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Abstract. We present a new approximate verification technique for B
models. The technique employs symmetry of B models induced by the
use of deferred sets. The basic idea is to efficiently compute markers for
states, which are such that symmetric states are guaranteed to have the
same marker (but not the other way around). The approximate verifica-
tion algorithm then assumes that two states with the same marker can
be considered symmetric. We describe how symmetry markers can be ef-
ficiently computed and empirically evaluate an implementation, showing
both very good performance results and a high degree of precision (i.e.,
very few non-symmetric states receive the same marker). We also identify
a class of B models for which the technique is precise.

1 Introduction

The B-method [Abr96] is a theory and methodology for formal development of
computer systems based on set theory and predicate logic. It is used in industry
in a range of critical domains.

Invariant properties of B specifications can be expressed and then proven by
the semi-automated theorem provers within tools like Atelier-B [Ste96], the B-
toolkit [BCUL99] or B4Free. Recently, prob [LB03] has increased the set of tools
available for B with an animator and a model checker. prob is complementary
to the traditional B tools and is particularly useful to provide a quick validation
and debugging support prior to the generally time consuming work of developing
formal proofs. However, it is well known that model checking suffers from the
exponential state explosion problem; one way to combat this is via symmetry re-
duction [CGP99]. Indeed, often a system to be checked has a large number of states
with symmetric behaviour, meaning that there are groups of states where each
member of the group behaves like every other member of the group. Symmetry is
particularly prominent in B because of deferred sets. In previous work [LBST07]
we have presented a symmetry reduction technique, called permutation flooding,
which ensures that only one representative per symmetry group is checked. This
technique can provide substantial speedups, but cannot produce an exponential
reduction in complexity. In this paper we present a novel symmetry reduction
technique, inspired by the success of Spin’s bitstate hashing approximate verifica-
tion [Hol88]. We define a hashing function, invariant under symmetry, which can
be computed efficiently. We avoid the underlying complexity of checking whether
two states are symmetric (which basically amounts to checking graph isomor-
phism), by “assuming” that two states with the same hash value are symmetric.



As this assumption can be wrong in general, we only have an approximate ver-
ification technique (in the sense that non-symmetric states can obtain the same
hash value); but a very fast one. We identify conditions where our method pro-
vides a full verification and show cases where it cannot avoid approximations. In
experiments we conducted, we show that in all except one case no loss of precision
was induced (and all symmetry groups were visited) and a fundamental reduction
of complexity was achieved for some examples.

In this paper, we give in Sect. 2, a brief introduction of B and symmetry and
briefly explain the link between the symmetry detection and the graph isomor-
phism problems. We explain why symmetry is particularly prominent and natural
in B. We present in Sect. 3 our symmetry reduction technique. We have integrated
our method into the prob tool. In Sect. 4 we evaluate this implementation on a
series of examples, comparing it with a naive exploration as well as the precise
permutation flooding technique. We also discuss in Sect. 5 related work in the field
of symmetry reduction and model checking, particularly the tools Murφ [ID96]
and SMC [SGE00].

2 Symmetry in B

B is based on the notion of abstract machine. The variables of an abstract machine
can be either elements of basic sets (including Boolean values and integers), pairs
of values, or sets of values. Each machine has a certain number of operations that
can update the variables of the machine, as well as an invariant specified using
predicate logic. (Note that, while refinement is an important concept in B, in
this paper we concentrate on consistency of B machines, i.e., checking that the
invariant is always satisfied.) There are two ways to introduce basic sets into a
B machine: either as a parameter of the machine or via the SETS clause. Sets
introduced in the SETS clause are called given sets. Given sets which are explic-
itly enumerated in the SETS clause are called enumerated sets, the other sets are
called deferred sets. Operations define, with a high-level of abstraction, substitu-
tions that can transform the state of a machine. Properties that the system must
preserve are expressed by an invariant. When the cardinalities of all the deferred
sets of a B machine have been fixed, the possible behaviours of a B abstract ma-
chine can be modelled as a transition system whose nodes are the reachable states
and the transitions correspond to possible executions of the operations. This tran-
sition system is computed by the model checking tool prob [LB03], which can also
check if every reachable state satisfies the invariant. However, the high-level ab-
stract mathematical formalism used by B means that it is often computationally
expensive to compute this transitions system and to check whether all the reach-
able states satisfy the invariant. Detecting symmetries in the transition system
can lead to a considerable reduction of that cost.

