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Abstract We present a new approximate verification technique for falsifying the in-

variants of B models. The technique employs symmetry of B models induced by the use

of deferred sets. The basic idea is to efficiently compute markers for states, so that sym-

metric states are guaranteed to have the same marker (but not the other way around).

The falsification algorithm then assumes that two states with the same marker can be

considered symmetric. We describe how symmetry markers can be efficiently computed

and empirically evaluate an implementation, showing both very good performance re-

sults and a high degree of precision (i.e., very few non-symmetric states receive the

same marker). We also identify a class of B models for which the technique is precise

and therefore provides an efficient and complete verification method. Finally, we show

that the technique can be applied to Z models as well.
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1 Introduction

The B-method [1] is a theory and methodology for formal development of computer

systems based on set theory and predicate logic. It is used in industry in a range of

critical domains.

Invariant properties and refinement relations for B specifications can be expressed

and then proven by the semi-automated theorem provers within tools like Atelier-B [49]

and B4Free [11], the B-toolkit [4] or the Rodin platform [3] for Event-B [2]. Recently,
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prob [33,36] has increased the set of tools available for B with an animator and a

model checker. prob is complementary to the traditional B tools and is particularly

useful to provide a quick validation and debugging support prior to the generally time

consuming work of developing formal proofs.

However, it is well known that model checking suffers from the exponential state

explosion problem; one way to combat this is via symmetry reduction [10]. Indeed,

often a system to be checked has a large number of states with symmetric behaviour,

meaning that there are classes of states where each member of the class behaves like

every other member of the class. Symmetry is particularly prominent in B because of

the common use of sets of unnamed elements, called deferred sets in “classical” B and

carrier sets in Event-B.

In previous work [35] we have presented a symmetry reduction technique, called

permutation flooding, which ensures that only one representative per symmetry equiv-

alence class is checked. This technique can provide substantial speedups, but cannot

produce an exponential reduction in complexity. In this paper we present a novel sym-

metry reduction technique, inspired by the success of Spin’s bitstate hashing approxi-

mate verification [24]. We define a hashing function, which can be computed efficiently

and which returns the same value for symmetric states. We avoid the underlying com-

plexity of checking whether two states are symmetric (which basically amounts to

checking graph isomorphism), by “assuming” that two states with the same hash value

are symmetric. As this assumption can be wrong in general, we do not have a com-

plete verification, but only an approximate verification technique (in the sense that

non-symmetric states can obtain the same hash value); but a very fast one. However, if

the algorithm finds a counter example, it is guaranteed to be genuine. Hence, the main

objective of our technique is “falsification”[5], i.e., proving that a B model does not pre-

serve its invariant. We identify conditions where our method provides a full verification

and show cases where it cannot avoid approximations. In experiments we conducted,

we show that in all cases but one, no loss of precision was induced (and all symmetry

classes were visited) and a fundamental reduction of complexity was achieved for some

examples.

The techniques presented in this paper can also be applied in the context of checking

LTL properties [45]. Furthermore, the techniques also apply to Z models. Indeed, in

[44] we have extended prob to work also for Z specifications and the present technique

can also be used in that setting, where given sets play the rôle of deferred sets in B (and

carrier sets in Event-B). In principle, the technique applies to any formal specification

language rooted in set theory and predicate logic, where sets of anonymous elements

are commonly used. In the paper we also examine our technique on two case studies

from the Z literature, and show that it works equally well in that setting. In recent work

[8] we have also used the present work as inspiration for an approximate technique in

the context of Promela.

In this paper, we give in Sect. 2, a brief introduction to B and symmetry reduction

and briefly explain the link between the symmetry detection and the graph isomorphism

problems. We explain why symmetry is particularly prominent and natural in B. We

present in Sect. 4 our symmetry reduction technique. We have integrated our method

into the prob tool. In Sect. 5 we evaluate this implementation on a series of examples,

comparing it with a naive exploration as well as the precise permutation flooding

technique. We also discuss in Sect. 7 related work in the field of symmetry reduction

and model checking, particularly the tools Murφ [27] and SMC [47].
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This is an extended and revised version of [37]. E.g., the present paper contains a

complete formalisation of the algorithm, with full proofs. We have also extended the

experimental section, and provide more discussions about related work. The application

to Z models is also new.

2 An Overview of Symmetry in B

In this section we present how symmetry arises in B formal models and how it can

be exploited. The crucial aspect are the underlying set theory and predicate logic

together with the notion of deferred sets. As such, our approach could as well have

been presented in the context of Z. We return to this issue in Section 6.2.

B is based on the notion of abstract machine. The variables of an abstract machine

can be either elements of basic sets (Boolean values, integers and user-defined sets),

pairs of values, or sets of values. Each machine has a certain number of operations that

can update the variables of the machine, as well as an invariant specified using predicate

logic with set theory and arithmetic. (Note that, while refinement is an important

concept in B, in this paper we concentrate on consistency of B machines, i.e., checking

that the invariant is always satisfied. Also, we will concentrate our presentation on

“classical” B, but our techniques applie in exactly the same way to Event-B.)

There are two ways to introduce basic sets into a B machine: either as a parameter

of the machine or via the SETS clause. Sets introduced in the SETS clause are called

given sets. Given sets which are explicitly enumerated in the SETS clause are called

enumerated sets, the other sets are called deferred sets. Operations define, with a high

level of abstraction, substitutions that can transform the state of a machine. Properties

that the machine must preserve are expressed by an invariant. When the cardinalities

of all the deferred sets of a B machine have been fixed, the possible behaviours of a B

abstract machine can be modelled as a transition system whose nodes are the reachable

states and the transitions correspond to possible executions of the operations. This

transition system is computed by the model checking tool prob [33], which can also

check if every reachable state satisfies the invariant. Unfortunately, this computation

can be very expensive, but detecting symmetries in the transition system can lead to

a considerable reduction of that cost.

Informally, we define two states as being symmetric if the invariant has the same

truth value in both states, and when both can execute the same sequences of operations

(possibly up to some renaming of data values in the parameters) [35].

Elements of deferred sets are not specified a priori and have no name or identifier.

Hence, inside a B machine one cannot select a particular element of such deferred sets.

It has been proven in [35] that for any state of B machine, permutations of elements

inside the deferred sets preserve the truth value of B predicates in general and the

invariant in particular. Furthermore, the structure of the transition relation is also

preserved. A reduction technique that exploits symmetries caused by deferred sets is

likely to significantly reduce the time to model check many B specifications, since such

sets are commonly used in B.

We will present symmetry induced by permuting deferred set elements more for-

mally in Section 3.2. In the meantime, the following simple example from [35] illustrates

the basic idea of symmetry in B. Further below we describe a more involved example,

which will enable us to show how symmetries can be detected.
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Simple login Fig. 1 models a system where a user can login and logout with session

identifiers being attributed upon login.

