], Algorithm 2 does not output a specialised program, but
rather a set of (characteristic) atoms from which the actual code can be gener-
ated in a straightforward way. Most of the algorithm is self-explanatory, except
perhaps the For-loop. In B, all the characteristic atoms are assembled, corre-
sponding to the atoms occurring in the leaves of the SLDNF-tree built (locally,
of course) for AL according to τAL

. Elements of B are subsequently inserted into
γ as (unmarked) child nodes of L if they do not embed the label of n or any of
its ancestor nodes. If one does, and it is an instance of n’s label or that of an
ancestor of n, then it is simply not added to γ. Finally, if a characteristic atom
(B, τB) ∈ B does embed an ancestor label, but there is no more general charac-
teristic atom to be found labelling any of the ancestor nodes, then n receives a
child node carrying as label the most specific generalisation of (B, τB) and all



Algorithm 2

Input
a normal program P and goal ←A

Output
a set of characteristic atoms A

Initialisation
γ := {(1, u, (A, τA))}

While γ contains an unmarked leaf do

let n be such an unmarked leaf in γ: (n, u, (An, τAn))
mark n
B := {chatom(B, P, U)|B ∈ BAP (An, τAn)}
For each (B, τB) ∈ B do

If H = {(C, τC) ∈ Ancγ(n)|(C, τC) �∗ (B, τB)} = ∅
Then add (nB , u, (B, τB)) to γ as a child of n
Else If {(D, τD) ∈ Ancγ(n)|(D, τD) � (B, τB)} = ∅

Then add (nB , u, msg(H ∪ {(B, τB)})) to γ as a child of n
Endfor

Endwhile

A := Lγ

Fig. 6. Partial deduction with global trees.

embedded ancestor labels. The latter case is of course the most interesting: Sim-
ply adding a node labelled (B, τB) would endanger termination. Adding the msg
label instead secures finiteness, while trying to preserve as much information as
seems possible.15 We obtain the following theorems:

Theorem 3. Algorithm 2 always terminates.

Theorem 4. Let P be a program, input to Algorithm 2, and A the corresponding
set of characteristic atoms produced as output. Then A is P -covered.

From Theorem 4, correctness of the specialisation follows as in [17].
Finally, we have developed a post-processing phase reducing the polyvariance

to some minimal level without removing any of the specialisation performed by
the partial deduction described in Algorithm 2 (see Sect. 3.5 of [20]).

4 Experimental Results and Discussion

Creating a fully fledged implementation of Algorithm 2 and the above described
post-processing is the subject of ongoing work. However, to preliminarily check
whether the developed ideas actually lead to improved practical results, we
enhanced the system used for ecological partial deduction in [17] with global

15 Further enhancing precision through even more cautious generalisation will be a
topic of future research.



control through embedding and generalisation on characteristic atoms. We ex-
perimented with the result (denoted by eco−embed), comparing its performance
with ecological partial deduction as in [17]. In the latter case, various depth
bounds were imposed on the (local) SLDNF-trees in order to ensure termination
(hence the notation eco−db ). Finally, in the experiments described below, local
control is always based on the embedding relation on the atoms in the proof tree
structure (i.e. it checks whether selected literals in covering ancestors, see [3],
are embedded), possibly cut off by the imposed depth bound.

We report on three experiments. In the first one, we specialised the reverse
(with type checking) program of Example 4 for the atom rev(L, [], R). The sec-
ond and third experiment involved the “lifting” solve meta-interpreter ([12,
19]). The program depicted in Fig. 3 is actually an excerpt from its code.
Experiment 2 consisted in specialising this program for solve([”c1”, ”c2”, U ],
[struct(fa, [X, Y ])]), where ”e” denotes the ground representation of an ex-
pression e, c1 denotes the clause fa(X, Y ) ← p(X, Y ),m(X) and c2 the clause
mo(X, Y ) ← p(X, Y ), f(X). Finally, in Experiment 3, we specialised the same
solve for the atom solve([”c1”, ”c2”, ”p(a, b)←”, ”m(a)←”], [struct(fa, [X, Y ])]).

The first two experiments illustrate the problems encountered in Examples 4
and 5, and have to rely on a depth-bound for termination when using ecological
partial deduction as in [17]. The third experiment does not require a depth
bound, but illustrates another (well-known) adverse effect of using depth bounds.

The results are summarised in Tables 1, 2 and 3. The experiments were
performed using Prolog by BIM on a Sparc Classic running Solaris. The size
of the compiled code is expressed in units, 1 unit corresponding to 4.08 bytes
on a Sparc Classic. The (compiled code) run times were obtained by using the
time/2 predicate of Prolog by BIM on an extensive number of queries.