Informally, we define two states as being symmetric if the invariant has the
same truth value in both states, and when both can execute the same sequences
of operations (possibly up to some renaming of data values in the parameters)
[LBST07].
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Elements of deferred sets are not specified a priori and have no name or iden-
tifier. Hence, inside a B machine one cannot select a particular element of such
deferred sets. It has been proven in [LBST07] that for any state of B machine,
permutations of elements inside the deferred sets preserve the truth value of B
predicates in general and the invariant in particular. Furthermore, the structure
of the transition relation is also preserved. A reduction technique that exploits
symmetries caused by deferred sets is likely to significantly reduce the time to
model check many B specifications, since such sets are commonly used in B.

The following simple example from [LBST07] illustrates the basic idea of sym-
metry in B. Further below we describe a more involved example, which will enable
us to show how symmetries can be detected.

Simple login Fig. 1 models a system where a user can login and logout with session
identifiers being attributed upon login.

MACHINE LoginV erySimple
SETS Session
VARIABLES active
INVARIANT active ⊆ Session
INITIALISATION active := ∅
OPERATIONS
res← Login = ANY s WHERE s ∈ Session ∧ s /∈ active THEN

res := s || active := active ∪ {s} END;
Logout(s) = PRE s ∈ active THEN

active := active− {s} END
END

Fig. 1. Simple sessions

This machine contains the deferred set Session. With a cardinality of 3 for
Session, the full state space for this machine has 8 states (one for each possible
subset of Session); but the possible behaviours of a state depends solely on the
cardinality of the set active and not on the identity of the elements in this set.
Fig. 2 shows the full state space of the “login” example presented in Section 2,
where we have denoted the three elements of Session by s1, s2, s3. One can see
that the states 2,3,4 are symmetric, in the sense that:

– the states can be transformed into each other by permuting the elements of
the set Session;

– if one of the states satisfies (respectively violates) the invariant, then any of
the other states must also satisfy (respectively violate) the invariant;

– if one of the states can perform a sequence of operations, then any other
state can perform a similar sequence of transitions; possibly substituting op-
eration arguments (in the same way that the state values were permuted).
E.g., state 2 can perform Logout(Session1), state 3 can be obtained from
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state 2 by replacing Session1 with Session2, and, indeed, state 3 can perform
Logout(Session2).

The same holds for the states 5,6 and 7. Therefore, a reduced state space with one
representative state for each class (4 classes in this case) can be used. In practice,
the reduction method must not build the complete state graph and can proceed
on the fly on the reduced one.

active={}

initialise_machine({})

active={Session1} active={Session2} active={Session3}

active={Session1,Session2}

active={Session1,Session3}

Logout(Session1)

active={Session2,Session3}

Logout(Session2)
Logout(Session3)

active={Session1,Session2,Session3}

Logout(Session1)Logout(Session2)

Logout(Session1)Logout(Session3)

Logout(Session2)

Logout(Session3)

Login-->(Session1)

Logout(Session2)
Logout(Session3)

Logout(Session1)

Login-->(Session1) Login-->(Session2) Login-->(Session3)

Login-->(Session1)

Login-->(Session2)
Login-->(Session1) Login-->(Session3)

Login-->(Session2)

Login-->(Session3)

Login-->(Session2)

Login-->(Session3)

2 3 4

1

5

8

7

6

Fig. 2. Full state space; representatives are marked by double boxes

Dining philosophers Another example, with more involved data structures and
using constants, can be found in Fig. 3. This will allow us to explain how symme-
tries can be detected in general. Fig. 3 models the well known dining philosophers
problem, where the topology is described by B constants. Notice that we do not
specify a protocol for the philosophers. The machine has two finite sets Phil and
Forks, two (constant) total bijections (��) lFork and rFork which assign a left
and a right fork to every philosopher, and a variable taken which is a partial
function ( 7→) recording for each fork, which philosopher, if any, has taken it into
his or her hand. The properties impose that Phil and Forks have the same car-
dinality, which we denote by n below, and that for all philosophers the right fork
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must be different from the left one. Initially, no forks are taken and the operations
TakeLeftFork , TakeRightFork and DropFork are possible when the corresponding
preconditions are true. The (valid) invariant also expresses that a philosopher
only takes his forks.