MACHINE LoginV erySimple
SETS Session
VARIABLES active
INVARIANT

active ⊆ Session
INITIALISATION

active := ∅
OPERATIONS

res← Login = ANY s WHERE s ∈ Session ∧ s /∈ active THEN
res := s || active := active ∪ {s}

END;
Logout(s) = PRE s ∈ active THEN

active := active− {s}
END

END

Fig. 1 Simple session management model in B

This machine contains the deferred set Session. The variable active contains an

active set of sessions and is initialised with the empty set. The machine contains two

operations:

– The Login operation which non-deterministically choses a session s which is not yet

used and adds it to active. The operation also returns a value, namely the chosen

session s.

– The Logout operation, which receives as parameter a session s and removes s from

the set of active sessions. Note that this operation contains a precondition: it can

only be called with an active session as parameter s.

Once the cardinality of the deferred set Session has been fixed, the state space of

this machine can be obtained by starting out from the initial state and then repeatedly

applying the operations. With a cardinality of 3 for Session, the full state space for

this machine has 8 states (one for each possible subset of Session).

Fig. 2 shows the full state space of the “login” example, where we have denoted

the three elements of Session by Session1 ,Session2 ,Session3 . One can observe that

the possible behaviours of a state depend solely on the cardinality of the set active

and not on the identity of the elements in this set. In other words, the states 2,3,4 are

symmetric, in the sense that:

– the states can be transformed into each other by permuting the elements of the set

Session;

– if one of the states satisfies (respectively violates) the invariant, then any of the

other states must also satisfy (respectively violate) the invariant;

– if one of the states can perform a sequence of operations, then any other state can

perform a similar sequence of transitions; possibly substituting operation arguments

(in the same way that the state values were permuted). E.g., state 2 can perform

Logout(Session1 ), state 3 can be obtained from state 2 by replacing Session1 with

Session2, and, indeed, state 3 can perform Logout(Session2 ).
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active={}

initialise_machine({})

active={Session1} active={Session2} active={Session3}

active={Session1,Session2}

active={Session1,Session3}

Logout(Session1)

active={Session2,Session3}

Logout(Session2)
Logout(Session3)

active={Session1,Session2,Session3}

Logout(Session1)Logout(Session2)

Logout(Session1)Logout(Session3)

Logout(Session2)

Logout(Session3)

Login-->(Session1)

Logout(Session2)
Logout(Session3)

Logout(Session1)

Login-->(Session1) Login-->(Session2) Login-->(Session3)

Login-->(Session1)

Login-->(Session2)
Login-->(Session1) Login-->(Session3)

Login-->(Session2)

Login-->(Session3)

Login-->(Session2)

Login-->(Session3)

2 3 4

1

5

8

7

6

Fig. 2 Full state space; representatives are marked by double boxes

The same holds for the states 5, 6 and 7. Therefore, a reduced state space with one

representative state for each class (4 classes in this case) can be used. In practice, the

reduction method must not build the complete state graph and can proceed on the

fly on the reduced one, as depicted in Figure 3, where only one representative per

equivalence class is kept. We will formalise this fact later in Section 3.2, leading up to

Theorem 1.

Size of the State Space For the LoginVerySimple, the size of the unreduced

state space is 1 + 2n, where n is n is the cardinality of the deferred set Session. For

example, in Fig. 2 we have 1 + 23 = 9 reachable states (including the root state before

initialisation). The size of the reduced state space is just 1 + n, e.g., 4 in Fig 3. We

thus get an exponential reduction of the size of the state space.

Dining philosophers Another example, with more involved data structures and using

constants, can be found in Fig. 4. This will allow us to explain how symmetries can be

detected in general. Fig. 4 models the well known dining philosophers problem, where

the topology is described by B constants. Notice that we do not specify a protocol

for the philosophers. The machine has two finite sets Phil and Forks, two (constant)

total bijections (��) lFork and rFork which assign a left and a right fork to every

philosopher, and a variable taken which is a partial function ( 7→) recording for each
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active={}

initialise_machine({})

active={Session1}

active={Session1,Session2}

Logout(Session1)

active={Session1,Session2,Session3}

Logout(Session1)

Logout(Session2)

Logout(Session2)

Logout(Session3) Logout(Session1)

Login-->(Session1) Login-->(Session2)

Login-->(Session3)

Login-->(Session2) Login-->(Session3)

Login-->(Session3)

Fig. 3 Symmetry Reduced state space; dashed lines represent “redirected” operations

fork, which philosopher, if any, has taken it into his or her hand. The properties impose

that Phil and Forks have the same cardinality, which we denote by n below, and that

for all philosophers the right fork must be different from the left one. Initially, no forks

are taken and the operations TakeLeftFork , TakeRightFork and DropFork are possible

when the corresponding preconditions are true. The (valid) invariant also expresses

that a philosopher only takes his forks.

This specification is quite general and several initial topologies are possible (n must

be at least 2) and for a cardinality n bigger than 3, we can have topologies with several

groups of philosophers (e.g. with n = 4 two tables of two philosophers are possible).

We can easily impose a ring topology with only one big table by adding the following

property, excluding subtables: ∀st.(st ⊂ Phil ∧ st 6= ∅⇒ rFork−1[lFork [st]] 6= st).

Size of the State Space For the Philosophers machine of Fig. 4 with a cardinal-

ity of 4 for the sets Phil and Fork , 216 initial topologies are possible, split into 144

topologies with all philosophers at the same table and 72 topologies with 2 tables and

2 philosophers at each one. The full state space for this machine has 17,713 states. As

we will see later, a lot of those states are symmetric. Indeed, the symmetry reduced

state space has only 48 states.
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MACHINE Philosophers
SETS Phil; Forks
CONSTANTS lFork , rFork
PROPERTIES
lFork ∈ Phil �� Forks ∧
rFork ∈ Phil �� Forks ∧
card(Phil) = card(Forks) ∧
∀pp.(pp ∈ Phil⇒ lFork(pp) 6= rFork(pp))
VARIABLES taken
INVARIANT
taken ∈ Forks 7→ Phil ∧
∀xx.(xx ∈ dom(taken)⇒ (lFork(taken(xx)) = xx ∨ rFork(taken(xx)) = xx))
INITIALISATION taken := ∅
OPERATIONS
TakeLeftFork(p, f) =
PRE p ∈ Phil ∧ f ∈ Forks ∧ f /∈ dom(taken) ∧ lFork(p) = f THEN

taken(f) := p
END;
TakeRightFork(p, f) =
PRE p ∈ Phil ∧ f ∈ Forks ∧ f /∈ dom(taken) ∧ rFork(p) = f THEN

taken(f) := p
END;
DropFork(p, f) =
PRE p ∈ Phil ∧ f ∈ Forks ∧ f ∈ dom(taken) ∧ taken(f) = p THEN

taken := f �− taken
END

END

Fig. 4 Dining Philosophers specification

3 Formal Definition of Symmetry in B Models

3.1 States and Statespace

We first need to formalise the notation of a state of a B machine. The values of variables

in B expressions and predicates are inductively defined to be either elements of given

sets (including the set BOOL of Boolean values and the set ZZ of integers), pairs of

values, or sets of values. We denote the set of all possible values as DATA. Note that

for pairs, we use the B notation: a pair consisting of the two components x and y is

denoted by x 7→ y.

A state s of a B machine is denoted by a tuple 〈c1, . . . , cn〉 of values of its ordered

variables or constants v1, . . . , vn (denoted V ) where the order is fixed a priori. The set

of all states is denoted by STATE .