Experiment 1 shows that the additional polyvariance produced by using a
depth bound to ensure termination does not pay off in efficiency but increases
the code size unnecessarily. Experiment 2 illustrates this even more poignantly.
The amount of polyvariance produced by the method eco−db50 was even so big
that we could not complete the partial deduction.16

In Experiment 3, it is interesting to note that, even with a depth bound
of 50 and for this very simple object program, we do not yet get the optimal
result ! So, for Experiment 2, the depth bound of 50 generates way too much
polyvariance, while for Experiment 3, the depth bound of 50 is not sufficient to
guarantee optimal specialisation of the same program ! Concluding, it seems very
likely that the global control improvements proposed in this paper will indeed
pay off in partial deduction practice.

Note that the current system (eco−embed) does not yet structure the char-
acteristic atoms in a global tree, but still just puts them in a set as in [17]. For
the above described experiments, this had no influence, but generalisation with
non-ancestors may in general severely limit specialisation potential.

16 After running for over several hours, producing 134 different predicates and gener-
alising 80 times, eco−db50 overflowed the heap limit of 4.5 Megabytes.



Method Run Time #Clauses/#Predicates Compiled Code Size

original 6.7 s 4/2 203 u
eco-embed 6.7 s 6/3 331 u
eco-db10 6.7 s 23/12 1 955 u
eco-db50 7.1 s 103/52 29 573 u
eco-db100 7.5 s 203/102 122 391 u

Table 1. Experiment 1, rev program

Method Run Time #Clauses/#Predicates Compiled Code Size

original 3.07 s 16/8 1 328 u
eco-embed 1.42 s 138/26 26 390 u
eco-db10 1.84 s 328/68 65 863 u
eco-db50 - s -/ ≥134 - u

Table 2. Experiment 2, solve program

Method Run Time #Clauses/#Predicates Compiled Code Size

original 2.44 s 16/8 1 328 u
eco-embed 0.04 s 1/1 77 u
eco-db10 1.63 s 34/19 4 164 u
eco-db50 0.06 s 8/4 1 062 u

Table 3. Experiment 3, solve program for another query

A possible drawback of the global control method as laid out in Sect. 3,
might be its considerable complexity. Indeed, first, ensuring termination through
a well-quasi-ordering is structurally much more costly than the alternative of
using a well-founded ordering. The latter only requires comparison with a single
“ancestor” object and can be enforced without any search through “ancestor
lists” (see [23]). Testing for well-quasi-ordering, however, unavoidably does entail
such searching and repeated comparisons with several ancestors. Moreover, in
our particular case, checking �∗ on characteristic atoms is in itself a quite costly
operation, adding considerably to the innate complexity of maintaining a well-
quasi-ordering. It remains therefore to be seen whether a global control such as
the one above can be used (or approximated in an efficient way) in circumstances
where speed (or complexity) of the transformation is an important factor.

We conclude this section with a brief discussion on the relation between our
global control and what may be termed thus in supercompilation ([31, 32, 30]).
We already pointed out that the inspiration for using � derives from [30]. In
that paper, a generalisation strategy for positive supercompilation (no negative
information propagation while driving) is proposed. It uses � to compare nodes
in a marked partial process tree (a notion roughly corresponding to marked or
global trees in partial deduction). These nodes, however, only contain syntactical
information. It is our current understanding that both the addition of something
similar to characteristic trees and the use of the refined �∗ embedding can
lead to improvements of the method proposed in [30]. Finally, we return to an
observation made in [25]: Neighbourhoods of order “n” in (full) supercompilation
([32]), are essentially the same as classes of atoms (or goals) with an identical



depth n characteristic tree. Adapting our technique for supercompilation would
therefore probably allow to remove the depth bound on neighbourhoods.

5 Conclusion

In this paper, we have developed a sophisticated on-line global control technique
for partial deduction of normal logic programs. Importing and adapting m-trees
from [26, 25], we have overcome the need for a depth bound on characteristic
trees to guarantee termination of partial deduction as proposed in [17]. Plugging
in a depth bound free local control strategy (see e.g. [3, 23]), we thus obtain a
fully automatic, concrete partial deduction method that always terminates and
produces precise and reasonable polyvariance, without resorting to any ad hoc
techniques. To the best of our knowledge, this is the very first such method.

Along the way, we have defined generalisation and embedding on character-
istic atoms, refining the homeomorphic embedding relation � from [30] into �∗,
and showing that the latter is more suitable in a logic programming setting. Ini-
tial experiments with a partial implementation of the method showed its great
practical value; A fully fledged implementation and further experimentation are
the subjects of ongoing work.
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