This specification is quite general and several initial topologies are possible (n
must be at least 2) and for a cardinality n bigger than 3, we can have topologies
with several groups of philosophers (e.g. with n = 4 two tables of two philosophers
are possible). We can easily impose a ring topology with only one big table by
adding the following property, excluding subtables: ∀st.(st ⊂ Phil ∧ st 6= ∅ ⇒
rFork−1[lFork [st]] 6= st).

MACHINE Philosophers
SETS Phil; Forks
CONSTANTS lFork , rFork
PROPERTIES
lFork ∈ Phil �� Forks ∧
rFork ∈ Phil �� Forks ∧
card(Phil) = card(Forks) ∧
∀pp.(pp ∈ Phil⇒ lFork(pp) 6= rFork(pp))
VARIABLES taken
INVARIANT
taken ∈ Forks 7→ Phil ∧
∀xx.(xx ∈ dom(taken)⇒ (lFork(taken(xx)) = xx ∨ rFork(taken(xx)) = xx))
INITIALISATION taken := ∅
OPERATIONS
TakeLeftFork(p, f) =
PRE p ∈ Phil ∧ f ∈ Forks ∧ f /∈ dom(taken) ∧ lFork(p) = f THEN

taken(f) := p
END;
TakeRightFork(p, f) =
PRE p ∈ Phil ∧ f ∈ Forks ∧ f /∈ dom(taken) ∧ rFork(p) = f THEN

taken(f) := p
END;
DropFork(p, f) =
PRE p ∈ Phil ∧ f ∈ Forks ∧ f ∈ dom(taken) ∧ taken(f) = p THEN

taken := f �− taken
END

END

Fig. 3. Dining Philosophers specification

Size of the State Spaces without Symmetry: For the LoginVerySimple
machine of Fig. 1 and a cardinality of 6 for the deferred set Session, 2188 states
are reachable in prob (including a root state and a first initialisation). For the
Philosophers machine of Fig. 3 with a cardinality of 4 for the sets Phil and Fork ,
216 initial topologies are possible split into 144 topologies with all philosophers
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at the same table and 72 topologies with 2 tables and 2 philosophers at each one.
The full state space for this machine has 17713 states. As we will see below, a lot
of those states are symmetric.

Symmetry Reduction by Graph Canonicalisation: Deciding whether
two states can be considered symmetric (also called the “orbit problem”) is tightly
linked to detecting graph isomorphisms (see, e.g., [CGP99][Chapter 14.4.1]). In-
deed, to detect on the fly if two states are symmetric, one can directly employ
algorithms for detecting graph isomorphisms, by converting the system states into
graphs and then checking whether these graphs are isomorphic. Graph isomor-
phism currently has no known polynomial algorithm. However, in practice some
efficient algorithms exist for most classes of graphs [KK04]. The most efficient
general purpose graph isomorphism program is nauty [McK]. In related work
[TLSB07], inspired by nauty, we have implemented a canonicalisation function
for B states viewed as graphs, i.e. a procedure which maps each state to a unique
member of its equivalence class, called the canonical form.

Symmetry Reduction by Permutation Flooding: Informally, we know
that two states are definitely symmetric if there exists a permutation of the de-
ferred set elements which transforms one state ino the other. The idea of per-
mutation flooding [LBST07] is thus, for every newly encountered state, compute
all permutations states of this state and add them to the state space. Those new
states are marked as already processed, and hence will not be checked for invariant
violations, nor will the enabled transitions be computed. The first encountered
state of each equivalence class becomes de facto the representative element for the
class. If the state space fits into memory, this provides a simple symmetry reduc-
tion method that can be quite efficient (especially for complicated datastructures)
with execution time similar to the graph normalisation method. Further informa-
tion on these permutation functions, and the soundness results of the symmetries,
can be found in [LBST07].