The normal form for a B operation operating on the variables V with inputs x and

outputs y is characterised by a predicate P (x, V, V ′, y). Characterising a B operation

of the form X←− op(Y ) as a predicate in this way gives rise to a labelled transition

relation on states: state s is related to state s′ by event op.a.b, denoted by s→M
op.a.b s

′,

when P (a, s, s′, b) holds. (Some additional details may be found in [34].) B models

also contain an initialisation substitution, which can be characterised by a predicate

Init(V ). This induces a labelled transition system as follows:

Definition 1 The state space of a B machine is defined to be the labelled transition

system (S, S0, T ), with
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– the set of states S = STATE ,

– the set of initial states S0 = {s ∈ STATE | Init(s)},
– the transition relation T = {(s1, L, s2) | s1 →M

L s2}.

The reachable states of a labelled transition system (S, S0, T ) is the set of statesS
i>0 T

i(S0), where T i is inductively defined by T 1(S) = S and T i+1(S) = T (T i(S))

for i > 0.

Figure 2 depicts the state space of the machine from Fig. 1, where we have linked

the initial states of the B machine to a single special root node.

3.2 Symmetry induced by Permutation of Deferred Set Elements

We recall the definitions from [35], where symmetry induced by deferred set elements

is described.

Definition 2 Let DS be a set of disjoint sets. A permutation f over DS is a total

bijection from ∪S∈DSS to ∪S∈DSS such that ∀S ∈ DS we have {f(s) | s ∈ S} = S.

We can now define permutations for B machines, which permute deferred set ele-

ments, respecting the typing (i.e., we only permute within each deferred set).

Definition 3 Let M be a B Machine with deferred sets DS1, . . . , DSk and enumerated

sets ES1, . . . , ESm. A function f is called a permutation for M iff it is a permutation

over DS1, . . . , DSk. We extend f to B’s other basic datatypes, requiring that f must

not permute integer, boolean or enumerated values:

– f(x) = x if x : ZZ or x : BOOL or x : ESj (for some j)

We recursively lift such an f to pairs and sets as follows:

– f(x 7→ y) = f(x) 7→ f(y)

– f({x1, . . . , xn}) = {f(x1), . . . , f(xn)}
We also extend the domain of this function f to state vectors by defining

– f(〈v1, . . . , vk〉) = 〈f(v1), . . . , f(vk)〉

Take for example a B machine with deferred sets DS1 = {s1, s2} and DS2 =

{r1, r2}. Then f = {s1 7→ s2, s2 7→ s1, r1 7→ r1, r2 7→ r2} is a permutation over

{DS1, DS2}. Applying f to states we have for example f(〈s1〉) = 〈s2〉, f(〈r1, 5r1, 5〉,
f(〈{s1, s2}〉) = 〈{s1, s2}〉, f(〈{s2}, s1〉) = 〈{s1}, s2〉, f(〈{s1}, {1 7→ s1}, {{}, {s2}}〉)
= 〈{s2}, {1 7→ s2}, {{}, {s1}}〉. Observe that constants are part of the state and are

thus also permuted by f .1 We can now define when two states are a permutation of

each other:

Definition 4 Let s, s′ be two states of a B Machine with deferred sets DS1, . . . , DSk.

The state s′ is a permutation of the state s iff there exists a permutation f over

{DS1, . . . , DSi} such that s′ = f(s). The set of all permutation states of s is called

the orbit of s, denoted by θ(s).

In [35] it is proven that a predicate is true in a state s iff it is true in all permutation

states of s. This in turn can be used to prove that permutations induce a symmetry in

the state space of a B machine:

1 If that is not desired then one could simply impose on the allowed permutations, that for
all deferred set elements c occurring in the constants we have f(c) = c.

8



Theorem 1 Every state permutation f over the deferred sets of a B machine M with

invariant I satisfies

– ∀s ∈ S : s |= I iff f(s) |= I

– ∀s1 ∈ S, ∀s2 ∈ S: s1 →M
op.a.b s2 ⇔ f(s1)→M

op.f(a).f(b) f(s2).

The first point of Theorem 1 establishes invariance of f wrt the invariant predicate

I, and point two establishes that f is an automorphism.

The idea of “traditional” symmetry reduction is to apply the model checking to the

symmetry quotient of the state space, also called the symmetry reduced state space. It

is obtained by choosing one representative per orbit θ(s), denoted by rep(θ(s)), defined

as follows:

Definition 5 A representative function for a B machine, is a function rep from sets

of states to states, such that for all sets of states S ⊆ STATE , we have rep(S) ∈ S.

Given a B machine M and a representative function rep, we define the symmetry

reduced state space of M wrt rep to be the labelled transition system (S′, S′0, T ′), with

– the set of states S′ = {rep(θ(s)) | s ∈ STATE},
– the set of initial states S′0 = {rep(θ(s)) | Init(s)},
– and where the transition relation is defined by:

(s1, L, s2) ∈ T ′ iff s1 ∈ S′ and there exists s′2 with s2 = rep(θ(s′2)) and s1 →M
L s′2.

Figure 3 contains the symmetry quotient of the state space in Fig. 2, where the

states 1,2,5,8 have been used as representatives.

As a corollary of Theorem 1 we have:

Corollary 1 Let L be the state space of a B machine with invariant I and let L′ be a

symmetry reduced state space. There exists a reachable state s of L such that s |= ¬I
iff there exists a reachable state s′ of L′ such that s′ |= ¬I.

3.3 Symmetry Reduction by Graph Canonicalisation

Deciding whether two states can be considered symmetric (also called the “orbit prob-

lem”) is tightly linked to detecting graph isomorphisms (see, e.g., [10][Chapter 14.4.1]).

Indeed, to detect on the fly if two states are symmetric, one can directly employ algo-

rithms for detecting graph isomorphisms, by converting the system states into graphs

and then checking whether these graphs are isomorphic. Graph isomorphism currently

has no known polynomial algorithm. However, in practice some efficient algorithms

exist for many classes of graphs [30]. The most efficient general purpose graph iso-

morphism program is nauty [40]. In related work [50], inspired by nauty, we have

implemented a canonicalisation function for B states viewed as graphs, i.e. a procedure

which maps each state to the representative of its orbit, also called the canonical form.

This has been further refined in [48], actually making use of nauty itself to detect the

symmetries.

3.4 Symmetry Reduction by Permutation Flooding

Informally, we know that two states are definitely symmetric if there exists a permu-

tation of the deferred set elements which transforms one state into the other. The idea
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of permutation flooding [35] is thus, for every newly encountered state, compute all

permutations states of this state and add them to the state space. Those new states are

marked as already processed, and hence will not be checked for invariant violations, nor

will the enabled transitions be computed. The first encountered state of each equiva-

lence class becomes de facto the representative element for the class. If the state space

fits into memory, this provides a simple symmetry reduction method that can be quite

efficient (especially for complicated datastructures) with execution time similar to the

graph canonization method. Further information on these permutation functions, and

the soundness results of the symmetries, can be found in [35].