3 Symmetry Markers

Even with symmetry reduction via normalisation or flooding, complete verification
of a B model may take too much time or use too much space to be practical. To
address this issue, we propose a new approximate verification technique based on
symmetry markers. The technique is partially inspired by successful Holzmann’s
bitstate hashing technique [Hol88] which computes a hash value for every reached
state: if another state with the same hash value has already been checked, the
new state is not analysed any further. As hash collisions can arise, some reachable
states are not checked. Holzmann’s method is therefore, no longer an exhaustive
model checking method but an approximate verification method (or intensive test-
ing), which is able to discover errors if an error state is reached, but in general
cannot certify that the model is error-free.

In our case, the hash value is replaced by a marker. This marker has a more
complicated structure, but integrates the notion of symmetry: two symmetric
states will have the same marker and there is a “small chance” that two non-
symmetric states have the same marker. In our model checking algorithm, we
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will store those markers rather than the states and we will check a new state
only if its marker has not yet been seen before. Similarly to the bitstate hash-
ing algorithm, part of the (symmetry reduced) state space may not be checked
in case of a collision (i.e., non symmetrical states having the same marker). In
the rest of the paper, we will formally present a way to compute such markers,
discuss in which case our markers are precise, and present an empirical evalua-
tion exhibiting big speedups (over classical model checking and even over other
symmetry approaches) with few collisions (actually in only one example in the
experiments).

Formal Definition of Markers:

A marking function is given a state s of a B machine and computes the associated
marker. The idea of our marking function is to transform s into a marker by
replacing the deferred set elements by so-called vertex-invariants.

In graph theory, an invariant [KS99][Sect. 7.2] is a function which does not de-
pend on the presentation of the graph. A vertex-invariant [McK] inv is a function
which labels the vertices of an arbitrary graph with values so that symmetri-
cal vertices are assigned the same label. Vertex-invariants can be used to speed
up graph isomorphism checks. Examples of simple vertex-invariants include the
in-degree and the out-degree for the specified vertex. Below we present a more
involved vertex-invariant for deferred set elements in B, generalising the ideas of
in- and out-degrees.

We denote a state s as a vector 〈c1, . . . , cn〉 of value of its variables or constants
v1, . . . , vn where an order is fixed between them. We also denote multisets by using
{| . . . |} and multiset union by ]. We denote sequences by 〈. . .〉. The concatenation
of two sequences α and β is denoted by α.β. If B = {| β1, . . . , βn |} is a multiset
of n sequences and α a sequence, we also define α.B = {| β′1, . . . , β′n |} with
β′i = α.βi.

Informally, we will compute a symmetry marker for a given state s of a B
machine as follows:

1. For every deferred set element d used inside s we compute structural informa-
tion about its occurrence in s, invariant under permutation (and thus sym-
metry). For this, we compute the multiset of paths that lead to an occurrence
of d in s. This is formalised in Def. 1 below.

2. Replace all deferred set elements by the structural information computed
above. This is formalised in Def. 2.

Definition 1. Let d ∈ D be a deferred set element and e a data value of a variable
or constant of a B machine.

– paths(d, e) = {| 〈〉 |} if e = d,
– paths(d, e) = 〈left〉.paths(d, x) ] 〈right〉.paths(d, y) if e = (x 7→ y) is a
pair,

– paths(d, e) = ]x∈e〈el〉.paths(d, x) if e is a set,
– paths(d, e) = ∅ otherwise.
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For a state s of a B machine with variables and constants V (ordered as v1, . . . , vn)
we define

– paths(d, s) = {| 〈vi〉.paths(d, ci) | s = 〈c1, . . . , cn〉 |}

paths(d, s) computes structural information on how the deferred set element d
is used within s. It identifies which variables and constants use this element and
the various paths to d in the structure of s (seen as a graph).

paths(d, s) is a vertex-invariant and in the particular case where s is a single bi-
nary relation g over D, representing a graph, then paths(d, s) effectively computes
the in- and out-degree of the vertex d. E.g., if d has one outgoing and two incoming
edges, we will have paths(d, s) = {| 〈r, el, left〉, 〈r, el, right〉, 〈r, el, right〉 |}.

The following definition simply replaces all deferred set elements within a state
by their paths in order to compute the symmetry marker.

Definition 2. Let s be the state of a B machine with ordered variables and con-
stants v1, . . . , vn. We define the marking function m, computing markers for data
values as follows:

– m(s) = {| vi 7→ ms(ci) | s = 〈c1, . . . cn〉 |}
where ms is inductively defined by:

– ms(e) = e if e ∈ ZZ or e ∈ BOOL or e = ∅ or e ∈ E,
– ms(e) = (ms(x) 7→ ms(y)) if e = (x 7→ y) is a pair,
– ms(e) = {| ms(e1), . . . ,ms(ek) |} if e = {e1, . . . , ek} is a set,
– ms(d) = paths(d, s) if d ∈ D.

Fig. 4 illustrates the concepts for machine with the deferred set D = {d1, d2},
the variables c, r where c ∈ D and r ⊆ D×D, and the state s = 〈d1, {(d1 7→ d2)}〉.
Note that the state s2 = 〈d2, {(d2 7→ d1)}} is symmetric to the state s of Fig. 4
(the permutation is f = {d1 7→ d2, d2 7→ d1}) and the symmetry markers are
identical.

c:D

d1 d2

d1 { d1→d2 }
r: D<->D

paths

c

r

el

left right

State s

Deferred Set D

c  {| 〈c〉, 〈r, el, left〉|} 

r

Symmetry Marker ms(s)

{ ( {| 〈c〉, 〈r, el, left〉|},
{| 〈r, el, right〉 |})} 

Fig. 4. Illustrating the paths for deferred set elements

Let us examine a few more examples, all with the deferred set D = {d1, d2}.
Take the two states s1 = 〈{d1 7→ 0}, {d1}〉, s2 = 〈{d2 7→ 0}, {d1}〉 with variables x
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and y. These two states are not symmetric and have also different symmetry mark-
ers m(s1) 6= m(s2) as ms1(d1) = {| 〈x, el, left〉, 〈y, el〉 |}, ms2(d1) = {| 〈y, el〉 |},
ms2(d2) = {| 〈x, el, left〉 |}. For s3 = 〈{d2 7→ 0}, {d2}〉 we have that m(s1) =
m(s3), and indeed s1 and s3 are symmetric. So far, our symmetry markers have
been perfectly precise, i.e., two states had the same marker iff they were symmet-
ric. It is, however, not too difficult to construct cases where this is no longer true
and collisions occur. Take the states s4 = 〈{d1 7→ 1, d2 7→ 2}, {d1 7→ 1, d2 7→ 2}〉
and s5 = 〈{d1 7→ 2, d2 7→ 1}, {d1 7→ 1, d2 7→ 2}〉. Those states are not symmetric
but they have the same symmetry marker. Such situations (state variables which
map deferred set elements to non-symmetric data values) are quite common, and
the following improvement to Def. 1 stores more information in the symmetry
marker to avoid collisions in those cases:

Let NonSym be the smallest set satisfying ((ZZ∪BOOL∪E∪{∅} ⊆ NonSym) ∧
(∀x, y : x ∈ NonSym ∧ y ∈ NonSym ⇒ (x, y) ∈ NonSym)). We extend Def. 1 by
replacing the second rule by the following rules:

– paths(d, e) = 〈to, n〉.paths(x) if e = (x 7→ n) ∧ n ∈ NonSym ∧ x 6∈ NonSym
– paths(d, e) = 〈from, n〉.paths(x) if e = (n 7→ x) ∧ n ∈ NonSym ∧ x 6∈

NonSym
– paths(d, e) = 〈leftright〉.paths(x) if e = (x 7→ x) ∧ x 6∈ NonSym.
– paths(d, e) = 〈left〉.paths(x) ] 〈right〉.paths(y) if e = (x 7→ y) ∧ x 6∈

NonSym ∧ y 6∈ NonSym ∧ x 6= y.
The adapted definition is more precise and now distinguishes s4 and s5. We

will return to the issue of precision below. We first prove that our definition is
indeed invariant under permutation:

Proposition 1. Let s1, s2 be two states for B Machine with deferred sets
{D1, . . . , Di} such that there exists a permutation f over {D1, . . . , Di} where
s2 = f(s1). Then for any element d1 ∈ {D1, . . . , Di} we have paths(d1, s1) =
paths(f(d1), s2).

Proof. If paths(d1, s1) = {||}, then d1 does not occur in s1, and hence f(d1) cannot
occur in s2 either as s2 = f(s1). Generally, as s2 = f(s1), f(d1) must occur in
exactly the same places in s2 where d1 occurred in s1. This can be formally proven
by a straightforward induction on the length of the paths.