4 Symmetry Markers

Even with symmetry reduction via canonization or flooding, complete verification of a

B model may take too much time or use too much space to be practical. To address

this issue, we propose a new approximate verification technique based on symmetry

markers. The technique is partially inspired by Holzmann’s successful bitstate hashing

technique [24] which computes a hash value for every reached state: if another state

with the same hash value has already been checked, the new state is not analysed any

further. As hash collisions can arise, some reachable states are not checked. Holzmann’s

method is therefore, no longer an exhaustive model checking method but an approxi-

mate verification method (or intensive testing method), which is able to discover errors

if an error state is reached, but in general cannot certify that the model is error-free.

In our case, the hash value is replaced by a marker. This marker has a more

complicated structure, but integrates the notion of symmetry: two symmetric states

will have the same marker and there is a “small chance” that two non-symmetric

states have the same marker. In our model checking algorithm, we will store those

markers rather than the states and we will check a new state only if its marker has not

been seen before. Similarly to the bitstate hashing algorithm, part of the (symmetry

reduced) state space may not be checked in case of a collision (i.e., non symmetrical

states having the same marker). In the rest of the paper, we will formally present a way

to compute such markers, discuss in which case our markers are precise, and present an

empirical evaluation exhibiting big speedups (over classical model checking and even

over other symmetry approaches) with few collisions (actually in only one example in

the experiments).

4.1 Formal Definition of Markers

A marking function is given a state s of a B machine and computes the associated

marker. The idea of our marking function is to see s as a graph and transform it into

a marker by replacing the deferred set elements by so-called vertex-invariants.

In graph theory, an invariant [31][Sect. 7.2] is a function which does not depend

on the presentation of the graph. A vertex-invariant [40] inv is a function which labels

the vertices of an arbitrary graph with values so that symmetrical vertices are assigned

the same label. Vertex-invariants can be used to speed up graph isomorphism checks.

Examples of simple vertex-invariants include the in-degree and the out-degree for the

specified vertex. Below we present a more involved vertex-invariant for deferred set

elements in B, generalising the ideas of in- and out-degrees.
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4.1.1 Symmetry Markers

Informally, we will compute a symmetry marker for a given state s of a B machine as

follows:

1. For every deferred set element d used inside s we compute structural information

about its occurrence in s, which is not affected by permutation. Hence, the same

structural information will be computed in all symmetric states.

For this, we compute the multiset of paths that lead to an occurrence of d in s.

This is formalised in Def. 6 below.

2. Replace all deferred set elements by the structural information computed above.

This is formalised in Def. 7.

Fig. 5 (b) provides, for the deferred set D = {d1, d2}, a graphical representation

of the state s = 〈d1, {d1 7→ d2}〉 given in Fig.5 (a) of a machine with the ordered

variables c, r where c ∈ D and r ⊆ D × D. Diamonds are used to denote larger,

non-atomic expressions (such as d1 7→ d2).

Below we denote the elements of the deferred (resp. enumerated) sets by D (resp.

by E). For a set V of variables and constants, we also denote by MPATHS(V ) all

multisets of sequences over V ∪ {left , right , el}.
We also denote multisets by using {| . . . |}, multisets union by ] and sequences

by 〈. . .〉. The concatenation of two sequences α and β is denoted by α.β. If B = {|
β1, . . . , βn |} is a multiset of n sequences and α a sequence, we also define α.B = {|
α.β1, . . . , α.βn |}.

Definition 6 Let d ∈ D be a deferred set element and e a data value of a variable or

constant of a B machine. We define the function paths : DATA × D 7→ MPATHS(∅)

as follows:

1. paths(e, d) = {| 〈〉 |} if e = d,

2. paths(e, d) = 〈left〉.paths(x, d) ] 〈right〉.paths(y, d) if e = (x 7→ y) is a pair,

3. paths(e, d) = ]x∈e〈el〉.paths(x, d) if e is a set,

4. paths(e, d) = ∅ otherwise.

For a state s = 〈c1, . . . , cn〉 of a B machine with variables and constants V (ordered as

v1, . . . , vn) we define vpaths : STATE ×D 7→ MPATHS(V ) by

– vpaths(s, d) = {| 〈v1〉.paths(c1, d) . . . 〈vn〉.paths(cn, d) |}

vpaths(s, d) computes structural information on how the deferred set element d

is used within s. It identifies which variables and constants use this element and the

various paths to d in the structure of s (seen as a graph).

vpaths(s, d) is a vertex-invariant and in the particular case where s is a single binary

relation g over D, representing a graph, then vpaths(s, d) effectively computes the in-

and out-degree of the vertex d. E.g., in the variable r of type set of pairs in D, if d

has one outgoing and two incoming edges, we will have vpaths(s, d) = {| 〈r, el, left〉,
〈r, el, right〉, 〈r, el , right〉 |}.

The following definition simply replaces all deferred set elements within a state by

their paths in order to compute the symmetry marker.

Definition 7 Let s be the state of a B machine with ordered variables and constants

v1, . . . , vn. We define the marking function m, computing markers for data values as

follows:

11



– m(s) = {| vi 7→ ms(ci) | s = 〈c1, . . . cn〉 |}
where ms is inductively defined by:

– ms(e) = e if e ∈ ZZ or e ∈ BOOL or e = ∅ or e ∈ E ,

– ms(e) = (ms(x) 7→ ms(y)) if e = (x 7→ y) is a pair,

– ms(e) = {| ms(e1), . . . ,ms(ek) |} if e = {e1, . . . , ek} is a set,

– ms(d) = vpaths(s, d) if d ∈ D.

Fig. 5 (c) completes the example of Fig. 5 with the symmetry marker corresponding

to the state s. Note that the state s2 = 〈d2, {d2 7→ d1}} is symmetric to the state s

of Fig. 5 (the permutation is f = {d1 7→ d2, d2 7→ d1}) and the symmetry markers are

identical.

vpaths

c

r

el

left right

State s

Deferred Set

c

r

Symmetry Marker ms(s)

{| 〈c〉, 〈r, el, left〉 |}

{| {| �c�, �r, el, left� |} �→
{| �r, el, right� |} |}

{d1 �→ d2}d1

c ∈ D r ∈ D ↔ D

D

d2d1

(a)

(c)

(b)

Fig. 5 State s, graphical view and its symmetry marker ms(s)

The above generalises the in- and out-degree: the marker of a deferred element d

records all the positions where it is used in the state seen as a data structure, and in

particular if d is used within a relation r (i.e., a set of pairs) representing a directed

graph, then ms will effectively count the number of incoming and outgoing edges in r.

Let us examine a few more examples, all with the deferred set D = {d1, d2}.
Take the two states s1 = 〈{d1 7→ 0}, {d1}〉, s2 = 〈{d2 7→ 0}, {d1}〉 with variables x

and y. These two states are not symmetric and have also different symmetry markers

m(s1) 6= m(s2) as ms1(d1) = {| 〈x, el, left〉, 〈y, el〉 |}, ms2(d1) = {| 〈y, el〉 |}, ms2(d2) =

{| 〈x, el, left〉 |}. For s3 = 〈{d2 7→ 0}, {d2}〉 we have that m(s1) = m(s3), and indeed

s1 and s3 are symmetric. So far, our symmetry markers have been perfectly precise,

i.e., two states had the same marker iff they were symmetric. It is, however, not too

difficult to construct cases where this is no longer true and collisions occur. Take the

states s4 = 〈{d1 7→ 1, d2 7→ 2}, {d1 7→ 1, d2 7→ 2}〉 and s5 = 〈{d1 7→ 2, d2 7→ 1}, {d1 7→
1, d2 7→ 2}〉. Those states are not symmetric but they have the same symmetry marker.