From the above proposition we can conclude that for ∀.d ∈ D and for every
permutation function we have ms1(d) = mf(s1)(f(d)). We thus have:

Corollary 1. Let s1, s2 be two states of a B machine M . If s1 and s2 are per-
mutation states of each other then m(s1) = m(s2).

When are symmetry markers precise Our Dining Philosopher example from
Sect. 2 can be used to show the limits of our method. Already with 2 philosophers
a collision occurs between the state where each philosopher has taken a fork in
his left hand with the state where each philosopher has taken a fork in his right
hand. Fig. 5 gives a graphical representation of these two states where, to simplify
the graph we have represented each pair by an arrow. It is not straightforward
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rFork rForklFork lFork

taken taken

(a)

lFork lForkrFork rFork

taken taken

(b)

Fig. 5. Two states in collision for the symmetry markers method

to see why these two state are not symmetric.1 Let us consider the predicate
∀p.(p : Phil ⇒ taken(lFork(p)) = p). This predicate is true for the left state (a)
but not for the right state (b); hence the two states cannot be symmetrical. We
could strengthen our method and detect cycles of length 2 (like the ones occuring
in Fig. 5 (a): p1-f1-p1 and p2-f2-p2), but in the end, only a full graph isomorphism
algorithm is sufficient to properly identify all symmetries.

Notice however that our method correctly distinguishes between the state
where one philosopher has a fork in his left hand with the one where he has one
in his right hand.

More generally, the symmetry marker method may fail to properly identify
symmetry classes already with a single binary relation over a deferred set,. For
example, the states s1 = 〈{d1 7→ d2, d2 7→ d3, d3 7→ d4, d4 7→ d1}〉 and s2 =
〈{d1 7→ d2, d2 7→ d1, d3 7→ d4, d4 7→ d3}〉 have same symmetry marker, but they
are not symmetric.

Still, we can identify the following cases where our method is precise:

Proposition 2. Let s1, s2 be two states for B Machine with deferred sets
{D1, . . . , Di}. Let all the values v of variables and constants in s1 and s2 be
either:

– a value not containing any element from one of the sets D1, . . . , Di, or
– a value not containing a set, or
– a set of values {x1, . . . , xn} ⊆ Dk for some 1 ≤ k ≤ i, or
– a set of pairs {x1 7→ y1, . . . , xn 7→ yn} such that either all xi are in NonSym
and all yi are elements of some deferred set Dj, or all xi are in NonSym and
all yi are elements of some deferred set Dj.

Then m(s1) = m(s2) implies that there exists a permutation function f over
{D1, . . . , Di} such that f(s1) = s2.

1 And actually for the current machine in Fig. 3 these two states could be confounded;
but if we add a protocol or other predicate which distinguishes left forks from right
forks this will no longer be the case.
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Proof. (outline) Let us only consider the case where all variable values are sets of deferred
elements. The other cases can be translated to such a situation (a variable of type Dj

can be seen as a singleton set of elements of Dj ; a set of pairs containing a NonSym
mapped to an element of Dj can be set as a series of sets of elements of Dj : one for
every occuring value in NonSym; and for values v not containing an element of D we
simply have ms1(v) = v = ms2(v) and for all permutation functions we have f(v) = v).
We now construct the function f with the property ms1(d) = ms2(f(d)) for all d ∈ D.
If all the deferred set elements have a different marker, then this function is uniquely
defined and must be a bijection. If there are some deferred set elements d1, . . . , dk with
the same marker in s1 then we must also have k elements d′

1, . . . , d
′
k of D which have

this same marker in s2, and hence we can also construct a function f which is a bijection
(e.g., choosing f(di) = d′

i). One can now easily prove that f is such that s2 = f(s1) and
hence s1 and s2 are symmetric.