Such situations (state variables which map deferred set elements to non-symmetric

data values) are quite common, and the following improvement to Def. 6 stores more

information in the symmetry marker to avoid collisions in those cases:

First, we define the set of non-symmetrical NonSym datavalues as follows:

Definition 8 NonSym is the smallest set satisfying

– ZZ ∪ BOOL ∪ E ∪ {∅} ⊆ NonSym

12



– ∀x, y : x ∈ NonSym ∧ y ∈ NonSym ⇒ (x, y) ∈ NonSym.

We extend Def. 6 by replacing the second rule by the following rules:

2a. paths(e, d) = 〈to, n〉.paths(x, d) if e = (x 7→ n) ∧ n ∈ NonSym ∧ x 6∈ NonSym

2b. paths(e, d) = 〈from, n〉.paths(x, d) if e = (n 7→ x) ∧ n ∈ NonSym ∧ x 6∈
NonSym

2c. paths(e, d) = 〈leftright〉.paths(x, d) if e = (x 7→ x) ∧ x 6∈ NonSym.

2d. paths(e, d) = 〈left〉.paths(x, d) ] 〈right〉.paths(y, d) if e = (x 7→ y) ∧ x 6∈
NonSym ∧ y 6∈ NonSym ∧ x 6= y.

The adapted definition is more precise and now distinguishes s4 and s5. We will

return to the issue of precision below. We first prove that our definition of ms is indeed

not affected by permutation of deferred set elements:

Proposition 1 Let s be a state for B Machine with deferred sets {D1, . . . , Di} and

f a permutation over {D1, . . . , Di}. Then for any element d ∈ {D1, . . . , Di} we have

paths(d, s) = paths(f(d), f(s)).

Proof In Appendix A.

From the above proposition we can conclude that for for all d in D and for every

permutation function we have ms(d) = mf(s)(f(d)). We thus have:

Corollary 2 Let s1, s2 be two states of a B machine M . If s1 and s2 are permutation

states of each other then m(s1) = m(s2).

4.2 When are symmetry markers precise ?

Our Dining Philosopher example from Sect. 2 can be used to show the limits of our

method. Already with 2 philosophers a collision occurs between the state where each

philosopher has taken a fork in his left hand with the state where each philosopher

has taken a fork in his right hand. Fig. 6 gives a graphical representation of these two

states, where we have represented each pair by an arrow between a philosopher and

a fork. It is not straightforward to see why these two states are not symmetric.2 Let

us consider the predicate ∀p.(p : Phil ⇒ taken(lFork(p)) = p). This predicate is true

for the left state (a) but not for the right state (b); hence the two states cannot be

symmetrical. We could strengthen our method and record cycles of length 2 together

with the links followed (like the ones occurring in Fig. 6 (a) following links lFork and

taken: p1-f1-p1 and p2-f2-p2), but in the end, only a full graph isomorphism algorithm

is sufficient to properly identify all symmetries.

Notice however that our method correctly distinguishes between the state where

one philosopher has a fork in his left hand with the one where he has one in his right

hand.

More generally, the symmetry marker method may fail to properly identify symme-

try classes already with a single binary relation over a deferred set element. For exam-

ple, the states s1 = 〈{d1 7→ d2, d2 7→ d3, d3 7→ d4, d4 7→ d1}〉 and s2 = 〈{d1 7→ d2, d2 7→

2 And actually for the current machine in Fig. 4 these two states could be confounded; but
if we add a protocol or other predicate which distinguishes left forks from right forks this will
no longer be the case.
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lFork lForkrFork

rFork

taken taken

lFork rFork
rFork

lFork

taken taken

(a) (b)

Fig. 6 Two states in collision for the symmetry markers method

d1 d2 d3 d4

d1 d2 d3 d4

s1

s2

d1 d2

d3

d4s3

s4

d5

d6

d1 d2

d3

d4 d5

d6

Fig. 7 Further collisions for the symmetry markers method

d1, d3 7→ d4, d4 7→ d3}〉 have same symmetry marker (assuming D = {d1, d2, d3, d4} is

a deferred set; see the left of Figure 7 for a graphical representation) but they are not

symmetric.

As we can encode a symmetric relation r as a set of sets {{x, y} | (x 7→ y) ∈ r},
this means that sets of sets of deferred elements may also lead to imprecision. For

example, the right of Figure 7 shows two symmetric relations s3 and s4 which are not

distinguished by symmetry markers.

Still, in the following cases where pairs of deferred values is allowed, our method is

precise:

Proposition 2 Let s1, s2 be two states for B Machine with deferred sets {D1, . . . , Di}.
Let all the values v of variables and constants in s1 and s2 be either:

1. a value not containing any element from one of the sets D1, . . . , Di, or

2. a value in Dk

3. a set of values {x1, . . . , xn} ⊆ Dk for some 1 ≤ k ≤ i, or

4. a set of pairs {x1 7→ y1, . . . , xn 7→ yn} such that either all xi are in NonSym and

all yi are elements of some deferred set Dj , or all yi are in NonSym and all xi are

elements of some deferred set Dj ,
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5. or a pair of values inductively satisfying one of the above requirements.

Then m(s1) = m(s2) implies that there exists a permutation function f over

{D1, . . . , Di} such that f(s1) = s2.

Proof In Appendix A.

As a corollary of the above we know that if the variables and constants used in

a B machine fulfill conditions of Prop. 2, our symmetry marker method provides a

full verification. Fortunately, in practice quite a lot of specifications seem to fulfill the

conditions of Prop. 2. It can also be possible to change a specification to satisfy the

conditions. E.g. if we enumerate the forks of the dining philosophers example (and

use it, e.g., in the invariant since otherwise prob changes its specification to deferred

set), our method is precise but of course has less symmetry. Finally, observe that these

conditions are cheap to check and have been implemented in our tool (prob warns the

user if the conditions do not apply).

Discussion: Our markers could be further improved, to avoid more collisions, by

moving from multiset of paths to a tree structure. This would mainly require changing

the last rule for computing paths above to the following:

– paths(e, d) = (〈left〉.paths(d, x) , 〈right〉.paths(d, y)) if e = (x 7→ y) ∧ x 6∈
NonSym ∧ y 6∈ NonSym

This extension has not been implemented in our tool.

5 Empirical Evaluation

We have implemented the technique presented in the previous section and incorporated

into prob. In our implementation, the marker is built up as a Prolog term, and the

multisets are sorted and individual occurrences counted. The tool also checks whether

the condition in Prop. 2 applies (and warns the user if it does not and no counter

example was found).

Below, we give an empirical evaluation of this implementation. We have performed

classical consistency and deadlock checking without symmetry reduction (wo) and with

our permutation flooding (flood) and symmetry markers (mark) reduction methods, on

a series of examples using prob’s model checker. The results can be found in Table 1.