As a corolloray of the above we know that if the variables and constants used in
a B machine fulfill conditions of Prop. 2, our symmetry marker method provides
a full verification. Fortunately, in practice quite a lot of specifications seem to
fulfill the conditions of Prop. 2. It can also be possible to change a specification
to satisfy the conditions. E.g. if we enumerate the forks of the dining philosophers
example2, our method is precise but of course has less symmetry.
Discussion: Our markers could be further improved, to avoid more collisions,
by moving from multiset of paths to a tree structure. This would mainly require
changing the last rule for computing paths above to the following:

– paths(d, e) = (〈left〉.paths(d, x) , 〈right〉.paths(d, y)) if e = (x 7→ y) ∧ x 6∈
NonSym ∧ y 6∈ NonSym

This extension has not been implemented in our tool.

4 Empirical Evaluation

We have implemented the technique presented in the previous section and incor-
porated into prob. In our implementation, the marker is built up as a Prolog
term, and the multisets are sorted and individual occurrences counted.

Below, we give an empirical evaluation of this implementation. We have per-
formed classical consistency and deadlock checking without symmetry reduction
(wo) and with our permutation flooding (flood) and symmetry markers (mark-
ers) reduction methods, on a series of examples using prob’s model checker. The
results can be found in Table 1. RussianPostalPuzzle is a B model of a cryp-
tographic puzzle. (see, e.g., [Fla01]). Scheduler0.mch and scheduler1.ref are the
machines presented in [LB05]. Peterson is the specification of the mutual exclu-
sion protocol for n processes as defined in [Pet81]. Philosophers is the dining
philosopher example presented above.

The column “Nodes” in Table 1 contains the number of nodes for which the
invariant was checked and the outgoing transitions computed.

2 and use it e.g. in the invariant since otherwise prob change its specification to deferred
set

11



The experiments were all run on a multiprocessor system with 4 AMD Opteron
870 Dual Core 2 GHz processors, running SUSE Linux 10.1, SICStus Prolog 3.12.5
(x86 64-linux-glibc2.3) and prob version 1.2.0.3

Table 1. Model checking with symmetry markers compared against classical checking
and permutation flooding

Machine Card Model Checking Time Number of Nodes Speedup over
wo flood markers wo flood markers wo flood

Russian 1 0.05 0.05 0.05 15 15 15 1.04 1.04
2 0.32 0.21 0.21 81 48 48 1.51 0.97
3 1.32 0.46 0.34 441 119 119 3.92 1.35
4 8.73 1.90 0.89 2325 248 248 9.81 2.13
5 54.06 12.18 2.05 11985 459 459 26.35 5.94

scheduler0 1 0.01 0.01 0.01 5 5 5 0.98 0.99
2 0.07 0.05 0.05 16 10 10 1.59 1.06
3 0.28 0.07 0.06 55 17 17 4.60 1.12
4 0.98 0.20 0.14 190 26 26 7.15 1.43
5 4.52 0.75 0.27 649 37 37 16.87 2.81
6 20.35 4.74 0.48 2188 50 50 42.60 9.93
7 114.71 43.47 0.80 7291 65 65 143.61 54.43

scheduler1 1 0.01 0.01 0.01 5 5 5 1.09 1.12
2 0.05 0.06 0.05 27 14 14 1.12 1.26
3 0.41 0.11 0.09 145 29 29 4.50 1.17
4 2.96 0.34 0.18 825 51 51 16.62 1.93
5 23.93 1.70 0.37 5201 81 81 64.24 4.56
6 192.97 13.37 0.70 37009 120 120 275.75 19.10
7 941.46 167.95 1.22 297473 169 169 771.39 137.61

Peterson 2 0.28 0.28 0.15 49 27 27 1.87 1.89
3 8.80 2.00 1.73 884 174 174 5.08 1.16
4 861.49 60.13 20.66 22283 1134 1134 41.69 2.91

Philosophers 2 0.11 0.05 0.04 21 8 7 3.02 1.30
3 1.56 0.15 0.05 337 13 11 28.83 2.80
4 123.64 5.99 0.15 11809 26 20 799.36 38.73

Towns.mch 1 0.01 0.01 0.01 3 3 3 1.03 1.00
2 0.37 0.33 0.34 17 11 11 1.08 0.97
3 63.95 12.78 12.95 513 105 105 4.94 0.99

USB.mch 1 0.21 0.20 0.22 29 29 29 0.96 0.90
2 8.42 4.74 6.17 694 355 355 1.36 0.77
3 605.25 277.59 232.93 16906 3013 3013 2.60 1.19