RussianPostalPuzzle is a B model of a cryptographic puzzle. (see, e.g., [22]). Sched0

and Sched1 are the machines presented in [34]. Peterson is the specification of the

mutual exclusion protocol for n processes as defined in [43]. USB is a specification of

a USB protocol, developed by the French company ClearSy. Towns is a specification

from the Schneider B Book [46]; here the overhead is in the closure computation of

a query operation. Dining is the dining philosopher example presented above. Finally,

we have also added one example without any symmetry (no deferred sets), the Volvo

vehicle function from [33].

The column “card” indicates the cardinality that was used for the deferred sets.

The column “Nodes” in Table 1 contains the number of nodes for which the invariant

was checked and the outgoing transitions computed.

The experiments were all run on a multiprocessor system with 4 AMD Opteron

870 Dual Core 2 GHz processors, running SUSE Linux 10.1, SICStus Prolog 3.12.5

(x86 64-linux-glibc2.3) and prob version 1.2.0.3

3 Note that neither SICStus Prolog nor prob take advantage of multiple processors. The
Volvo examples were actually run on SICStus Prolog 4.0.7 and prob 1.3.1.
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Table 1 Model checking with symmetry markers compared against classical checking and
permutation flooding

Machine card Model Checking Time Number of Nodes Speedup over
wo flood mark wo flood mark wo flood

Russian 1 0.05 0.05 0.05 15 15 15 1.04 1.04
2 0.32 0.21 0.21 81 48 48 1.51 0.97
3 1.32 0.46 0.34 441 119 119 3.92 1.35
4 8.73 1.90 0.89 2325 248 248 9.81 2.13
5 54.06 12.18 2.05 11985 459 459 26.35 5.94

Sched0 1 0.01 0.01 0.01 5 5 5 0.98 0.99
2 0.07 0.05 0.05 16 10 10 1.59 1.06
3 0.28 0.07 0.06 55 17 17 4.60 1.12
4 0.98 0.20 0.14 190 26 26 7.15 1.43
5 4.52 0.75 0.27 649 37 37 16.87 2.81
6 20.35 4.74 0.48 2188 50 50 42.60 9.93
7 114.71 43.47 0.80 7291 65 65 143.61 54.43

Sched1 1 0.01 0.01 0.01 5 5 5 1.09 1.12
2 0.05 0.06 0.05 27 14 14 1.12 1.26
3 0.41 0.11 0.09 145 29 29 4.50 1.17
4 2.96 0.34 0.18 825 51 51 16.62 1.93
5 23.93 1.70 0.37 5201 81 81 64.24 4.56
6 192.97 13.37 0.70 37009 120 120 275.75 19.10
7 941.46 167.95 1.22 297473 169 169 771.39 137.61

Peterson 2 0.28 0.28 0.15 49 27 27 1.87 1.89
3 8.80 2.00 1.73 884 174 174 5.08 1.16
4 861.49 60.13 20.66 22283 1134 1134 41.69 2.91

Towns 1 0.01 0.01 0.01 3 3 3 1.03 1.00
2 0.37 0.33 0.34 17 11 11 1.08 0.97
3 63.95 12.78 12.95 513 105 105 4.94 0.99

USB 1 0.21 0.20 0.22 29 29 29 0.96 0.90
2 8.42 4.74 6.17 694 355 355 1.36 0.77
3 605.25 277.59 232.93 16906 3013 3013 2.60 1.19

Dining 2 123.64 5.99 0.15 11809 26 20 799.36 38.73

Volvo - 8.77 8.68 9.21 1361 1361 1361 0.95 0.94

The results are very good, and for most examples the symmetry marker is much

faster than the permutation flooding approach. In Towns and USB both fare equally

well, which can be explained by the complexity of the specification. For example, in

the Towns specification the major bottleneck is the computation of the closure of the

connectivity graph of the towns; both symmetry markers and permutation flooding get

rid of the overhead in the same manner leaving the same number of residual closure

operations to be computed. In all other examples the symmetry marker method fares

substantially better than permutation flooding, sometimes actually achieving a fun-

damental reduction of the exponential complexity. This can be seen in Fig. 8 for the

scheduler0 example. Note that permutation flooding does not achieve such a funda-

mental reduction. The same is actually true for symmetry reduction by computing

canonical forms, as implemented in [50], with speedup factors dropping below 3 for

scheduler0 with card > 5. The more recent implementation in [48] based upon nauty

is considerably faster (only 28 % slower than symmetry markers for scheduler0 with

card = 7), but for most examples roughly half the speed of our symmetry marker

method.
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The Volvo example shows that the overhead of the marker computation is relatively

small. Indeed, there are no deferred sets in the Volvo example, and hence the computed

markers correspond to the original state and there is no reduction in the state space.

As we can see, we pay about a 5% performance penalty for computing the markers.

Also note that in all but one case (Philosophers), the symmetry marker method was

precise; for this last, our method is very efficient but indeed does not provide an exhaus-

tive verification. The criterion from Prop. 2 applies to all but three cases (Philosophers,

Russian and Towns). Note that the Russian model has one variable has keys of type

POW(PERSONS*POW(KeyIDs)), where KeyIDs is a deferred set but Person is enumerated.

In principle our method could have been imprecise. Indeed, a function f from NonSym

to sets of deferred elements can be “translated” to a symmetric binary relation R be-

tween deferred set elements as follows: R = {x, y | ∃n ∈ dom(f) ∧ {x, y} ⊆ f(n)}. As

we have seen in the right of Figure 7, such a relation can lead to collisions. But in

this model, all the sets in the domain of has keys are disjoint, which means that no

collisions occur.

Fig. 8 Model Checking time (in seconds) for scheduler0.mch; log scale

Space complexity The theoretical space complexity of the marker method is function

of the possible size of a marker and the number of states. The worst case is when

no symmetry exists. In that case, since in our method, each deferred set element d

is represented by the set of paths to d, a marker takes more memory space than a

state, and the space complexity is worse than for the other methods. In practice, the

space taken by each method is roughly proportional to the respective number of nodes

in Table 1. Note, however, that flooding also adds “virtual” nodes. Hence, flooding

will take almost the same space than the model checking without symmetry reduction

(slightly less: because there are less transitions).

For instance, for scheduler1 and cardinality of 5, we have that the original model

checking yields 5201 nodes, flooding generates 5120 virtual nodes and 81 “real” nodes

and our markers method generates 81 nodes. The actual measured space consumption

is 4667 kB for the original, 3197 kB for flooding and 78 kB for the markers method.
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Figure 9 shows the memory consumption for storing the statespace for the scheduler0

example.

Fig. 9 Memory consumption (in kBytes) for the statespace of scheduler0.mch; log scale

6 Comparison with other Tools

To our knowledge, the only other model checker for B is [39]. However, it is not available

for download and does not include any state space reduction techniques.

6.1 SPIN

A comparison with the explicit state model checker SPIN [25,26,6] for the Promela

language and its partial order reduction can be found in [32]. While in principle SPIN

can deal with much larger state spaces as prob, the exploitation of symmetry means

that our algorithm was often much more efficient on high-level B models than SPIN

on the equivalent low-level models in Promela. In addition to partial order reduction,

one can also use symmetry reduction for SPIN, e.g., by using the SymmSPIN tool [7] or

TopSPIN tool [17].

However, compared to prob’s approach to symmetry, we can make the following

observations:

1. In Promela the user has to declare the symmetry: if he or she makes a mistake

the verification procedure will be unsound; (there is, however, the work [16] which

automatically detects some structural symmetries in Promela). In B symmetries

can be inferred automatically very easily (by looking at the deferred sets).
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2. Symmetry is much more natural and prevalent in B and we can take advantage

of partial symmetries (see, e.g., the generic dining philosophers example from Fig-

ure 4) and one can have multiple symmetric types (for SPIN typically only a single

scalarset, namely the process identifiers, is supported).

To further illustrate point 2, [32] presented a B model of a server farm with multiple

deferred sets as well as the corresponding Promela model. To the best of our knowl-

edge, this Promela model cannot be put into a form so that TopSPIN can exploit the

symmetries. For cardinality of 7 (i.e., 7 servers and 7 users), the best result obtainable

with SPIN in [32] ran in about 20 seconds. For cardinality of 8 it was not possible to

verify the model using SPIN. Complete model checking with our hash marker method

takes 0.77 seconds (on the same hardware that was used in [32]), generating 46 repre-

sentative states. For a cardinality of 9, our new algorithm takes 1.16 seconds with our

hash marker method, generating 56 representative states. Our hash marker method

was again precise in all cases. In summary, the symmetry that can be inferred and

exploited in the high-level B model leads to a dramatic reduction in model checking

time compared to a low-level model.

6.2 Z Models and Z2SAL

In this subsection we apply our technique on Z models, and compare the results with

existing tools for Z. Unfortunately, there does not seem to be a Z model checker avail-

able for download and experimentation. However, an alternate model checker for Z,

translating Z to SAL, is under development [14,13,12]. Those papers also contain two

Z models, which we will use for our experiments.

[14] contains a simple Z model of an organisation with members and people trying

to join. The paper also provides timings for model checking several LTL formulas. As

our tool can also handle Z specifications and LTL formulas, we were able to load the

exact same case study and model check it. In [14], the validating the third property

(that we always have G {card(waiting)+card(member)<=3}) took 3 seconds using the

best translation to SAL, and 12 hours using canonical and original encodings in SAL.

prob takes 0.044 s without symmetry and 0.015 s with hash symmetry to validate

the same property. In Figure 11 we show how our techniques fares on this model for

various sizes of the given set NAME . Note that these experiments were run on the

same hardware as above, but using prob 1.3.2. We have performed exhaustive model

checking4 without symmetry and with symmetry markers. We have also applied the

flooding technique, confirming that our symmetry markers are precise for this model

(as expected by the application of Proposition 2). We can see that the performance

advantage of symmetry markers increase with the size of NAME . For cardinality 7, the

symmetry markers are more than 50 times faster than prob without symmetry. We

can also observe that the flooding technique is less efficient, and suffers a drastic drop

in performance for size 7.

Some new experimental results of Z2SAL are reported in [13,12] for a video shop

case study. We were again able to load the exact same case study and model check

it. Figure 11 contains the results for exhaustively model checking the specification,

for various cardinalities of the given sets PERSON and TITLE (and using a value of

4 This amounts to deadlock checking here, as Z specifications preserve the invariant by
definition.
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Cardinality Time States Edges Time States Edges Time States
NAME (without symmetry) (symmetry markers) (flood)

3 0.03 s 29 149 0.01 s 12 55 0.02 s 12
4 0.54 s 165 1,196 0.12 s 33 218 0.14 s 33
5 1.45 s 733 6,761 0.14 s 67 571 0.31 s 67
6 4.84 s 2,191 23,892 0.22 s 88 896 1.61 s 87
7 16.10 s 6,565 82,263 0.31 s 112 1,326 25.70 s 112

Fig. 10 Experiments with the organisation Z model from [14]

Cardinality Time States Edges Time States Edges Time
PERS. TIT. (without symmetry) (with symmetry markers) (flood)

2 2 1.32 s 526 2,733 0.51 s 178 953 0.50 s
2 3 32.10 s 7,130 52,533 4.57 s 862 6,521 4.85 s
3 3 210.31 s 42,345 334,450 12.40 s 2,046 16,938 16.38 s
3 4 >3600 s >405,000 126.79 s 11,477 122,394 268.60 s

Fig. 11 Experiments with the video shop Z case study from [13,12]

MAXINT=4). Again, we can see the most a dramatic difference in performance for the

last line (3 persons and 4 titles): prob without symmetry reduction did not finish after

one hour (and had generated over 405,000 states at that time), while with symmetry

markers the model checking took 2 minutes and 7 seconds. Note that the symmetry

markers were precise for all but the last entry (3 persons and 4 titles). Here, the flooding

technique generates 11,692 nodes, whereas the symmetry marker technique generates

only 11,477.

Unfortunately, [13,12] do not contain timings for exhaustive model checking. [13,

12] contains several experiments, were SAL is used to find counter examples for certain

false theorems. Unfortunately, the hardware used is not described in [12]. It is probably

slower than our reference hardware. Still, we try to provide some rough comparison

between Z2SAL and prob here. Note that the experiments in [13,12] were done with a

maximum integer value of 3 and with 3 persons and 3 titles (the encoding for SAL uses

3 real titles and one bottom value for representing undefined function entries; the same

scheme is used for integers). We have used the same setting for prob below. For the

property “th1” from [12] prob takes 0.11 seconds with symmetry markers (and 0.07

seconds without), versus 4.40 seconds reported in [12] for Z2SAL. For “th4” prob takes

0.06 seconds with symmetry markers (and 0.10 without), versus 4.40 seconds reported

for Z2SAL in [12]. Finally, “th6” takes 2.00 seconds with prob and symmetry markers

(and 0.50 seconds without), versus 6.52 seconds in [12]. Note that the actual timings of

prob vary due to the random component of the mixed depth-first breadth-first search,

which also explains why prob with symmetry markers is in this case sometimes slower

than without symmetry. We did restart prob from scratch every time (even though

one of the advantages of prob is that it does remember the state space explored so

far).

In summary, the results show that our symmetry reduction can be applied to Z

models and that it can also drastically reduce the model checking time in that context.
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7 More Related and Future Work

Symmetry reduction in model checking has been studied extensively since the

nineties [21,27,9]. The two sources of symmetry mostly analyzed are data symme-

try generally identified through the use of special data types, and structural symmetry

due to concurrent (isomorphic) processes.

Two major works have initially studied data symmetry. Ip and Dill [27] introduced

the scalarset datatype which is an integer subrange with restricted operations. These

restrictions allow to identify symmetries in the state-space. Scalarset is implemented

in the tool Murφ [15]. The second precursor work in this line is the work of Clarke,

Jha et al [9,29] which combines data symmetry with a BDD approach. The approach

taken with the scalarset data type has been taken and extended in various works on

untimed [7,19] and timed systems [23]. Data equivalence is also exploited by Jackson et

al. [28] in relational specifications where data and operations are specified as relations.