USB is a specification of a USB protocol, developed by the French company
ClearSy. Towns is a specification from the Schneider B Book [Sch01]; here the
overhead is in the closure computation of a query operation. The results are
very good, and for most examples the symmetry marker is much faster than

3 Note that neither SICStus Prolog nor prob take advantage of multiple processors.
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the permutation flooding approach. In Towns and USB both fare equally well,
which can be explained by the complexity of the specification. For example, in
the Towns specification the major bottleneck is the computation of the closure
of the connectivity graph of the towns; both symmetry markers and permutation
flooding get rid of the overhead in the same manner leaving the same number of
residual closure operations to be computed. In all other examples the symmetry
marker method fares substantially better than permutation flooding, sometimes
actually achieving a fundamental reduction of the exponential complexity This
can be seen in Fig. 6 for the scheduler0 example. Note that permutation flooding
does not achieve such a fundamental reduction (note that symmetry reduction
by computing canonical forms has a very similar curve, with speedups dropping
below 3 for Card > 5; see [TLSB07]).

Fig. 6. Model Checking time (in seconds) for scheduler0.mch; log scale

5 Related and Future Work

Symmetry reduction in model checking has been studied extensively since the
nineties [ES96,ID96,CEFJ96]. The two sources of symmetry mostly analyzed are
data symmetry generally identified through the use of special data types, and
structural symmetry due to concurrent (isomorphic) processes.

Two major works have initially studied data symmetry. Ip and Dill [ID96]
introduced the scalarset datatype which is an integer subrange with restricted
operations. These restrictions allow to identify symmetries in the state-space.
Scalarset is implemented in the tool Murφ [DDHY92]. The second precursor work
in this line is the work of Clarke, Jha et al [CEFJ96,Jha96] which combines data
symmetry with a BDD approach. The approach taken with the scalarset data
type has been taken and extended in various works on untimed [BDH02,DMC05b]
and timed systems [HBL+03]. Data equivalence is also exploited by Jackson et
al. [JJD98] in relational specifications where data and operations are specified as
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relations. Note that since it is relational, the language NP used by Jackson et al.
is somehow, in the same family as Z, VDM and B.

In a pioneer work [ES96,ES95], Emerson and Sistla studied structural symme-
try. They use concurrent systems of processes together with some communication
topology using shared variables. They studied fairness in that setting. The tool
SMC [SGE00] implements this theory. It is worth noticing that, except for the
work of Jackson et al., symmetry is always specified by hand by the designer. Our
approach does not require this; the symmetry arises naturally from the (common)
use of deferred sets.

The problem of efficient identification of equivalent states was already dis-
cussed in [ES96] and a very simple hashing function invariant to symmetry was
proposed as a first step to identify states equivalence classes. To our knowledge,
our work is the first elaborate approach to replace the standard symmetry reduc-
tion method based on normalisation to an efficient approximation method.

Other works studied structural symmetry in concurrent systems and in
particular with other kind of communication such as signal or message pass-
ing [MHB98,DM05,DMC05a].

Symmetry on the formula allows another kind of reduction and has been in-
vestigated in [MHB98].

The link between the finding of orbits and the graph isomorphism problems
was studied in [CEFJ96]. The computation of a representative element for a global
state can therefore be done by the powerful algorithm [McK81] and the nauty
tool [McK] developed by McKay. The paper of Miller et al. [MDC06] gives a nice
survey to symmetry in model checking.

In future we plan to adapt our results to improve automatic refinement check-
ing [LB05]. Another promising work is to employ symmetry reduction when check-
ing logical predicates containing existential or universal quantification, in order
to cut down on the number of values that need to be tested for the quantified
variables. We also plan to combine our symmetry markers with the graph canon-
icalisation approach, so that the canonical form only has to be computed when
two states have the same symmetry marker.

In conclusion, we have presented a new approximate verification technique for
B, employing symmetry induced by B’s deferred sets. The technique computes
symmetry markers for states of B machines and two states with the same symme-
try marker are considered symmetric by the approximate verification algorithm.
In our empirical evaluation we have shown that our technique is both very pre-
cise (very few non-symmetric states are identified) and very efficient, sometimes
achieve a fundamental reduction of the underlying exponential verification com-
plexity.
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