Note that the language NP used by Jackson et al. is relational and hence in the same

family as Z, VDM and B.

In a pioneer work [21,20], Emerson and Sistla studied structural symmetry. They

use concurrent systems of processes together with some communication topology using

shared variables. They studied fairness in that setting. The tool SMC [47] implements

this theory. It is worth noticing that, except for the work of Jackson et al., symmetry

is always specified by hand by the designer. Our approach does not require this; the

symmetry arises naturally from the (common) use of deferred sets.

The problem of efficient identification of equivalent states was already discussed

in [21] and a very simple hashing function invariant to symmetry was proposed as

a first step to identify states equivalence classes. To our knowledge, our work is the

first elaborate approach to replace the standard symmetry reduction method based on

canonization to an efficient approximation method.

Other works studied structural symmetry in concurrent systems and in particular

with other kind of communication such as signal or message passing [38,16,18].

Symmetry on the formula allows another kind of reduction and has been investi-

gated in [38].

The link between the finding of orbits and the graph isomorphism problems was

studied in [9]. The computation of a representative element for a global state can

therefore be done by the powerful algorithm [41] and the nauty tool [40] developed

by McKay. The paper of Miller et al. [42] gives a nice survey to symmetry in model

checking.

In future we plan to adapt our results to improve automatic refinement checking

[34]. Another promising work is to employ symmetry reduction when checking logical

predicates containing existential or universal quantification, in order to cut down on

the number of values that need to be tested for the quantified variables. We could

also combine our symmetry markers with the graph canonicalisation approach [50,48],

so that the canonical form only has to be computed when two states have the same

symmetry marker.

In conclusion, we have presented a new approximate verification technique for B

and Z, employing symmetry induced by deferred sets in B and given sets in Z. The

technique computes symmetry markers for states and two states with the same sym-

metry marker are considered symmetric by the approximate verification algorithm. We

have shown that for important classes of systems our method gives a complete verifi-

cation algorithm. In our empirical evaluation we have also shown that our technique
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is both very precise (very few non-symmetric states are identified) and very efficient,

sometimes achieving a fundamental reduction of the underlying exponential verification

complexity.
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A Proofs

Proof of Proposition 1.

Proof If paths(d, s) = {| |}, then d does not occur in s, and hence f(d) cannot occur in f(s), as
f is injective. Generally, f(d) must occur in exactly the same places in f(s) where d occurred
in s. This can be formally proven by a straightforward induction on the length of the paths.
More concretely, we have that paths(f(e), f(d)) is equal to:

1. if f(e) = f(d):
paths(f(e), f(d))
= (by Def. 6)
{| 〈〉 |}
= (because e=d)
paths(e, d)

2. if f(e) = (x 7→ y) is a pair:
paths(f(e), f(d))
= (by Def. 6)
〈left〉.paths(x, d) ] 〈right〉.paths(y, d)
= (by induction assumption)
〈left〉.paths(f−1(x), f(d)) ] 〈right〉.paths(f−1(y), f(d))
= (as e = (f−1(x) 7→ f−1(y)) by Def. 3)
paths(e, d)

3. if f(e) is a set:
paths(f(e), f(d))
= (by Def. 6)
]x∈f(e)〈el〉.paths(x, f(d))
= (by induction assumption)
]x∈f(e)〈el〉.paths(f−1(x), f(d))

= (as e = ∪x∈ef−1(x) by Def. 3)
paths(e, d)

4. otherwise:
paths(f(e), f(d))
= (by Def. 6)
∅
Case f(e) is a deferred set element with f(e) 6= f(d)

= (by Def. 6, as e 6= d)
paths(e, d)

Case f(e) is a boolean, an integer or an enumerated set element
= (by Def. 6, as f(e) = e)
paths(e, d).

This proof uses the original version of Def. 6. For the extended version, the proof for the
second case (f(e) = (x 7→ y) is a pair) proceeds in a similar fashion to above; using the fact
that e ∈ NonSym iff f(e) ∈ NonSym and x 6= y iff f(x) 6= f(y).
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Proof of Proposition 2.

Proof In the following we will make use of the following lemma:
Lemma 1: ms(v) is a data value with no deferred set elements iff ms(v) = v.

Now, let s1 = 〈v1, . . . , vn〉 and s2 = 〈w1, . . . wn〉. We know that for 1 ≤ i ≤ n we have
ms1 (vi) = ms2 (wi).

We now define f to be a permutation over {D1, . . . , Di}, with the property that for all
d ∈ D paths(d, s1) = paths(f(d), s2). This function must exist because:

– All deferred set elements d are replaced by their paths(d, s). Hence, s1 and s2 must have the
same number of positions at which deferred set elements appear. Also, from paths(d, s1)
we can uniquely determine how many occurrences of d there are in s1.

– If for some d ∈ D we have that for all d′ ∈ D paths(d, s1) 6= paths(f(d), s2), then neces-
sarily, m(s1) 6= m(s2).
– Indeed, either d occurs in s1, then d is replaced by paths(d, s1) to obtain the marker

m(s1), and hence m(s1) 6= m(s2) as paths(d, s1) cannot occur in m(s2).
– Or d does not occur in s1, i.e., paths(d, s1) = {||}. Here, we can again infer that

m(s1) 6= m(s2), as there now must be at least one other e ∈ D occurring in s1, such
that no e′ ∈ D occurs the same number of times in s2.

In other words, as m(s1) = m(s2), we have that for every d ∈ D we can find a corresponding
d′ such that paths(d, s1) = paths(d′, s2).

– We can generalise the above reasoning, to conclude that for every d ∈ D with p =
paths(d, s1) we have card({e ∈ D | paths(e, s1) = p}) = card({e′ ∈ D | paths(e′, s2) = p}).
We now prove that f(s1) = s2, by proving that f(vi) = wi for 1 ≤ i ≤ n, inspecting the

cases of Definition 2:

1. In this case ms1 (vi) = vi and hence for any permutation f , we have f(vi) = vi. By Lemma
1, we also know ms1 (wi) = wi; hence f(vi) = wi.

2. In this case ms1 (vi) = paths(vi, s1) and wi must also be a deferred set element (by Lemma
1). We know that 〈V 〉 ∈ paths(vi, s1) and 〈V 〉 ∈ paths(wi, s2), where V is the name of the
ith variable. We also know that vi is the only element x ∈ D such that 〈V 〉 ∈ paths(x, s1).
Similarly, wi is the only element y ∈ D such that 〈V 〉 ∈ paths(y, s2). Hence, we must have
by construction of f that f(vi) = wi.

3. Let vi = {x1, . . . , xn}. {x1, . . . , xn} are the only values x such that 〈V.el〉 ∈ paths(x, s1).
By Lemma 1 we know that wi must also be of the form {y1, . . . , yn}, which also are the
only values y such that 〈V.el〉 ∈ paths(y, s2). Hence, f(xi) ∈ wi. Furthermore, as f is a
bijection, we must have f(vi) = wi.

4. set of pairs
5. A pair of values can simply be viewed as representing two separate variables. Hence, we

can inductively apply the above reasoning on the components.
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